Guided instruction with Logo programming and the development of cognitive monitoring strategies among college students

Mi Ok Cho Lee
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd
Part of the Curriculum and Instruction Commons, and the Educational Psychology Commons

Recommended Citation
https://lib.dr.iastate.edu/rtd/9545

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.
Guided instruction with Logo programming and the development of cognitive monitoring strategies among college students

Lee, Mi Ok Cho, Ph.D.

Iowa State University, 1991
Guided instruction with Logo programming and the development of
cognitive monitoring strategies among college students

by

Mi Ok Cho Lee

A Dissertation Submitted to the
Graduate Faculty in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY

Department: Curriculum and Instruction
Major: Education (Curriculum and Instructional Technology)

Approved:
Signature was redacted for privacy.

In Charge of Major Work
Signature was redacted for privacy.

For the Major Department
Signature was redacted for privacy.

For the Graduate College

Iowa State University
Ames, Iowa
1991
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>Theoretical Background</td>
<td>5</td>
</tr>
<tr>
<td>Statement of Problem</td>
<td>12</td>
</tr>
<tr>
<td>Purpose of the Study</td>
<td>14</td>
</tr>
<tr>
<td>Research Questions</td>
<td>14</td>
</tr>
<tr>
<td>Hypotheses</td>
<td>15</td>
</tr>
<tr>
<td>Significance of the Study</td>
<td>17</td>
</tr>
<tr>
<td>Limitations</td>
<td>18</td>
</tr>
<tr>
<td>Definition of Terms</td>
<td>18</td>
</tr>
<tr>
<td>LITERATURE REVIEW</td>
<td>22</td>
</tr>
<tr>
<td>Introduction</td>
<td>22</td>
</tr>
<tr>
<td>Background of Logo Programming</td>
<td>22</td>
</tr>
<tr>
<td>Research on Logo Programming</td>
<td>28</td>
</tr>
<tr>
<td>Reasons for Conflicting Research Results on Logo Programming</td>
<td>34</td>
</tr>
<tr>
<td>Metacognition and the Computer</td>
<td>40</td>
</tr>
<tr>
<td>Metacognition</td>
<td>40</td>
</tr>
<tr>
<td>Metacognitive Knowledge</td>
<td>43</td>
</tr>
<tr>
<td>Cognitive Monitoring</td>
<td>48</td>
</tr>
<tr>
<td>Logo-Based Instruction and Development of Cognitive Monitoring</td>
<td>56</td>
</tr>
<tr>
<td>Model of Logo-Based Cognitive Monitoring Instruction</td>
<td>61</td>
</tr>
<tr>
<td>Summary</td>
<td>69</td>
</tr>
</tbody>
</table>
METHODOLOGY

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>72</td>
</tr>
<tr>
<td>Sample</td>
<td>73</td>
</tr>
<tr>
<td>Research Design</td>
<td>77</td>
</tr>
<tr>
<td>Instructional Materials</td>
<td>85</td>
</tr>
<tr>
<td>Experimental Treatment</td>
<td>88</td>
</tr>
<tr>
<td>Test Instruments</td>
<td>95</td>
</tr>
<tr>
<td>Analysis of Data</td>
<td>109</td>
</tr>
</tbody>
</table>

RESULTS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>111</td>
</tr>
<tr>
<td>Analysis of Pre-Experimental Measures</td>
<td>112</td>
</tr>
<tr>
<td>Hypothesis One</td>
<td>114</td>
</tr>
<tr>
<td>Hypothesis Two</td>
<td>115</td>
</tr>
<tr>
<td>Hypothesis Three</td>
<td>117</td>
</tr>
<tr>
<td>Hypothesis Four</td>
<td>119</td>
</tr>
<tr>
<td>Hypothesis Five</td>
<td>121</td>
</tr>
<tr>
<td>Hypothesis Six</td>
<td>123</td>
</tr>
<tr>
<td>Hypothesis Seven</td>
<td>125</td>
</tr>
<tr>
<td>Results for the Basic Logo Comprehension Test</td>
<td>127</td>
</tr>
<tr>
<td>Auxiliary Findings</td>
<td>129</td>
</tr>
<tr>
<td>Summary</td>
<td>134</td>
</tr>
</tbody>
</table>
APPENDIX I: INSTRUCTION OUTLINE FOR LABORATORY: CONTROL GROUP ... 262
APPENDIX J: STUDENT ACTIVITY SHEETS FOR LECTURE: EXPERIMENTAL GROUP ... 274
APPENDIX K: STUDENT ACTIVITY SHEETS FOR LECTURE: CONTROL GROUP ... 286
APPENDIX L: STUDENT ACTIVITY SHEETS FOR LABORATORY: EXPERIMENTAL GROUP ... 298
APPENDIX M: STUDENT ACTIVITY SHEETS FOR LABORATORY: CONTROL GROUP ... 309
APPENDIX N: TRANSPARENCIES FOR EXAMPLES OF HOMEWORK ASSIGNMENT: EXPERIMENTAL GROUP ... 320
APPENDIX O: TRANSPARENCIES FOR EXAMPLES OF HOMEWORK ASSIGNMENT: CONTROL GROUP ... 327
APPENDIX P: HOMEWORK ASSIGNMENT CRITERIA SHEETS: EXPERIMENTAL GROUP ... 333
APPENDIX Q: HOMEWORK ASSIGNMENT CRITERIA SHEETS: CONTROL GROUP ... 338
APPENDIX R: LOGO DECOMPOSING AND PLANNING TEST ... 343
APPENDIX S: LOGO ERROR IDENTIFICATION TEST ... 350
APPENDIX T: GENERAL DECOMPOSING TEST ... 358
APPENDIX U: GENERAL PLANNING TEST ... 363
APPENDIX V: GENERAL ERROR IDENTIFICATION TEST ... 368
APPENDIX W: BASIC LOGO COMPREHENSION TEST ... 373
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Reliability coefficient of the Logo decomposing and planning test</td>
<td>101</td>
</tr>
<tr>
<td>2</td>
<td>Reliability coefficient of the Logo error identification test</td>
<td>102</td>
</tr>
<tr>
<td>3</td>
<td>Reliability coefficient of the general decomposing test</td>
<td>105</td>
</tr>
<tr>
<td>4</td>
<td>Reliability coefficient of the general planning test</td>
<td>106</td>
</tr>
<tr>
<td>5</td>
<td>Reliability coefficient of the general error identification test</td>
<td>108</td>
</tr>
<tr>
<td>6</td>
<td>Comparisons of covariate variable means for treatment groups</td>
<td>113</td>
</tr>
<tr>
<td>7</td>
<td>Comparisons of categorized variable frequencies for treatment groups</td>
<td>113</td>
</tr>
<tr>
<td>8</td>
<td>Wilks multivariate test of significance</td>
<td>114</td>
</tr>
<tr>
<td>9</td>
<td>Means and standard deviations for the Logo decomposing test</td>
<td>115</td>
</tr>
<tr>
<td>10</td>
<td>Analysis of covariance for the Logo decomposing test</td>
<td>116</td>
</tr>
<tr>
<td>11</td>
<td>Means and standard deviations for the Logo planning test</td>
<td>117</td>
</tr>
<tr>
<td>12</td>
<td>Analysis of covariance for the Logo planning test</td>
<td>118</td>
</tr>
<tr>
<td>13</td>
<td>Means and standard deviations for the Logo error identification test</td>
<td>119</td>
</tr>
<tr>
<td>14</td>
<td>Analysis of covariance for the Logo error identification test</td>
<td>120</td>
</tr>
<tr>
<td>15</td>
<td>Means and standard deviations for the general decomposing test</td>
<td>121</td>
</tr>
<tr>
<td>16</td>
<td>Analysis of covariance for the general decomposing test</td>
<td>122</td>
</tr>
</tbody>
</table>
TABLE 17. Means and standard deviations for the general planning test 123

TABLE 18. Analysis of covariance for the general planning test 124

TABLE 19. Means and standard deviations for the general error identification test 125

TABLE 20. Analysis of covariance for the general error identification test 126

TABLE 21. Means and standard deviations for the multiple choice of basic Logo comprehension test ... 128

TABLE 22. Analysis of covariance for the multiple choice basic Logo comprehension test 128

TABLE 23. Stepwise multiple regression effect on the treatments of Logo instructional methodology ... 130

TABLE 24. Correlation matrix among covariates and dependent variables 136

TABLE 25. Correlation matrix for the seven covariates ... 137

TABLE 26. Correlation matrix for the six dependent variables 138

TABLE 27. Distribution of students by college major .. 195

TABLE 28. Distribution of students by gender .. 195

TABLE 29. Distribution of students by year in college ... 195

TABLE 30. Distribution of students by number of mathematics courses taken in high school .. 196

TABLE 31. Distribution of students by number of computer courses taken in either high school or college .. 196

TABLE 32. Distribution of students by computer ownership ... 196
TABLE 33. Distribution of students by computer confidence scores . . . 197

TABLE 34. Means and standard deviations for the ACT scores 197
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Recursive cycle of cognitive monitoring</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Two primary branches of metacognition</td>
<td>42</td>
</tr>
<tr>
<td>3</td>
<td>Sequence of experimental study events</td>
<td>78</td>
</tr>
<tr>
<td>4</td>
<td>Instructor rotation and Logo units for lecture sections</td>
<td>80</td>
</tr>
<tr>
<td>5</td>
<td>Test administration period</td>
<td>84</td>
</tr>
<tr>
<td>6</td>
<td>Example of Socratic dialogues to elicit cognitive monitoring</td>
<td>91</td>
</tr>
<tr>
<td>7</td>
<td>An example of Logo decomposing and planning problem</td>
<td>99</td>
</tr>
<tr>
<td>8</td>
<td>An example of general decomposing problem</td>
<td>103</td>
</tr>
</tbody>
</table>
INTRODUCTION

Current society is changing rapidly with an expansion of knowledge, information, and technology. People are increasingly required to become independent thinkers and creative problem solvers capable of using knowledge, information, and technology. These demands are increasing the need for teaching transferable higher-order thinking skills in schools. The rapid and constant societal change is encouraging educators to dedicate more attention to the creation of educational environments which can help students develop thinking skills (National Commission on Excellence in Education, 1983; Smith, 1987; Task Force on Teaching as a Profession, 1986).

Although the teaching and learning of higher-order thinking skills and problem solving skills have been a major issue in education for a long time, the nature of an information society demands such skills more than ever before. Heading for a new century, schools must respond to a societal change:

As we enter the twenty-first century, schools should not be training children for a given occupation or skill. They should be preparing children to apply knowledge, to solve problems, to make choices, and to participate in setting priorities (Bactian, Fruchter, Gittell, Greer, & Haskins, 1986, p. 31).

In spite of the increasing demand for teaching and learning higher-order thinking skills, most young American adults lack higher-order thinking skills such as the ability to infer, integrate, evaluate, and solve problems which require critical thinking and monitoring (Kirsch & Jungeblut, 1986; National Assessment of Educational Progress, 1983, 1988). Furthermore, many college
students have great difficulty managing and evaluating their own learning efforts (Chipman & Segal, 1985; Schoenfeld, 1985; Simpson, 1984).

In schools, educators are now expected to promote students' higher-order thinking skills in preparation for their lives in the twenty-first century of a technology-rich, information society. Such a future-oriented education should help individuals grow capable of using their knowledge and intuition in solving unfamiliar problems, and making efficient decisions based on complex and incomplete information. In reality, however, explicit classroom instruction for these skills is rare (Beck, 1983; Chipman & Segal, 1985; MacGinitie, 1984). Thus, in order to meet the increasing demand for critical thinkers and independent problem solvers, schools need to put more emphasis on developing specific instructional methods for teaching higher-order thinking skills and problem solving skills.

Recent theoretical developments in cognitive psychology also support the need for specific instructional methods that provide opportunities for the development of higher-order thinking skills (Bransford & Vye, 1989; Sternberg, 1987). In particular, research on metacognition indicates that cognitive monitoring which controls and manages cognitive activities plays a vital role in successful problem solving and efficient thinking behaviors (Brown, 1983, 1987; Cavanaugh & Perlmutter, 1982; Rohwer & Thomas, 1989). Cognitive monitoring involves learning activities such as breaking a large, complex problem into simpler problems, organizing information, selecting useful clues, predicting outcomes, planning a solution, executing the plan, checking the results, identifying problems, and correcting cognitive errors.
These cognitive monitoring activities become an important part of efficient thinking and problem solving behaviors (Baker, 1982, 1989; Brown, 1978; Cavanaugh & Perlmutter, 1982; Flavell, 1978; Lawson, 1984).

A growing body of educational literature implies that such cognitive monitoring strategies can be effectively taught in schools if teachers provide guided instruction for learning the strategies. Guided instruction involves explicitly designed instruction targeting specific strategies and mediated learning activities which guide students to transfer learned strategies to other learning domains (e.g., Corno, 1987; Swan & Black, 1989). The guided instruction that is explicitly modeled to facilitate the development of cognitive monitoring helps students consciously direct an on-going learning process. Such guided instruction requires a teacher mediated learning environment that leads students to monitor their thinking process through Socratic questioning. With a teacher mediated approach to practice cognitive monitoring, students can improve their learning skills durably and transferrably (Campione, Brown, & Connell, 1988; Feuerstein, 1980; Lochhead, 1985; Nickerson, Perkins, & Smith, 1985; Palinscar & Brown, 1984; Weinstein & Mayer, 1986).

This research supports the argument that guided instruction of cognitive monitoring activities can facilitate a student's acquisition of cognitive monitoring skills and help a student transfer those skills to other domains. Further, it argues that a teacher mediated learning environment along with an explicit instructional model to target cognitive monitoring strategies is a critical factor in motivating a student's learning. Such an environment can
stimulate students and also provide them with a potential tool that they can use to activate their cognitive processes while in a learning environment.

It is claimed that teaching and learning computer programming can fulfill such a need for a dynamic and challenging learning environment, and improve a broad range of problem solving skills. In particular, it has been suggested that Logo programming can be an excellent means for developing problem solving strategies (Papert, 1980a; Lawler, 1986; Watt, 1982).

Logo provides an environment where children can learn planning and problem solving skills and some suggest these skills will generalize to other areas of learning (Bamberger, 1984; Lawler, 1986; Papert, 1980a). With Logo, in order to produce a drawing or pattern, children must first plan what they want to do, and then break the problem down into an ordered sequence of simpler elements. Then, directions for carrying out the elements must be expressed in the appropriate computer codes. Next, the learners must put their program into operation, noting whether the turtle does what they want it to do. If it does not, they must then start checking the program for mistakes and correcting them. This process not only teaches children an effective approach to solving problems, it also makes them see mistakes as further problems to be overcome (Papert, 1980a). Thus, Logo programming can be viewed as a potential tool to develop guided instruction in order to improve problem solving skills.

For this study, guided Logo instruction consisted of three pedagogical elements used to develop students' cognitive monitoring strategies. First, Logo programming was used as a tool for learning cognitive monitoring
strategies. Second, an explicit instructional model which activates cognitive monitoring strategies was developed. Third, teacher mediated learning to practice cognitive monitoring activities in Logo programming and to apply learned strategies to general problem situations was incorporated into guided instruction. This empirical research investigated how teacher-guided Logo instruction with such pedagogical elements affected students' development of cognitive monitoring strategies.

Theoretical Background

In order to provide a background for the research, this section describes the theoretical framework which demonstrates the relationships between research variables. Specifically, the concepts of cognitive monitoring, Logo programming, self-discovery learning, and guided instruction are discussed.

Cognitive Monitoring

Cognitive monitoring is a process of regulating or evaluating one's ongoing cognitive process while solving problems (Baker & Brown, 1984; Brown, 1978; Flavell, 1976; Forrest-Pressley & Waller, 1984). Components of cognitive monitoring, in general, are identifying problems, breaking the complex problem into manageable units, planning an efficient solution, self-testing, and assessing the outcome. Cognitive monitoring directs how one executes a thinking task. Thus, cognitive monitoring strategies can be applied for most subjects and in many different problem situations (Brown, 1978, 1987; Derry, 1989).
These cognitive monitoring activities are not necessarily sequential in a process of problem solving, but rather recursive. The process of cognitive monitoring activities continues and recycles until students achieve the desired goals. Figure 1 indicates recursive cognitive monitoring activities where students follow cognitive monitoring processes repeatedly until no errors are detected and the desired goal is reached.

Cognitive monitoring has been regarded as one of the most important and essential strategies for efficient problem solving (Brown, 1978; Ford, 1981; Lochhead, 1988). Further, differences in cognitive monitoring are one of the critical factors that produce individual intellectual differences and efficient thinking (Brown, 1983; Sternberg, 1984; 1987).

FIGURE 1. Recursive cycle of cognitive monitoring
There is a considerable difference between the ability of good and poor problem solvers to utilize cognitive monitoring strategies. Good problem solvers more often employ cognitive monitoring strategies such as defining a problem, predicting an outcome, planning ahead, regulating the progress, checking errors, and modifying thinking processes (Derry, 1989; Zimmerman & Pons, 1986, 1990; Wagner & Sternberg, 1987). Students with good cognitive monitoring strategies also perform better than those with poor cognitive monitoring strategies in domain specific tasks (Brown, Bransford, Ferrara, & Campione, 1983; Garner & Kraus, 1981-1982; Palinscar & Brown, 1989).

Despite the value of cognitive monitoring, research suggests that many college students and adults lack the necessary cognitive monitoring strategies to maximize learning endeavors and to solve problems efficiently (Schoenfeld, 1985; Simpson, 1984; Sternberg, 1986). Thus, a need exists to teach cognitive monitoring strategies to college students and adults in order to help them become efficient thinkers and independent problem solvers in varied situations.

Logo programming

Several studies have indicated that computer programming can be used as a tool to enhance critical, logical, and reflective thinking in the process of solving problems (Feurzig, Horwitz, & Nickerson, 1981; Nickerson, Perkins, & Smith, 1985; Papert, 1980a). In particular, proponents of Logo programming believe that Logo has innate educative properties and provides a special learning environment for students to develop learning strategies and problem solving skills (Ryba & Chapman, 1983; Tractenberg, 1985; Watt, 1982). It has
been claimed that Logo programming facilitates a learning environment in which students can practice cognitive monitoring activities (Clements, 1990; Harvey, 1982; Papert, 1980a). Papert (1980a) pointed out that "in teaching the computer how to think, children embark on an exploration about how they themselves think" (p. 19).

The nature of the Logo environment allows students to consciously reflect and monitor their thinking processes; thus, Logo programming appears to be a logical and appropriate tool for students to explicitly practice cognitive monitoring activities.

Self-discovery Learning

Self-discovery learning has long been an area of discussion and implementation for instructional developers. Papert’s philosophy of learning Logo is based on a self-discovery method that uses minimal adult guidance. According to Papert, self-discovery learning is a teaching situation where a student achieves instructional objectives with limited or no guidance from the teacher. Papert was greatly influenced by Jean Piaget’s theory on the development of children’s cognitive processes. Piaget (1952) believed that children must build their own intellectual structure and that intellectual growth is affected by each child’s experiences, social interactions, overall maturation and equilibrium, and not just by the adult intervention.

Further, Jerome Bruner (1966), a major proponent of the self-discovery method, emphasized the need for children to feel that the activity they are doing is worthwhile and meaningful. He argued that manipulation and action are necessary conditions for learning. According to Bruner, a student’s
intellectual and mental growth are dependent upon the environment in which students are surrounded.

Papert argued that the Logo environment is an artificial, miniature reality that allows students to explore their ideas, and manipulate and test hypotheses by themselves. Through Logo activities, students also interact socially with groups solving problems together. Further, he argued that the Logo environment can accelerate a student's intellectual growth. Most importantly, he suggested that through the self-discovery learning environment in Logo programming, students sharpen their thinking and monitor their thinking process while working with the turtle. Papert reasoned that since Logo gives immediate and explicit, yet non-judgmental error messages, self-discovery learning can help students gain positive attitudes toward learning.

Papert (1980a) suggested that teaching without structured curriculum means supporting children as they build their own intellectual structures with materials taken from the surrounding culture. Several comprehensive research projects on Logo used the self-discovery learning method which allowed students to proceed at their own pace, in their own way, in their own style, and with their own approach (e.g., Lawler, 1980; Papert, Watt, DiSessa, & Weir, 1979; Seidman, 1981; Statz, 1973).

Since then, numerous studies have attempted to examine the effectiveness of the self-discovery learning method in Logo on the development of various problem solving strategies (e.g., Bamberger, 1984; Davidson, 1983; Noss, 1984; Pea, 1983; Pea & Kurland, 1984; Schwartz, Evans, &
Caritj, 1984). However, many of these empirical studies have produced conflicting results of self-discovery learning method in Logo to develop cognitive skills and problem solving strategies. Some of the results indicated that a self-discovery approach to Logo programming improves students' thinking skills and problem solving strategies. Some of them indicated that self-discovery learning does not help students develop problem solving strategies. These conflicting findings challenge researchers to explore new approaches to teaching Logo programming in order to enhance a student's problem solving skills, cognitive skills, and metacognition.

Guided instruction

A guided instruction approach is characterized by teacher modeling of instruction plus mediated learning which guides students to progress gradually to become independent learners in the context (Corno, 1987). An early theorist for guided instruction, Vygotsky (1978), emphasized the role of adults in the process of a child's social learning. According to Vygotsky, a student's higher-order mental capabilities progress from external to internal mediation processes. Students learn to internalize higher-order thinking through social interactions with a teacher or more capable peers. Vygotsky believed that teacher guidance helps students fully internalize their potential for intellectual growth. In guided instruction, the teacher assigns more responsibility to students as they become more capable of performing a complex task. Eventually, the students take the initiative in learning and the teacher becomes a facilitator to guide them only when needed. In this manner, students gradually control their on-going cognitive activities. Thus,
guided instruction can assist students to focus on the problem, to search systematically for information, to compare, to develop an insight, to monitor, and to evaluate their on-going activities carefully (Feuerstein, 1979; Missiuna, Hunter, Kemp, & Hyslop, 1987; Samuels, 1986).

Proper teacher guidance in learning can help students acquire important problem solving strategies and transfer those learned strategies to other learning domains. Palinscar & Brown (1984, 1989) examined a reciprocal teaching method by which teachers raise questions and guide students to promote concrete monitoring strategies in reading comprehension. The study revealed that guided instruction in reading not only promoted reading comprehension skills but also provided students with concrete methods of monitoring their understanding.

The guided instruction approach to teaching computer programming has also been discussed as a method to encourage the transfer of problem solving skills to other domains. A number of studies examining the self-discovery approach to learning Logo programming indicated that many students have difficulties in developing problem solving strategies through the self-discovery (Fay & Mayer, 1987; Kurland & Pea, 1985; Pea, 1983; Pea & Kurland, 1984; Perkins, 1985; Webb, 1984). Littlefield, Deiclos, Lever, Clayton Bransford, and Franks (1988) claimed that improving students' problem solving skills was not dependent on the Logo environment itself, but upon the instructional methods employed with Logo. Recent studies that explored teaching Logo to elementary students have indicated that a teacher guided instructional approach is more effective than self-discovery approach in
teaching planning skills and problem solving strategies (Clements, 1990; Lehrer, Sancilio, & Randle, 1988; Miller & Emihovich, 1986; Swan & Black, 1989).

Swan and Black (1989) extensively investigated and reviewed the research literature regarding outcomes of general problem solving skills from Logo programming. They concluded that all of the studies reporting positive results of transfer effect shared pedagogical elements. They indicated that three common pedagogical elements are likely to encourage the positive transfer effect: (1) concentrating on specific aspects of the problem solving process, (2) providing direct instruction of the target skills, and (3) using a mediated learning approach to practicing the target skills.

Thus, mere exposure to programming may not be enough to ensure the mastery of language or transfer of higher-order thinking skills. It has been suggested that teaching programming requires guided instruction which positions students toward a higher level of cognitive skills (Seidman, 1987). Such guided programming instruction may help students acquire more than technical programming skills, but also higher-order thinking skills and problem solving strategies.

Statement of Problem

Cognitive monitoring has been a central focus of interest in the study of efficient learning and thinking for the past decade. Research on cognitive monitoring is now moving beyond a theoretical framework. Researchers are
beginning to search for proper learning tools and instructional methods that can facilitate the development of a student's cognitive monitoring strategies.

Computer programming is a potential tool with which students can naturally manipulate an environment and develop cognitive skills. In particular, Logo programming has been cited as a powerful vehicle for teaching students about their own thinking processes through a self-discovery approach (Papert, 1980a). But there is conflicting evidence for this claim (e.g., Pea & Kurland, 1984; Salomon & Perkins, 1987). Recently it has been claimed that Logo programming alone is not enough to facilitate the development of a student's higher-level cognitive skills. Logo programming combined with guided instruction is needed to help students acquire more than just technical programming skills (Seidman, 1987; Swan & Black, 1989).

Yet, there is no strong research support for the development of cognitive monitoring strategies through programming. Past studies on Logo programming have generated two important research questions: (1) Does learning Logo programming affect a student's cognitive skills? (2) Does the instructional method for learning Logo programming affect a student's cognitive skills? Since cognitive monitoring strategies are considered essential for efficient problem solving, searching for a proper learning tool and an instructional method that enhance cognitive monitoring strategies is necessary.

Because Logo environments allow students to engage in dynamic activities, such as selecting their own goals, outlining a solution, and testing hypotheses, Logo is a potentially powerful tool to activate a student's
cognitive monitoring strategies. Immediate and explicit error messages in Logo also motivate students to debug their errors. The nature of the Logo learning environment can be a tool with which to employ a guided instructional approach in order to facilitate the development of cognitive monitoring strategies. However, a limited number of research studies support the use of Logo in this manner. Further, research on the effectiveness of guided Logo instruction to develop cognitive monitoring strategies is needed.

Purpose of the Study

The overall purpose of this study was to investigate whether general cognitive monitoring strategies could be developed through an instructional unit on computer programming. The study was conducted to examine the effects of guided instruction with Logo programming on the development of cognitive monitoring strategies such as decomposing, planning, identifying errors, and correcting errors in Logo programming problems; and to investigate the effects of teacher mediated cognitive monitoring practice on the transfer of cognitive monitoring strategies to problem solving in other learning domains.

Research Questions

This research specifically sought to address the following questions:

1) Does guided instruction in Logo programming, as compared to self-discovery learning, facilitate the transfer of cognitive monitoring to other
Logo programming situations?

2) Does teacher mediated learning in Logo programming, as compared to self-discovery learning, facilitate the transfer of cognitive monitoring strategies to solving problems in other domains?

Hypotheses

In order to measure more specific and operational definitions of cognitive monitoring strategies, three main components of cognitive monitoring which can be practiced with Logo programming were used to develop the hypotheses.

The independent variable in this study was the instructional methodology: guided Logo instruction vs. self-discovery Logo instruction. The six dependent variables were analyzed for this study. Three dependent variables involved near transfer tasks in Logo problems. They were Logo decomposing skills, Logo planning skills, and Logo error identification and debugging skills. Another three dependent variables involved far transfer tasks in other domains. These were general decomposing skills, general planning skills, and general error identification and debugging skills. These far transfer tasks asked students to solve problems outside the programming domains.

Seven control variables were used as covariates in the analysis of the seven hypotheses: gender, year in college, mathematics courses taken in high school, computer courses taken in either high school or college, computer ownership, computer confidence, and ACT scores.
Hypothesis 1: The vector of means for the six dependent variables, adjusted by the contribution of the seven covariates, will be significantly different for students in the guided Logo instruction group and students in the self-discovery learning group.

Hypothesis 2: The students in the guided Logo instruction group will receive a higher average score than students in the self-discovery learning group on the total points of the Logo decomposing test while covarying seven variables: gender, year in college, mathematics courses taken in high school, computer courses taken in either high school or college, computer ownership, computer confidence, and ACT score.

Hypothesis 3: The students in the guided Logo instruction group will receive a higher average score than students in the traditional self-discovery learning group on the total points of the Logo planning test while covarying seven variables: gender, year in college, mathematics courses taken in high school, computer courses taken in either high school or college, computer ownership, computer confidence, and ACT score.

Hypothesis 4: The students in the guided Logo instruction group will receive a higher average score than students in the traditional self-discovery learning group on the total points of the Logo error identification test while covarying seven variables: gender, year in college, mathematics courses taken in high school, computer courses taken in either high school or college, computer ownership, computer confidence, and ACT score.

Hypothesis 5: The students in the guided Logo instruction group will receive a higher average score than students in the traditional self-discovery learning group on the total points of the general decomposing test while covarying seven variables: gender, year in college, mathematics courses taken in high school, computer courses taken in either high school or college, computer ownership, computer confidence, and ACT score.

Hypothesis 6: The students in the guided Logo instruction group will receive a higher average score than students in the traditional self-discovery learning group on the total points of the general planning test while covarying seven variables: gender, year in college, mathematics courses taken in high school, computer courses taken in either high
school or college, computer ownership, computer confidence, and ACT score.

Hypothesis 7: The students in the guided Logo instruction group will receive a higher average score than students in the traditional self-discovery learning group on the total points of the general error identification test while covarying seven variables: gender, year in college, mathematics courses taken in high school, computer courses taken in either high school or college, computer ownership, computer confidence, and ACT score.

Significance of the Study

Logo is a powerful procedural programming language that has been advocated as particularly useful in teaching students higher-order thinking and cognitive monitoring. Logo is useful because students can begin with an easy introduction to programming. Yet, Logo is complex enough to have the potential to enhance cognitive skills, critical thinking skills, and problem solving strategies. Particularly, the turtle graphics, visually presented in Logo, allow students to easily monitor their thinking processes and to check errors.

The present study is important because it is designed to clarify the issue of how to teach Logo so as to improve general cognitive monitoring strategies. The present research should:

1. help researchers and educators better understand how to teach Logo programming so as to develop students' cognitive monitoring strategies.
2. help researchers and educators better understand the potential of guided instruction for developing positive attitudes towards learning, thus, motivating student learning.
In addition, the research findings are also expected to contribute to the growing body of knowledge on teaching computer programming and the development of theory on guided instruction for specific strategies and metacognitive skills.

Limitations

The study was conducted with acknowledgement of the following limitations:

1) In general, cognitive monitoring involves broad strategies and mental activities that extend beyond a narrow problem solving definition. However, for an operational use of the term, this research defined cognitive monitoring narrowly and specifically as the ability to decompose a given complex problem into simpler units, to plan an efficient solution, to execute the plan, to identify errors, and to debug detected errors. Therefore, the interpretation of the findings only apply to this narrow definition of cognitive monitoring.

2) Programming instruction was limited to the Logo language, thus, generalizations to other programming languages and environments are limited.

3) The sample was college students enrolled in an educational computing class, thus, generalization to other populations is limited.

Definition of Terms

Checking – A procedure to detect errors in outcomes.
Cognitive monitoring — Any activities aimed at evaluating or regulating one's own cognitions (Flavell, 1979). Examples of cognitive monitoring include planning, checking, self-testing, assessing one's progress, and correcting one's errors (Van Haneghan & Baker, 1989). This is the highest-level solution approach that can be used for most subjects and in many different problem situations (Derry, 1989). For this research, cognitive monitoring was defined as the ability to decompose a given complex problem into simpler units, to plan an efficient solution, to execute the plan, to identify errors, and to debug detected errors.

Debugging — A process of analyzing the procedures that make up a program in order to improve the behavior of a program that does not do what you want it to do (Goldenberg, 1982). It is the process of making changes until a procedure does just what one wants it to do.

Guided Instruction — Guided instruction is characterized as explicitly modeled instruction targeting specific strategies plus mediated learning which guides students to become independent learners in the context. Guided instruction helps students to focus on the problem, to search systematically for information, to compare, to develop insight, to plan, to execute, and to evaluate the results. Guided instruction, with its emphasis on cognitive monitoring strategies and bridging to various situations, would be an ideal method for teaching computer programming with the ultimate aim of developing problem solving abilities for students (Samuels, 1986).

Logo — A high level computer programming language developed by Seymour Papert and his associates at the Massachusetts Institute of
Technology. It is procedural, interactive, and recursive. It is a list processing language which combines formal procedural representations with concrete and immediate feedback. The Logo programming provides a student with a visual environment designed to facilitate intellectual exploration and experimentation. For this study, the software package of LogoWriter, by the LCSI company, was used in Logo programming activities. LogoWriter has the same Logo structure as other versions of Logo available, but includes an improved editor, expanded shapes, and turtle graphic capabilities.

Mediated learning — The teacher guides instructional process through Socratic dialogue to frame principles which can be applied to a broader context and bridges the learned specific strategies to other problem situations. In this approach, the teacher needs to continually encourage students to formulate general principles from class activities, rather than principles specific to immediate content. This approach helps students view themselves as active problem solvers, by being prompted to continually monitor their own thinking processes.

Planning — A process to determine supplies or strategies needed for solving a problem efficiently. In programming problems, a student describes the step-by-step algorithm of things to get to the final goal. A student usually writes general approaches to solve a problem using natural English (Webb & Lewis, 1988). How to organize and sequence subparts efficiently in order to reach the final goal is an important aspect of planning skills.

Problem solving — A process of understanding a problem and then devising, testing, and examining a solution for a given problem.
Recursive – A language is recursive if a procedure can be invoked either directly or indirectly by itself.

Turtle – A computer-controlled "cybernetic animal" that "lives" on the display screen and responds to Logo commands that make it move and rotate (Papert, 1980a). It may leave a trail or line behind it during the creation of drawings.

Turtle graphics – A subset of the Logo language which permits the user to draw geometric designs by directing a computer to change the "heading" and the "position" of a small triangular (turtle or other shapes in LogoWriter) screen object that is referred to as a Turtle.
LITERATURE REVIEW

Introduction

The purpose of this research was to investigate the effects of guided instruction with Logo programming on the development of cognitive monitoring strategies. A summary of previous research and theories relevant to this study can provide a foundation for the pedagogical implications of Logo programming instruction on the development of cognitive monitoring strategies. This chapter will review such research and theories.

This chapter is organized into nine sections: (1) introduction, (2) background of Logo programming, (3) research on Logo programming, (4) reasons for conflicting research results on Logo programming, (5) metacognition and the computer, (6) metacognitive knowledge, (7) cognitive monitoring, (8) model of Logo-based cognitive monitoring instruction, and (9) summary.

Background of Logo Programming

Logo: Philosophy of learning

The Logo programming language was developed by Seymour Papert and his colleagues at the Artificial Intelligence Laboratory at Massachusetts Institute of Technology in the late 1960s. It was designed to provide a learning environment which allowed students to learn as naturally as possible. Papert and his colleagues did not accept the traditional classroom environment and
the traditional teacher's role. Papert (1980a), the father of Logo programming, viewed the traditional classroom as an artificial and inefficient learning environment. According to Papert, schools do not provide the enriched culture and materials with which students can experiment and learn by doing.

Papert (1980a) viewed the learning of mathematics quite differently from many other educators. He criticized the manner of teaching mathematics in schools which be characterized as rote learning, that is, memorizing without understanding. Papert perceived the computer as a means of making learning an active and exciting process. He stated that Logo provided a mathland, in which students can learn mathematics as naturally as they learn to speak (Solomon, 1986).

Papert was influenced by Piagetian learning theory that suggested children learn without explicit teaching (Papert, 1980a). For Papert, Piaget was a theorist who viewed children as builders of their own intellectual structures without being taught. Unlike Piaget, Papert believed that if children are provided the enriched culture and materials relevant to learning, they can accelerate the construction of their own cognitive structures regardless of age. He questioned why children learn some things without formal instruction and why they do not learn other things even when formal instruction is provided (Solomon, 1986).

Motivated by this question and inspired by Piaget's view of children as constructors of their own intellectual, Papert and his colleagues developed a computer language that would provide an enriched computer culture where children could explore their ideas and learn by discovery. This computer
language was called Logo. The pedagogy of Logo is that children learn through self-guided discovery methods. With Logo, children pursue their own goals and ideas without a teacher’s explicit instruction or systematic presentation of concepts and skills (Hawkins, 1985). Thus, a primary purpose of the Logo environment was to foster the development of independent thinking. An effect of this environment was to alter the role of the teacher from teaching to a central role of assisting and encouraging students to become independent learners (Maddux & Johnson 1988; Papert, 1980a; Solomon, 1986).

A potential tool for learning

According to Papert (1980a), Logo was designed with two fundamental learning principles in mind. First, learning to program a computer can be a natural process for learning mathematics. The best way to learn French is to live in France. Likewise, he argued that the best way to learn mathematics is doing and talking about math in everyday life. Logo can create a mathland in which a computer becomes a tool for children to play with mathematics. Therefore, with Logo, children may learn mathematics as naturally as they learn to talk (Solomon, 1986). Papert developed the turtle, "a computer-controlled cybernetic animal" (Papert, 1980a, p. 11) to create a mathematical entity with which children could identify and develop a personal relationship. Doing mathematics in the Logo environment shifted the role of students from passive receivers of materials to purposeful, self-directed activators (Papert, 1980b). Second principle suggests that learning of Logo programming is not limited to math related subjects. Logo programming can be used in an
expanding role across the curriculum. When the computer becomes a tool with which children love to talk, they can use this tool to learn other subject matter. Logo programming can be a tool to communicate with various subject areas such as, language arts, physics, music, and art (Papert, 1980a). Thus, Logo provides students with enriched computer culture where students incorporate computer programming into learning various subjects. Much like students can draw, write, or scribble with a pencil, the computer can be equally a versatile tool to use in order to learn many other concepts (Papert, 1980b).

Logo is not only the name of a computer language, but also a computer culture and environment for exploration (Abelson, 1982; Maddux & Johnson, 1988; Papert, 1980a; Solomon, 1975). The Logo environment encourages children to play the role of a turtle. In the Logo, children act as experimenters who try to understand the turtle's behavior. As they teach the turtle to move around a screen, they begin to understand how the turtle moves. They also understand that the turtle graphic on the screen is the reflection of their thoughts. Thus, the turtle becomes a mirror which reflects a student's thought on the screen. In using Logo, "children embark on exploration about how they themselves think" (Papert, 1980a, p. 19). Logo can be a potential tool for developing students' self-monitoring skills.

Logo is also a powerful tool to develop debugging skills. When using Logo, making a mistake is an important factor for learning. According to Papert, "debugging" is not just a technique but a powerful idea to build an intellectual structure (Papert, 1980a). In the programming, students do not question whether it is right or wrong. Instead, they ask whether it is fixable or
not. The computer becomes an "object-to-think-with." Through the process of debugging computer programs, students become more articulate about their debugging strategies and more conscious about developing them. Thus, debugging becomes part of a dynamic process for growth and development.

Learning is a process of debugging: discovering bugs in programs and correcting them. Therefore, "children in the Logo environment are engaged in self-referential discussions about their own thinking" (Papert, 1980a, p. 29).

Advantages of Logo programming

There are some advantages of Logo programming over other programming languages. These include the following: (1) the commands are easy to understand, (2) it provides visual graphics, (3) the language is procedural, interactive, and recursive.

Logo was designed for children, so the basic commands are easy to learn as they are simple terms taken from spoken English (e.g., FD: forward, BK: backward, RT: right turn, and PD: pen down, etc.). Then, as students progress, they experience more complex concepts and the powerful structure of Logo programming. This open-ended learning environment allows students to build their own intellectual scheme as they explore new ideas and imaginations. Easy introduction and the sophisticated structure of Logo also provides with adult programming beginners to develop programming skills. Thus, "Logo can make a complex exploration possible for learners of all ages, without imposing artificial hurdles" (Watt, 1982, p. 112). Logo is versatile enough to accommodate students of different age levels, ability levels, and learning styles; thus, it has been used in a wide range of settings.
Turtle graphics provide students with a quasi-concrete environment where students actually manipulate, test, and observe their thought. Thus, turtle graphics help students develop abstract thinking by utilizing the visual environment. With the visual graphics, students can easily find discrepancies between the original plan and the actual process. The error messages in Logo programming are explicit and comprehensive, enabling beginners to understand them and correct a program.

The Logo programming language is procedural. That is, it is possible to break a large problem into smaller pieces and write a separate procedure for each piece. Thus, in creating a Logo program, students can assemble pieces consisting of simple procedures to accomplish a complex task. Procedures in Logo programming help students more easily understand the structure of a program. For example, a program to draw a house could be written as follows:

```
TO HOUSE
  FRAME
  ROOF
  WINDOW
  DOOR
END
```

Thus, when sequenced and procedured, simple Logo commands become powerful communicators with a computer in a highly sophisticated way.

Logo is also an interactive language. Students enter commands and see the result immediately. It also allows students to define new commands and a procedure by combining simple commands built into Logo. Students then receive immediate feedback on how their ideas work. This interactive language facilitates finding errors and revising the program immediately and dynamically.
Logo is a recursive language. That is a procedure may call itself inside the procedure. Then, the same graphics or codes are repeated until a specific condition is met. Recursion greatly facilitates programming when a process must be repeated many times with a systematic modification being made each time. Thus, the recursive nature of Logo allows students to express large and complex programming problems in a compact form. Learning the concept of recursion is valuable not only in computer science but also in other subjects, such as mathematics and science, since the concept of repetition is heavily involved in learning these subjects. Most actions and problems in human life are recursive, but students often do not realize that. Learning the concept of recursive procedure may help students understand the natural processes which are recursive in real life.

Research on Logo Programming

Supportive evidence for implications of Logo programming

The Brookline Logo project (Papert, Watt, DiSessa, & Weir, 1979), conducted by MIT Logo Group, was one of the earliest studies examining the effectiveness of Logo programming. This project provided extensive documentation on Logo programming experience. During the 1977-1978 school years, sixth grade students in a selected school learned Logo programming. However, only sixteen students were targeted for anecdotal records. These sixteen students represented an intellectually heterogeneous group. They worked in small groups with trained Logo teachers, as well as regular classroom teachers. A self-discovery based instructional approach was
employed. Children were allowed to set their own goal, proceed with their own learning, and achieve the goal. Teachers carefully observed each student's work and recorded individual's progress, attitudes about the working with Logo, and the learning style used in the Logo environment. The anecdotal documents from this project indicated that Logo programming enhanced students' problem solving skills, cognitive abilities, and positive attitudes toward Logo. Even slow learners made large gains in their learning through a self-discovery approach.

The following year, Robert Lawler conducted an in-depth case study with the Logo programming. In his six month study, Lawler observed his eight years old son's experience using Logo programming. Again, a self-discovery Logo learning environment with minimal adult teaching was used. Lawler reported that the benefits of the Logo experience became clear when his son solved complex mathematical, non-Logo related problems using Logo strategies (Lawler, 1980).

In the mid-1980s, researchers began to conduct more quantitative and empirical studies on possible outcomes of Logo programming. Clements and Gullo (1984) did an extensive empirical study on the effectiveness of Logo programming on a number of cognitive and metacognitive outcomes. These outcomes included creativity, classification, seriation of skills, and metacognition. In this study, eighteen first-grade students were randomly selected and assigned to either a Logo group or computer assisted instruction (CAI) group for the twelve week experiment. The teachers employed guided discovery learning with strong teacher mediation focused on planning and
debugging skills. Results of the study revealed that the Logo programming group scored significantly higher on the metacognition and divergent thinking post-tests than the CAI group. No significant differences were found for the groups on measures of general cognitive abilities.

As an extension of the 1984 study, Clements (1987) conducted a longitudinal study of Logo programming on the delayed effects in the areas of cognitive abilities and achievement. The same children from the 1984 study took tests on achievement and cognitive abilities in the beginning of their third grade year. The results indicated that the Logo group did better on metacomponents, reading comprehension, and vocabulary test items than the CAI group.

Bamberger (1984) also adopted the guided self-discovery learning method of Logo programming for her study. She examined the effect of learning Logo on the development of problem solving strategies. In her study, thirty fourth-grade students were randomly assigned to a Logo group and a control group. The Logo group received programming instruction 45 minutes, three days a week for eleven weeks, and the control group received the standard fourth grade math curriculum. Guided discovery learning for the Logo environment was employed with emphasis on the need for planning, breaking large problems into manageable units, guessing and checking work, and looking back strategies. Only a post-test was administered. The investigators concluded that the Logo group was more likely to use problem solving strategies, such as planning, checking, and looking back, when solving non-computer mathematical word problems.
Another study of the discovery learning in a Logo environment was conducted by Miller, Kelly, and Kelly (1988). However, instead of guided discovery learning, they emphasized a pair discovery learning approach. Miller and his colleagues investigated effects of Logo programming on problem solving and spatial relations ability. Two fifth-grade and two sixth-grade classes were selected from two elementary schools. 85 out of 174 students were assigned to the Logo group and 89 students were assigned to the control group. In the Logo treatment, after the teacher introduced new commands and concepts, students worked in pairs. They were encouraged to plan and produce their own drawings. The partners helped each other develop their ideas and debug mistakes. The control group did not receive any Logo instruction and attended regular mathematics class. However, some students used a computer occasionally for drill and practice in math. The experiment consisted of eighty sessions and each session was thirty minutes long. Significant differences in the favor of the Logo group on the measures of Logo-related and general problem solving skills were found. The Logo group also showed significantly higher scores than the control group on mental rotations on geometric tests.

Non-significant findings for implications of Logo programming

On the other hand, some of empirical research examining the problem solving benefits of Logo programming resulted in non-significant outcomes. The Bank Street College Logo group conducted an extensive investigation of effects of Logo programming on cognitive abilities and planning skills based on Papert's philosophy of the Logo environment. Pea and Kurland (1984)
examined the effects of Logo instruction on planning skills. In their first study, they selected nine- to twelve-year old students and randomly assigned them to a Logo programming group and a non-Logo group. Over one year period, students in the Logo group received 30 hours of Logo instruction using a self-discovery approach. After the experiment, the student's ability to efficiently plan a real-life task of scheduling chores in a classroom was assessed. This test assessed transfer of planning skills from Logo to a new situation. The results indicated no significant difference between two groups in planning skills.

In Pea and Kurland's second study (1984), the same teachers took a more direct role in Logo instruction. A pretest and a posttest were administered to assess students' planning skills. Again, the results showed no significant difference between the Logo group and the non-Logo group in their ability to plan the scheduling of chores in a classroom.

Delclos, Littlefield, and Bransford (1985) examined the effects of the instructional approach used with Logo on general problem solving skills. In their study, unstructured, self-discovery Logo instruction was contrasted with structured teacher mediated Logo instruction. Fifth grade students received Logo instruction one hour a day for a six week period. Both Logo mastery and general problem solving skills were assessed. The results indicated that students receiving explicit Logo instruction produced higher scores on the Logo mastery test, but no significant difference in general problem solving skills was found.
Missiuna, Hunter, Kemp, and Hyslop (1987) examined the effectiveness of Logo instruction on the transfer of problem solving skills from a computer programming environment to the real world. They developed six units of Logo curriculum for children in grades 1 - 6; one to be taught at each grade level. For the study, the subjects were a total of 231 third- and fifth-grade students, all of who were given the Canadian Cognitive Abilities Test as a pre-test and assigned to one of three treatment groups: (1) the "Thinking with Logo" curriculum; (2) the traditional Logo curriculum; and (3) a control group. In the "thinking with Logo" group, teachers facilitated the learning of problem solving skills by utilizing a mediational style of teaching through Socratic dialogues. In the traditional Logo curriculum, teachers emphasized specific Logo skills. The teacher of the control group did not receive any inservice training nor was Logo utilized in her classroom. The students in the control group participated in a regular mathematics course. The study lasted twelve weeks and each treatment group received instruction two times a week. At the end of the 12 week period, the cognitive abilities posttest was given. The result revealed that the third grade students in the "Thinking with Logo" curriculum and traditional Logo curriculum showed improvements on the cognitive ability posttest. The result indicated that the fifth grade students in all three groups improved on the cognitive ability posttest. However, there were no significant differences in the magnitude of the improvement of problem solving skills among the three different treatment groups.
Reasons for Conflicting Research Results on Logo Programming

Although some educators have made strong claims for the utility of computer programming as a vehicle for developing general problem solving skills, the numerous studies of Logo programming have yielded conflicting results. Why have some studies yielded more promising results than others? No single explanation for the conflicting results seems plausible and the conflicting results seem to be attributable to several factors.

Instructional methodology: Self-discovery vs. mediated learning

Early proponents of Logo programming argued that teaching Logo through self-discovery learning, as compared to direct, explicit instruction, allowed children to explore ideas freely and to reflect false thinking processes without any negative feedback, and therefore, helped children to learn more and to develop more positive attitudes (Green & Jaeger, 1983; Lawler, 1982; Papert, 1980a; Schiffman, Tobin, & Buchanan, 1982). Green and Jaeger (1983) have shown that children were capable of directing their own learning, and that Logo was an excellent tool to discover successful ways of solving problems. The Brookline Logo Project and Lawler's dissertation strongly supported the value of self-discovery learning for teaching Logo.

However, on the basis of intensive empirical evidence from well designed experimental studies, the Bank Street College Logo group challenged the concept of a self-discovery method for teaching Logo. Pea (1983) criticized the anecdotal evidence on self-discovery Logo and argued that both quantitative and qualitative research are necessary to demonstrate the effects
of Logo. Pea and Kurland (1984, 1987) argued that Logo is not taught effectively through a self-discovery learning approach and that students would not develop general problem solving skills unless those skills were taught directly.

Leron (1985) indicated that children did not learn carefully in discovery learning environments, rather under such a condition, most children tended to fall into a "hacking" style of programming which was not conducive to learning deep and sophisticated ideas. Several empirical studies adapting a teacher-mediated approach for teaching Logo produced positive outcomes consistently in the areas of problem solving or metacognition (Bamberger, 1984; Clements, 1987, 1990; Clements & Gullo, 1984; Delclos, Littlefield, & Bransford, 1985; Miller, Kelly, & Kelly, 1988). These studies suggested that mediated learning, that guides and facilitates a student's thinking and problem solving skills, and forms bridges between Logo programming and real world problem solving situations, was more effective than self-discovery learning where students were in charge of learning by doing with minimal intervention from others (Clements and Merriman, 1988; Emihovich & Miller, 1986; Mayer, 1988; Salomon & Gardner, 1986).

Types of strategies: General vs. specific problem solving strategy

The type of instructional method is not the only reason for conflicting outcomes in Logo research. Studies examining specific problem solving strategies have produced conflicting research outcomes also. Despite the fact that several studies were carefully designed to compare mediated instruction to self-discovery instruction (Littlefield, Delclos, Lever, Clayton, Bransford,
Franks, 1988; Missiuna, Hunter, Kemp, & Hyslop, 1987), these studies have failed to provide positive evidence for the far transfer of problem solving skills. Apparently, other factors contributed to students gaining problem solving skills.

Some researchers have focused on defining specific strategies of problem solving skills necessary for students to acquire and use in solving real world problems. These researchers suggested that students need to be explicitly trained in specific strategies so that they can apply the learned strategies in novel situations. The following list of research studies have indicated that when narrow and specific problem solving skills were targeted students were likely to transfer these skills to non-Logo problems: divergent thinking, metacognition (Clements, 1987; Clements & Gullo, 1984), mental rotations of geometric (Miller, Kelly, & Kelly, 1988), Cartesian coordination (Thompson & Wang, 1988), analogical Reasoning (Clement, Kurland, Mawby, & Pea, 1986) planning and geometry concepts (Lehrer, Sancilio, & Randle, 1988b).

Swan and Black (1989) strongly supported this point of view in their study. From their comprehensive review of the literature on Logo programming in relation to problem solving strategies, they concluded that "a pedagogical approach incorporating an explicit instruction in particular problem solving skills and mediated practice applying them will support the transfer of problem solving skills from Logo programming to non-computing domains" (p. 73). They attempted to design an instructional model based on three pedagogical elements: (1) explicit instruction, (2) specific aspects of problem solving skills, and (3) mediated practice of these specific skills. In
their research, they specifically targeted the problem solving skills of subgoal formation, forward chaining, backward chaining, systematic trial and error, alternative representation, and analogy. A significant improvement in problem solving skills was found in the experimental group that employed these three pedagogical elements, as compared to other control groups (self-discovery learning condition and non-computer problem solving group). The positive results were consistent among different grade levels, except for the alternative representation skill.

Thus, many researchers have agreed that teachers need to provide explicit instruction of specific thinking or problem solving skills in the Logo environment (Carver, 1987; Grandgenett, 1989; Swan & Black, 1989). And many researchers point out that Logo has the potential to be a powerful tool for developing this explicit instructional model and for teachers to provide the mediated practice of specific aspects of problem solving skills (Clements, 1990; Delclos, Littlefield, & Bransford, 1985; Emihovich & Miller, 1986; Leron, 1985; Mayer, 1988; Missiuna, Hunter, Kemp, & Hyslop, 1987; Salomon & Gardner, 1986).

Transfer mechanism: Near transfer vs. far transfer

Researchers, who have examined the transfer effects of specific problem solving strategies learned from programming, have investigated general transfer effects of learned strategies between domains in many different fields (e.g., Cormier & Hagman, 1987; Swan & Black, 1989). Salomon and Perkins (1987) have developed a theory for interpreting transfer effects of computer programming. They proposed two theoretical transfer mechanisms that help
to explain the conflicting outcomes of Logo research. They argued that the acquisition and transfer of strategies can be achieved through two distinct routes: low road transfer and high road transfer.

According to Salomon and Perkins, the low road transfer is the process of achieving near transfer effects. Near transfer refers to utilization of acquired skills in similar contexts or situations. Through a low road transfer mechanism, students repeatedly practice strategies with a variety of problems. This procedure leads students to proficient mastery of the strategies and to their automatic employment. Then, when the learners encounter a similar problem situation the transfer takes place on its own without much awareness or mindful guidance by the student. Thus, near transfer is achieved through low road mechanism. Low road transfer facilitates the automatic application of mastered mental skills to similar problem situations. However, low road transfer cannot account for the transfer of disciplined strategies when practice to near automaticity is not provided or an unfamiliar situation is encountered.

According to Salomon and Perkins, the transfer of disciplined strategies can take place even if these strategies are not practiced to be automatized or mastered. High road transfer entails a process of "mindful abstraction" including deliberate, effortful thinking, and metacognitively guided "decontextualization" of principles, strategies, or rules (Salomon & Globerson, 1987). Through the high road transfer process, far transfer of internalized strategies occurs to other unfamiliar learning situations. Far transfer refers to the transfer of learned skills to different contexts or situations and is
accomplished through high road transfer mechanism. Similarly, Vygotsky (1978) discussed "intellectualization" which means content-free principles or strategies that learners apply to new and perceptually dissimilar problem situations. Metacognitive guidance of principles and strategies are essential for the high road transfer.

Logo programming can be an instrument for promoting either of the two transfer mechanisms. Yet, educators are more interested in the development of the high road transfer mechanism, since far transferrable skills are to be utilized in dissimilar, "decontext" situations.

Research suggests that the use of Logo environment to develop problem solving skills requires the incorporation of explicit instruction on specific, far transferrable strategies, and teacher mediation for practicing those strategies (Mayer, 1988; Seidman, 1987; Swan & Black, 1989). These results suggest that such a Logo environment can help students mindfully use Logo as a tool for developing problem solving strategies. Accordingly, teacher mediated practice of learned strategies helps students mindfully abstract the acquired strategies from the learning situation and internalize those skills for application to other situations. Therefore, the research suggests that the following tri-combination of instructional approaches is likely to facilitate transfer of the internalized strategies to novel situations: (1) explicit instructional model of specific, content-free strategies, (2) Logo programming as a tool to facilitate a dynamic learning environment, and (3) teacher-mediated practice of learned strategies.
Metacognition and the Computer

The technological revolution has accelerated the need for students' learning in a variety of academic disciplines, ranging from language to art, athletics, and even medicine. In particular, role of computer technology in empowering students' learning capabilities to meet this need is a major concern to educators and cognitive psychologists. As metacognition becomes an important issue in teaching students to be independent thinkers and problem solvers, educators have paid close attention to the role of the computer in the classroom. The educational community has begun to examine the power of computer technology to assist students in becoming better thinkers, better learners, and better problem solvers.

Since computers became part of the school curriculum, the research focusing on the use of computers as a tool to teach higher-order thinking skills has increased in recent years. This section discusses research trends in the area of metacognition and the use of the computer to facilitate a learning environment to develop metacognition.

Metacognition

The study of metacognition has become a major interest in the area of cognitive psychology. The growing body of research on metacognition is in the areas of memory development (metamemory), language (metalinguistic), reading (comprehension monitoring), communication (metacommunication), mathematics and science, and general problem
solving. John Flavell (1976), who first used the term metacognition in the 1970s, defines it as follows:

metacognition refers to one's knowledge concerning one's cognitive processes and products or anything related to them, e.g., the learning-relevant properties of information or data. For example, I am engaging in metacognition...if I notice that I am having more trouble learning A than B; if it strikes me that I should double-check C before accepting it as a fact; if it occurs to me that I had better scrutinize each and every alternative in multiple choice type task before deciding which is the best one....Metacognition refers, among other things, to the active monitoring and consequent regulation and orchestration of these processes in relation to the cognitive objects or data on which they bear, usually in the service of some concrete [problem solving] goal or objectives (p. 232).

In the most general sense, metacognition refers to the knowledge and skills one uses to control one's cognition. Metacognition requires individuals to observe their own thought processes and to be aware of how they go about their own thinking so that they can better accomplish their cognitive goals (Beyer, 1987). Although it is a broad and somewhat fuzzy concept, it has influenced research on student learning and thinking.

Metacognition consists of two separate, but closely related concepts: (1) knowledge about one's own cognition system called metacognitive knowledge and (2) executive control of one's own cognitive process called cognitive monitoring (Brown, Bransford, Ferrara, & Campione, 1983; Cavanaugh & Perlmutter, 1982; Deull, 1986; Flavell, 1976, 1979; Garofalo & Lester, 1985) (Figure 2). Both metacognitive knowledge and cognitive monitoring have captured the attention of psychologists and educators.
Metacognition
• Understanding one's cognitive system.
• Refers to one's knowledge about his or her cognition and control of one's cognitive process.

Metacognitive Knowledge
• Refers to what a person knows or believes about his/her cognitive capabilities and limitations.
• Stable
• Statable
• Not always accurate
• Age-dependent (Adult>Child)
• Metamemory

Cognitive Monitoring
• Refers to any activity that regulates or evaluates one's own cognitive process; includes planning, analyzing, self-testing, checking, assessing one's progress, and modifying cognitive errors.
• Unstable
• Age independent, but task dependent.
• Comprehension Monitoring

FIGURE 2. Two primary branches of metacognition
Metacognitive Knowledge

Definition of metacognitive knowledge

Metacognitive knowledge is concerned with what one knows about one's cognitive capabilities, processes, resources, and limitations in relation to performance on a specific cognitive task (Brown, Similey, & Lawton, 1978; Flavell, 1979). Metacognitive knowledge consists of three variables: person variables, task variables, and strategy variables (Flavell, 1979). These variables interact each other and affect the outcome of a cognitive enterprise.

Person variables encompass one's belief about oneself and other people as cognitive beings. An example of a person variable is a student's belief that he or she does better on constructed response tests than on multiple-choice tests. A second example of a person variable is a belief that one has more difficulty in analogical reasoning tasks as compared to one's peer group. A belief that one needs to read classroom materials more carefully than one would read if reading for pleasure is another example.

Task variables usually include knowledge of what the characteristics of a cognitive task imply regarding the difficulty of the task and how best to approach the task. For example, tasks including familiar topics are easier to understand than unfamiliar topics; recalling the gist of a narrative is easier than recalling its exact wording; and organized materials are easier to remember than scrambled materials.

Strategy variables involve knowledge about when, where, and how to apply different strategies in order to carry out a cognitive task. An example of a strategy variable is using a mnemonic technique to memorize scrambled...
materials. As another example, organizing and chunking given materials according to certain categories is easier to remember than memorizing words separately. Flavell (1979) also pointed out that most metacognitive knowledge involves interactions and combinations of these variables. Similar to other types of knowledge, metacognitive knowledge can be accessed consciously or automatically and it may not always be accurate.

Brown (1978, 1987) believed that metacognitive knowledge is relatively stable over time (e.g., if a student believes today that she can learn better by putting information into her own words, it is likely she will continue to believe that tomorrow). It is statable by the learner; that is, she can reflect on the cognitive processes involved and discuss them with others. Thus, this form of knowledge may not be accurate in that sometimes the person believes certain facts about cognition that are not true. Metacognitive knowledge is also late-developing, so it is more complete in the older learner. In general, adults have better metacognitive knowledge than children (Brown, Bransford, Ferrara, & Campione, 1983). Students' metacognitive knowledge about their capabilities and limitations as learners helps them alter difficulties in their learning. Thus, metacognitive knowledge may play an important role in producing a significant learning performance.

Research on metacognitive knowledge

Most studies on metacognitive knowledge have dealt with human memory development as a person grows. Adults or older learners typically have better knowledge about their cognitive abilities and processes than younger learners. Flavell, Friedricks, and Hoyt (1970) demonstrated that older
children better predicted their performance and remembered more objects on a serial recall task than did younger students. Similarly, several studies found that adults or older mentally retarded learners made more accurate predictions on their memory span than did children or younger mentally retarded learners (Brown, Campione, & Murphy, 1977; Yussen & Levy, 1975).

Brown, Campione, Barclay, Lawton, and Jones (in Brown, 1978) examined the ability of children to predict the outcomes of using different study strategies. Children viewed a four-segment video tape of a twelve-year-old learning a twelve item list of pictures. The twelve-year-old used the study strategies of categorizing, rehearsing, labeling, and looking. Brown et al. found that a majority of the first- and third- graders correctly knew that categorization and rehearsal were more effective study strategies than labeling and looking, whereas four-year-olds selected evenly across the four strategies. Armbruster, Echols, and Brown (1983) also found in their study that good readers can adjust their reading strategies to fit the specific purposes at hand. This ability to adjust reading strategies gradually increased with age and reading ability.

Some researchers conducted study on the metacognitive knowledge of task variables. Danner (1976) examined children's sensitivity to the organization of sentences. In the experiment, children listened and recalled two passages, each consisting of twelve sentences. Within the twelve sentences, there were three topics each containing four sentences. Sometimes the four sentences were grouped together under the topic and sometimes they were not. The results revealed that children better recalled the grouped
sentences and categorized materials than the ungrouped sentences. Myers and Paris (1978) also found that both second and sixth graders believed that familiarity with a story's content facilitates story comprehension; and preferred stories are easier to read than disliked ones.

Metacognitive knowledge and domain specific task performance

Although metacognitive knowledge is considered to be one of the critical factors in a cognitive task performance, studies on metacognitive knowledge and task performance have not always shown a significant relationship. In several correlation studies, a weak positive relationship has been found between metamemory (which refers to metacognitive knowledge about the memory) and memory performance.

Cavanaugh and Borkowski (1980) determined the nature and strength of connections between metamemory, strategy use, and recall accuracy from a developmental perspective. In the study, subjects from kindergarten, first, third, and fifth grades participated in two sessions. In Session I, multiple memory tasks were selected to examine the generalization of metamemory-memory connections. In Session II, several methods were employed: (1) free sort to learn a categorizable list, (2) cognitive cuing in which category pictures served as cues to recall a categorizable list, and (3) alphabet search in which students had an unanticipated recall test for randomly presented letters of the alphabet. The research question was whether good metamemory was necessary for successful memory performance. No significant relationship between metacognitive knowledge and task performance at an individual level was found.
Yussen and Berman (1981) showed a further inconsistent result in the metamemory-memory relationship. In their study, a significant relationship between metamemory and free recall tasks was found, but no significant relationship for metamemory and recognition tasks was found.

Research in other fields also indicated inconsistent patterns of results. Zutell (1981) examined the relationship between metalinguistic knowledge (metacognitive knowledge about language) and spelling performance. The results revealed that there were strong correlations between metalinguistic knowledge and spelling performance in a kindergarten sample, but not in a first-grade sample.

Kurdek and Burt (1981) examined relationships between the metacommunicative, metamemorial, and metasocial-cognitive skills among first- through sixth-grade students. The question of interest was in the relationships across these three metacognitive domains, as well as in the developmental trends. Low positive correlations between tasks within and across the three domains were found, but there was no consistent pattern of relationships across the grade levels.

Several reasons may account for these inconsistent results. First, metacognitive knowledge may be specific to a domain as well as to a given task. Thus metalinguistic processing would not be expected to generalize to tasks in other domains such as communication or social cognition. Accordingly, the measurement of different domain specific metacognitive knowledge with different task performances could bear inconsistent outcomes. Second, lack of congruency between sets of instruments could also
lead to unexpected results. Researchers need to make sure that there is a congruency between topics assessed in the metacognitive knowledge test and the performance. A third reason for the inconsistent results of studies in metacognitive knowledge and task performances centers around environmental concerns. Since metacognitive knowledge assessment and performance are two different task environments, the nature of the interaction between child and experimenters might be different. In metacognitive knowledge, the subjects are asked to reflect in an open-ended manner; whereas in task performance, they must perform against a discrete criterion (Lawson, 1984).

The conflicting evidence for metacognitive knowledge and task performance does not provide firm guidelines for remediation of learning problems, although research on metacognitive knowledge helps educators develop an understanding of learning. Therefore, further research may need to challenge the conflicting evidence.

Cognitive Monitoring

Definition of cognitive monitoring

Called metacognitive strategies (Flavell, 1979), regulation of cognition (Brown, 1978; Brown, Bransford, Ferrara, & Campione, 1983), and executing control process (Garner, 1987; Lawson, 1984; Sternberg, 1984), cognitive monitoring involves controlling one's cognitive system. The role of cognitive monitoring has been emphasized in cognitive strategy research in recent years.
Cognitive monitoring can be defined as any activity that regulates or evaluates one's own cognitive process (Flavell, 1976; Forrest-Pressley & Waller, 1984). In its most general sense, cognitive monitoring refers to monitoring and evaluating one's own thinking process or system. Students with the most effective thinking processes tend to consciously direct their own thinking (Beyer, 1987). When students deliberately monitor their own thinking, they are involved in cognitive monitoring activities. Cognitive monitoring activities generally involve defining a desired goal, breaking the goal into subgoal units, planning how to accomplish the goal, carrying out the plan, and modifying errors. Highlights of cognitive monitoring activities include monitoring a solution process, identifying errors, and revising the plan and actions in the process itself (Beyer, 1987; Brown, 1987; Brown, Bransford, Ferrara, & Campione, 1983; Van Haneghan & Baker, 1989; Lawson, 1984; Schoenfeld, 1985; Sternberg, 1988).

Cognitive monitoring is considered to be important for efficient learning. Cognitive information-processing (CIP) psychologists have developed a concept of cognitive monitoring that is called executive control processing in the human mind. According to the CIP view, learning process consists of three main components: input, cognitive processes, and output. First, the information is coming into the human mind. Then, cognitive processes are involved in taking in information, performing mental operations on it, and storing it. At last, the responses go out from human cognitive system (Frederikson, 1984). The role of executive control processing in human cognitive system is to direct cognitive activities at each processing stage and
monitor the cognitive functions as a whole through the many processing steps. Thus, conscious executive control processing becomes the essence of intelligent activity in learning and problem solving (Brown, 1978). To the CIP psychologists, executive control processing is the heart of cognitive activities and learning. Miller, Galanter, and Pribram (1960) indicated that human behaviors are derived from the execution of plans, that control the order of sequenced actions that can be performed. Thus, learning only occurs when a student has some kind of plan and when she or he executes the plan and monitors the progress of the plan that is being activated.

Cognitive monitoring is a high-level cognitive process since it controls the cognition system in order to perform successfully a given task. Monitoring one's cognitive processes usually involves not only looking ahead to predict an appropriate outcome, but also looking backward from the outcome to the plan (Costa, 1984). When a student attacks a given problem, she goes through cognitive monitoring activities recursively in order to control and regulate her thinking processes until she is satisfied with the result.

Several studies have consistently supported that cognitive monitoring strategies can be developed through explicit instruction and experience regardless of student age (Beyer, 1987; Brown, Bransford, Ferrara, & Campione, 1983; Calfee, 1984; Hyde, 1989; Schoenfeld, 1985; Sternberg, 1988). A valuable aspect of teaching cognitive monitoring is that it is content-free strategies, that is, it can be applied to any subject or any problem situation (Beyer, 1987; Brown, 1978; Meichenbaum, Burland, Gruson, & Cameron, 1985).
Researchers agree that development of cognitive monitoring strategies is essential to good problem solving (Brown, Campione, & Day, 1981; Brown & DeLoche, 1978; Lawson, 1984; Sternberg, 1984; Van Haneghan & Baker, 1989). Efficient cognitive monitoring strategies lead students to become efficient problem solvers and independent thinkers. Therefore, teaching cognitive monitoring to develop learning strategies seems a reasonable goal.

Research on cognitive monitoring

Psychologists interested in metacognition have contributed information to the area of reading comprehension and cognitive monitoring. Markman (1977, 1981) investigated how children's awareness of their own comprehensive skills was changed developmentally. In her study, both young children and older children were given game instructions and magic-trick instructions to evaluate. Both young and older children were told explicitly that they should tell the researcher if the information was not clarified. As the researcher directed steps of action, children followed the instruction. The results revealed that younger students were not aware of their comprehension failure. Younger children were less likely than older students to inform the researcher when instructions were not clear. They also failed to recognize that their comprehension of instructions was not correct.

As an individual grows in relation to metacognitive development, she becomes more active and self-directive in monitoring her own cognitive system. Thus, children may develop the ability to monitor and evaluate their cognitive processes as they mature. Older students are more likely to utilize a variety of cognitive strategies while younger students take a passive approach
to comprehension, and fail to understand information (Brown, 1975; Garner, 1987; Markman, 1977, 1981; Paris & Lindauer, 1977; Wagoner, 1983).

Although several studies indicate that cognitive monitoring may develop as learners mature (e.g., Brown, 1975; Markman, 1977, 1981; Paris & Lindauer, 1977), educators and cognitive psychologists agree that cognitive monitoring can be taught effectively to any grade levels if proper learning environments are provided. Researchers have emphasized teaching of cognitive monitoring strategies and have researched individual differences in a homogeneous age group (Baker & Brown, 1984a; Brown, Campione, & Day, 1981; Van Haneghan & Baker, 1989; Palinscar & Brown, 1989; Pressley, 1986). However, only a few studies have been done on adult metacognition. Baker and Brown (1984b) stated that "it is unfortunate that there is not more research activity in the area of adult metacognition. Anyone who has ever taught a group of college students must know that their metacognitive skills in a variety of domains could stand considerable enhancing!" (p. 380).

A limited number of studies on adult metacognition suggest that cognitive monitoring activities play a vital role in task performance. Poor performers do not monitor their performance or modify their strategies in ways that are appropriate for changing task situations. Good adult readers plan strategies, monitor an on-going performance, revise their previous strategies, and thus perform at a high level (Bereiter and Bird, 1985; Lundeberg, 1987; Smith, 1982; Wagner & Sternberg, 1987). These studies indicated that high-achieving students and low-achieving students differed greatly in the use of cognitive monitoring strategies, such as seeking
information, planning ahead, evaluating the process, and modifying strategies. Thus, high-achieving students were more likely to activate cognitive monitoring than were low-achieving students (McCombs & Marzano, 1990; Wagner & Sternberg, 1987; Zimmerman and Pons, 1986, 1990). Simpson's (1984) anecdotal observation of study strategies used by college freshmen indicated that most students used a single strategy over again, even though the problem was not appropriate for the strategy. Moreover, these students did not engage in the cognitive monitoring activities of planning, checking, evaluating, and regulating, which are necessary for self-regulation of learning.

Most adults and older students have difficulty with complex problems although they do not have difficulties in solving non-ambiguous, simple problems. When the task requires a deliberate and efficient application of strategic planning and logical reasoning processes, poor problem solvers often fail to engage in cognitive monitoring activities. Many college students are engaged in mathematical problem solving with a strategic misfunction that is primarily inadequate in the area of goal setting, monitoring, and evaluation of plans (Schoenfeld, 1983; 1985). Schoenfeld indicated that the majority of students mindlessly read a math problem, pick a direction, and work on it until they run out of time.

Cognitive monitoring strategies are vital skills for problem solving and critical to explaining individual differences in intelligence. As compared to the research on metacognitive knowledge, research on cognitive monitoring consistently demonstrates a positive relationship between cognitive
monitoring activity and task performance (e.g., Derry, 1989; Smith, 1982; Wagner & Sternberg, 1987). Successful learners can reflect on their problem solving activities and apply them to novel situations. In contrast, less successful learners are less aware of utilizing cognitive monitoring strategies and less likely to apply problem solving activities to new situations. Thus, researchers have searched for ways to improve cognitive monitoring strategies in order to enhance students' learning performance.

Computer as a tool to teach cognitive monitoring

Recently, computers have been considered as a possible tool to make students better thinkers, better learners, and better problem solvers. Computers can provide explicit models for an information representation of processes and cognitive monitoring strategies (Salomon, 1988). Computers have been used to enhance students' comprehension monitoring by providing a microworld-like environment in which students are encouraged to monitor their cognitive processes (Carraquillo & Nunez, 1988).

The use of the computer as a tool to enhance learning strategies has had an impact on learning disabled students particularly. White and Denny (1983) investigated the advantages of teaching computer literacy to learning disabled adolescents. The students in the Hill Top program were mathematically learning disabled. They were also verbally, perceptually, or visually learning disabled. As a general academic program at Hill Top Preparatory School, students at the eighth and ninth grade pre-algebra level were introduced to computer components and the simple reproduction of BASIC programs early in the semester. Then they moved to a more advanced computer literacy
course and integrated the use of computers into subject matters such as math, science, and social studies. The teachers applied a metacognitive teaching style which guided students to organize and monitor their own learning. Through the semester, the computer was used as a tool to provide an effective model of learning how to learn. Strategies of reviewing steps, checking and debugging, exchanging ideas, and organizing information were reinforced during the class. At the end of semester, most learning disabled students reached their academic achievement successfully. They were able to manage their own learning with minimal instructor guidance. Their interest in subject matter was also improved significantly.

Computer word processing offers another possible solution for learning disabled students with writing problems. Computer word processing makes it easier for students to compose, revise, and edit documents. It also motivates students who struggle with an expression of ideas, organization of topics, spelling of words, and grammar. If the unique features of computers as writing tools are integrated into good writing instruction, students may improve their writing skills. Morocco, Neuman, Cushman, Packard, and Neale (1987) investigated the use of word processing technology for learning disabled students. Teachers provided students with cognitive monitoring strategies for generating ideas, organizing information, and revising the ideas. The teachers used the computer to facilitate these cognitive monitoring interventions by making the students' writing process more visible. Students could improve not only writing skills but also the general skills of managing the steps of writing, organizing, planning, monitoring, and rethinking. This
study showed that computers as a writing tool can be used to provide learning disabled students with metacognitive styles of instruction.

Carrasquillo and Nunez (1988) investigated the effects of computer-based metacognitive strategies on reading comprehension. The computer-based instruction included summarizing, clarifying, and questioning processes. The instruction also contained modeling of reading comprehension skills and reminders of the monitoring comprehension strategy throughout the program. The results indicated that training in metacognitive strategies can enhance reading comprehension skills, performance, and recalling and organizing events in the narrative. The findings have implied that unique technological attributes of the computer can be used to affect cognitive processes during reading.

The role of the computer, as shown in the above studies, becomes an "intellectual partnership" (Salomon, 1988) to teach cognitive monitoring strategies. In particular, microworld-like computer environments allow students to become active, constructing architects of their own learning (Papert, 1980a). Thus, students are likely to practice problem solving in a microworld-like environment provided by a computer, since the computer environment encourages students to construct their own learning through exploring and manipulating their own ideas.

Logo-Based Instruction and Development of Cognitive Monitoring

Logo programming involves manipulating incoming information, constructing hypotheses, transforming and coding information, detecting
errors, and debugging the outcomes until a given problem is solved. Thus, Logo programming has the potential to invoke a student's self-monitoring skills through the looping of the testing and checking process (Papert, 1980a; Clements, 1986, 1990). Particularly, Logo programming allows students to be aware of their thinking errors explicitly by providing visual results of their thinking in graphics on the screen. The visual outcome of Logo graphics immediately reflects students' thinking results, thus motivating them to track the original thinking process and find the error in thinking occurred. Thus, the Logo programming environment can strengthen cognitive monitoring abilities, since it facilitates students' explicit reflection on their own problem solving processes (Clements, 1990).

Several empirical studies on the effectiveness of Logo programming on young children's metacognitive skills have been done. Miller and Emihovich (1986) examined the effects of mediated Logo programming on students' self-monitoring skills. Preschool children with mediated-Logo programming made significantly better progress in enhancing their ability of monitoring an on-going task, detecting embedded errors, correcting errors, and evaluating message ambiguity than children in CAI treatment. In this study, the teacher used a mediated style of teaching, such as catching students' thinking flaws and encouraging students to verbalize reasoning processes by providing Socratic questioning.

Richard Lehrer and his colleagues (Lehrer, Gucken, & Lee, 1988a) examined a wide range of cognitive and metacognitive effects by employing an inquiry-based instructional method to teach Logo programming. The
inquiry-based instructional method indicates that teachers lead questions and help students overcome misconceptions by presenting counter-examples in conjunction with concepts to be learned. Forty-five third-graders were randomly assigned to one of three treatment groups: Logo group, geometry Logo group and problem solving software control group. The inquiry-based instructional method was applied to all of the three groups. However, the goals of instruction varied in each group. The instruction for the Logo group emphasized Logo programming skills and general thinking skills. The geometry Logo group focused on learning geometry concepts using Logo programming. Thus, Logo was used as a subject matter tool. The control group used various problem solving softwares excluding Logo. All software used in the control group generally acknowledged as useful for the development problem solving skills. The results indicated that both the Logo group and geometry Logo group solved a planning task more efficiently and developed more dynamic descriptions of geometry concepts than the control group. However, only students in the geometry Logo group demonstrated improvement on metacognitive skills, such as integrating old problems and new information and monitoring processes. Again, the geometry Logo group showed significant improvement of task performance. The overall results indicated that targeting specific knowledge helped students develop knowledge application. These results also indicated that Logo could be a powerful medium to facilitate metacognitive skills.

Clements (1990) conducted a more indepth empirical study on the effects of a theoretically-based Logo environment on metacognitive abilities. He
employed Sternberg's componential theory of metacomponents. Metacomponents refer to higher-order control processes used for executive planning, monitoring, and evaluating of one's performance in a task (Sternberg, 1988). In this research study, Clements hypothesized that effects of a Logo environment based on metacomponential processes would be stronger for the development of three metacomponents: deciding on the nature of the problem, selecting a representation, and monitoring solution processes.

Forty-eight third-graders were randomly assigned to either a Logo programming group or a CAI control group. Utilizing a teacher mediated learning method with the Logo group, the teacher was heavily involved in student learning. The teacher led Socratic questioning and gradually reduced her role as students progressed so that they could take charge of their own learning. The Logo instructional environment included a review of previous work, a teacher-centered introduction of new commands and information, and independent student work on either self-selected projects or teacher selected problems.

When students worked on their project, procedural thinking was introduced. Students were challenged to decompose the problem, construct plan, and predict solutions. The "homunculi", cartoon anthropomorphisms of the metacomponential processes, was introduced to the students. Four types of "homunculi" were introduced as a part of the Logo-programming and problem-solving process: the problem decider, the representer, the strategy planner, and the debugger. The teacher provided both summaries and group discussion to share ideas at the end of class.
Students in the CAI control group received instruction designed to develop creative problem solving and literacy. The instructional content included drawing programs and writing compositions using Milliken's Writing Workshop which provided integrated package of prewriting programs, a word processor, and postwriting or editing programs.

After the experiment, the researcher interviewed students to test the outcome of the treatment. The results revealed that the Logo programming group scored significantly higher on the total assessment of executive processing than the CAI group. However, only monitoring the solution process and selecting representation showed significant structural coefficients on the correctness measure.

Overall, these studies suggest that a teacher's use of mediated teaching techniques during the Logo instruction could be a critical variable in students' acquisition of cognitive monitoring strategies. Although a Logo environment has the potential to fostering explicit monitoring of cognitive processes, these results indicate that the teacher mediated intervention should be provided with students in order to develop such strategies. In general, Logo programming involves operations of transforming incoming information in the context of constructing, coding, and modifying sequences (Clements, 1990). The process of Logo programming allows students to think and discuss their ideas, and test their hypotheses. These features of Logo can be fully utilized if teacher mediated learning is incorporated into the Logo environment. Thus, this type of guided Logo instruction may help students elicit cognitive monitoring activities while solving Logo programming problems.
Model of Logo-Based Cognitive Monitoring Instruction

Components of cognitive monitoring processes

The cognitive monitoring activities used in this study are decomposing the problem, planning the solution, executing the plan, identifying errors, and debugging the errors. These are the main components of cognitive monitoring activities that can be easily facilitated in a Logo environment.

Decomposing: Decomposing refers to breaking a complex problem into smaller, manageable subproblems, thus simplifying the complex information. Each unit of the subproblem contains solvable problems. Breaking a complex problem into several separate units make the solution more obvious to the problem solvers. Thus, students are less likely to be confused and make errors (Swan & Black, 1989). The decomposing skills are one of the principal factors in programming and are also significant problem solving skills (Linn & Dalbey, 1985; Varden & Summer, 1984). Students need to learn how to divide a complex problem into an appropriate set of subproblems.

In Logo, small subprocedures are easily written and they can be the pieces of an orchestrated plan for a single problem. These subprocedures can be called from anywhere in a program. Thus, once subproblems are solved, the program, which accomplishes the desired goal, can simply be a list of subprocedures. When complex knowledge or problems can be broken up into "mind size bites", they are more communicable, more assimilable, easily solvable, and more simply constructible (Papert, 1980a). Thus, Logo programming provides an environment where students can decompose complex graphics into subparts.
Planning: Planning refers to the conscious and deliberate organization and sequence of actions oriented toward accomplishing a problem goal (Hayes-Roth & Hayes-Roth, 1979; Pea, 1982; Rogoff, Gauvain, & Gardner, 1987). Planning the solution process requires a deliberate search and proper strategies for an efficient solution, not just trial and error or habitual solutions.

Planning in programming demands a cognitive involvement that goes beyond rote memorization or other low level thinking abilities. Effective cognitive monitoring activities involve how students will carry out a solution and why they propose to do it in a particular way. Thus, careful planning makes the execution of an efficient solution easy. Careful planning also makes possible the achievement of the desired goal with less errors, and improves the quality of the solution (Beyer, 1987). The procedural nature of Logo programming helps students sequence the action of plan and search for an efficient solution. In Logo programming, students define subprocedures, sequence operations, identify potential obstacles, find possible ways to overcome these obstacles, and predict results.

Executing: Executing refers to carrying out a planned solution. In the executing process, students actually transform their plan to Logo commands so that the turtle on the screen can produce an outcome according to the operator's commands. This step allows students to run the written program, to see the actual outcome, and to bridge to the monitoring solution process.

Identifying the error: Identifying the error refers to 1) discovering errors which cause a discrepancy between the desired goal and the actual outcome, 2) understanding misconceptions or thinking errors, and 3) explaining what the
given errors are (Beyer, 1987; Van Haneghan & Baker, 1989). Error identification is an extremely important cognitive monitoring process since this process alerts students to monitor their thinking process consciously. It also encourages students to go back to previous steps and re-examine the process until they locate where the error occurs, understand what caused such an error, and diagnose the underlying misconceptions that the error reflects. Because Logo provides students with immediate graphic depiction of errors and explicit error messages (Clements, 1990), it may encourage problem identification activities.

Debugging: Debugging refers to correcting detected errors. The skills of debugging are an important ones. It is thought that teaching children how to debug their own knowledge or thinking errors is more important than teaching them the knowledge itself (Brown, Burton, & De Kleer, 1982; Carver, 1987; Papert, 1980a). The Logo programming environment can be an ideal place to learn debugging because it provides students with immediate feedback on how the program works and explicit error messages indicating specific locations. Debugging skills are general skills that can be applied outside the domain of programming.

These major components of cognitive monitoring were selected because they fit most naturally in the Logo environment. Logo can provide quasi-concrete environment where students explore abstract ideas, manipulate them, and receive immediate and concrete feedback. Thus, Logo can be used as a tool to model formal cognitive monitoring activities in the process of programming.
Mediated learning environment

Although Logo has a great potential to facilitate cognitive monitoring strategies and other problem solving strategies, learning to program does not naturally improve those strategies. A teacher cannot expect students to improve cognitive monitoring strategies if she lets students just play with Logo by providing a self-discovery learning environment. Previous research results suggest that teacher mediated learning in the guided Logo instruction needs to be considered in order to help students consciously monitor their thinking strategies.

The concept of mediated learning is based on Vygotsky's (1978) theory of cultural development. According to his theory, a great deal of a child's intellectual development is mediated by adults. Children first experience a set of metacognitive activities through adult modeled frameworks and guidance. As a child becomes more experienced with the adult help and more capable of performing complex tasks, the adult gradually reduces her role of modeling, guiding, and correcting the child. Thus, the child gradually takes responsibility for learning and actively involves in task performance. Then, the child takes on more complex problems by herself and transforms the learned strategies to her own (Vygotsky, 1978). Through the adult-child mediated interaction, the child ultimately internalizes a set of metacognitive activities originally performed by the adult and becomes an independent thinker and problem solver. In this manner, the metacognitive process is gradually passed to the child.
Vygotsky thought that the adult should serve as a mediating agent to help a child learn how to control and regulate her cognitive activities. With numerous mediated social learning experiences, a child gradually takes over externally imposed higher-order mental regulative processes and eventually internalizes the processes. Thus, Vygotsky envisioned an acquisition of cognitive skills and metacognitive skills as a co-constructive process of social-cultural learning. According to Vygotsky, the learning process consists of three components: a stimuli, a mediator, and a response. The role of a mediator in the learning process is selecting, filtering, framing, ordering and interpreting stimuli, and guiding a child to respond appropriately.

Feuerstein et al. (1985), however, argued that not all adult-child interaction has a mediational value. According to Feuerstein, the interaction between teacher and learner requires such characteristics as intentionality, transcendence, and meaning in order to have a mediational value. Intentionality refers to a mediator's recognition of her mediating role which makes both child and mediator more attentive. Assigned meaning refers to the mediator assigning values to particular aspects of a stimulus event. In the interaction between the child and mediator, the event presented to the child must have an affective, motivational, and value-oriented significance and meaning. Transcendence has to do with a mediator's generalizing such meaning beyond that event (Feuerstein, Jensen, Hoffman, & Rand, 1985; Feuerstein, Rand, & Rynders, 1988). Thus, Feuerstein believed that a mediating adult should select, frame, and level the external world in order to focus on a child's attention to the general, transferrable meanings with specific
actions that the child might acquire in particular ways of apprehending and responding to the world.

Feuerstein et al. (1985) examined a mediated learning program for educationally disadvantaged adolescents, which is called "instrumental Enrichment." The lessons consisted of sets of relatively content-free materials designed to develop metacognitive skills. The metacognitive skills taught included planning, systematically attacking the problem, comparing objectives and information, constructing relationships among given information in order to solve the problem, and providing supportive evidences for answers. The role of a mediator was to produce reflective, insightful processes for the learners and to encourage them to think divergently from such content-free materials to other situations. This study reported that students receiving the "Instrumental Enrichment" program showed greater improvements on a variety of measures assessing cognitive and academic abilities than did students in the control group. Follow-up studies found that such gains were maintained over a period of two years without any additional intervention.

Lochhead and Whimbey (1987) developed materials designed to cue metacognitive activities and thinking aloud through pair problem solving. The teacher's role in this program was to reinforce the rules such as sitting with a pair of students, monitoring their activities, and paying particular attention to the listener. The teacher also emphasized to the problem solvers that getting the right answer was not as important as verbalizing the route that they used to get to an answer. Through thinking aloud in the pair problem solving process, the students came to understand how and why they
had reached an incorrect conclusion, thus they corrected errors easily and were less likely to make the same errors again. After students mastered the basic technique, a teacher provided a variety of support and coaching, but in general the role of teacher was more like a listener than a problem solver. This study indicated that the problem solving technique of "thinking aloud" successfully enhanced students' metacognitive skills and task performance.

Similarly, Palinscar and Brown (1984, 1989) used reciprocal teaching methods for developing reading comprehension skills. Reciprocal teaching involves a form of guided cooperative learning from which the learner acquires knowledge and strategies through expert scaffolding by the teacher. In this study, the teacher modeled guided instruction which included scaffolding-questioning, clarifying, summarizing, and predicting an outcome. As students mastered the teacher-modeled techniques, they gradually progressed to the more challenging level and finally they fully adopted the leader role. Thus, they independently monitored their learning process. The results of the study indicated that many students at risk for academic difficulty achieved on criterion performance measures and were able to transfer learned strategies to other learning domains. The results also suggested that when the reciprocal teaching method was applied, students learned effective means of learning from the text.

Research on reciprocal teaching methods has indicated that guided instruction, in which a teacher frames the instructional model and utilizes mediatative interaction with students, helps students improve reading comprehension skills. The teacher mediated learning also improved the use
of metacognitive strategies, in particular, self-monitoring of one's understanding, to other problem solving domains (Brown, Campione, & Day, 1981; Palinscar & Brown, 1984, 1989). Mediated learning techniques have successfully been used to teach a variety of specific subject areas, such as developing mathematic problem solving skills (Schoenfeld, 1985), writing (Flower, 1985), social studies (Corno, 1987), and science (Larkin, 1980). Mediated learning has been effective for teaching both general and domain specific learning, and problem solving strategies.

Recently, researchers have suggested that formal design strategies are required to develop explicit instruction in order to benefit a student's learning and thinking (Mayer, 1988; Missiuna, Hunter, Kemp, & Hyslop, 1987; Salomon, 1988; Salomon & Gardner, 1986). Then, the instruction designed for improving learning and thinking needs to be delivered to students through teacher mediated intervention. The teacher mediated intervention guides students to adopt the fundamental principles and rules that can be applied to other learning domains. Similarly, the teaching of computer programming needs a special environment that supports the development of thinking skills and transfer of cognitive skills rather than a environment that focuses only on programming mastery (Seidman, 1987; Swan & Black, 1989).

Mindful experiences and logical thinking with programming do not happen automatically through the programming experience itself. The mediated interaction between the teacher and the students needs to be incorporated into programming instruction in order to maximize the potential of Logo programming (e.g., Leron, 1985; Mayer, 1988; Miller &
Emihovich, 1986; Salomon & Perkins, 1987; Seidman, 1987). The teacher, as a mediator in Logo programming, needs to carefully frame instruction to help students consciously monitor their on-going thinking processes while solving a problem by encouraging students to attack the problem mindfully. Thus, the mediator first needs to design cognitive monitoring activities for the Logo problems and lead students to transfer the cognitive monitoring activities to real life problems.

As students gradually perform cognitive monitoring strategies, they are likely to solve more complex problems and perform complex tasks successfully. Thus, students eventually internalize cognitive monitoring strategies and activate those strategies without teacher guidance. In the process of mediated practice with Logo programming, the teacher must foster the process of reflective thinking leading to insight by appropriate questioning and by exposing students to models of formal cognitive monitoring.

Summary

The purpose of this chapter was to review previous research in order to provide theoretical frameworks for the pedagogical implications of Logo instruction on the development of cognitive monitoring strategies. Research involving the development of general problem solving skills through learning Logo programming has produced conflicting evidence. The early proponents of Logo programming claimed that students developed cognitive skills and problem solving strategies through a self-discovery learning method (e.g., Lawler, 1980; Papert, Watt, DiSessa, & Weir, 1979; Watt, 1982).
However, most of these studies were based on anecdotal and observational discourse. In the mid-1980s, many researchers attempted to investigate empirically the effects of Logo programming on the development of cognitive skills and problem solving skills. Many of these empirical studies indicated non-significant evidence of the self-discovery approach to Logo programming for the development of students' problem solving strategies. From the previous studies, researchers agreed that the effectiveness of instructional techniques need to be examined in the teaching and learning of programming (e.g., Pea & Kurland, 1984; Delclos, Littlefield, & Bransford, 1985; Seidman, 1987).

Despite the strong theoretical research based on the cognitive monitoring, research involving teaching cognitive monitoring through computer programming is in the early stages. Studies on metacognition strongly argue that teaching cognitive monitoring in order to help students become independent problem solvers and efficient thinkers is an important issue for educators. Most researchers in the area agree that guided instruction and mediated learning are likely to improve cognitive monitoring strategies and students' learning outcomes (e.g., Baker & Brown, 1984b; Brown, 1983; Brown, Campione, & Day, 1981; Palinscar & Brown, 1989; Schoenfeld, 1985; Van Haneghan & Baker, 1989). Many researchers also agree that the use of the computer as an instructional tool is a promising feature to enhance student thinking strategies (e.g., Mayer, 1988; Carrasquillo & Nunez, 1988; Salomon, 1988).
However, research on teaching cognitive monitoring strategies through programming seems to have placed little emphasis on the need to systematically help students reflect on their approaches to programming and think about their cognitive activities as instances of more general problem solving strategies. The Logo environment is an artificial microworld where students create a problem, test a solution, and inspect an output dynamically (Papert, 1980a; Clements, 1990). In particular, the Logo environment seems to have a natural potential for facilitating cognitive monitoring processes. To use this potential, the research suggests that guided instruction, which involves explicit instructional modeling focusing on specific strategies and teacher mediated learning activities, needs to be incorporated into the Logo microworld environment (e.g., Grandgenett, 1989; Seidman, 1987; Swan & Black, 1989). An empirical investigation on teaching cognitive monitoring strategies through Logo programming is an encouraged area of research. Further, strong theoretical research on instructional methodology encourages researchers to examine the effectiveness of various instructional techniques on the development of cognitive monitoring strategies.
METHODOLOGY

Introduction

This chapter describes the procedures and methods used to examine the effects of guided instruction with Logo programming on the development of cognitive monitoring strategies. More specifically, this research selected Logo programming as a possible tool to develop and test an explicit instructional model for cognitive monitoring activities. Teacher mediated learning was employed to help students consciously use a model of cognitive monitoring strategies in Logo problems as well as in everyday problem examples. The research targeted the development of the following cognitive monitoring strategies: decomposing, planning, identifying errors, and debugging them.

The chapter is organized into the following six main sections:

1. sample of subjects used in the study
2. research design used in conducting the study
3. instructional materials and procedures developed for the study
4. experimental treatment employed in the study
5. test instruments used to measure the effects of treatments
6. procedures for data analysis

These six sections describe the methodology that was incorporated to examine the guided instruction in Logo programming used for the development and transfer of cognitive monitoring strategies.
Sample

Students enrolled in Secondary Education 101, *Educational Applications of Computers*, in the fall semester of 1990 at Iowa State University participated in this study. This 3-credit introductory educational computing course for pre-service teachers is designed to help students develop basic skills for using computers in instruction. The course outline included six major applications of computers: word processing, Logo programming, databases, spreadsheets, desktop publishing, and mainframe computer use. This study involved the four week Logo programming unit.

Of the 144 students initially enrolled, 132 participated in this study. The data from the remaining 12 students were not included because they missed more than two sessions during the four week Logo unit.

At the beginning of the course, students in the sample were given a brief questionnaire designed to provide information on academic background as well as personal background. This demographic information was used to investigate the homogeneity of the control and experimental groups.

Subject demographic information

College major of subjects The majority of students enrolled in the course were elementary education majors. Approximately sixty-six percent of the subjects reported elementary education as their major. About five percent of the students listed secondary education as their major, 10.6% were physical education majors, and 18.2% of students listed themselves as non-teacher
education majors, but indicated majors such as business, sociology, agricultural studies, or communication.

College major distribution for the treatment groups indicated that 69.2% of the experimental group students were elementary education majors, 6.2% were in secondary education, 9.2% were in physical education, and 15.4% of students majored in non-teacher education. In the control group, 62.7% were elementary majors, 4.5% secondary majors, 11.9% were in physical education, and 20.9% were in non-teacher education (see Appendix B, Table 27).

Gender Seventy-eight percent of the total sample was female and 22% male. Eighty percent of the experimental group was female, and 20% male. Seventy-six percent of the control group was female and 23.9% male (see Appendix B, Table 28).

Year in school The data collected indicated that 14% of the students were freshmen, 23% sophomores, 36% juniors, and 27% seniors. In the experimental group, 13.8% of the sample were freshmen; 24.6%, sophomores; 38.5%, juniors; and 23.1%, seniors. In the control group, 11.9% were freshmen; 23.9%, sophomores; 34.3%, juniors; and 29.9%, seniors (see Appendix B, Table 29).

Math background The subjects reported their mathematics background by indicating the number of advanced math courses they had taken in high school. The math courses tabulated included advanced algebra, geometry, math analysis, and calculus. Five percent of the subjects had never taken any of the math courses listed above. Seventeen percent of the subjects had taken
1 math course, 46% of the subjects had taken 2 math courses, 28% had taken 3
math courses, and 3.8% of subjects had taken all of the listed math courses.

In the experimental group, five percent of the subjects had never taken
any advanced math course in high school, 15% had taken one math course,
47.7% had 2 math courses, and 27.7% had 3 math courses; 4.6% had 4 or more
advanced math courses. Similarly, 6% of students in the control group never
had advanced math courses in high school; 19.4% had one course; 43.3% had 2
math courses; 28.4% had 3 math courses, and 3% had 4 or more math courses
in high school (see Appendix B, Table 30).

Computer course experience The subjects reported on the amount of
formal computer instruction they had received by indicating the number of
computer courses they had taken in either high school or college. The
computer course experience of the sample was quite limited. Forty-four
percent of the sample had never taken a computer course in either high
school or college. Thirty-eight percent had taken only one computer course,
12.9% had 2 computer courses, 4.5% had 3 computer courses, and less than 1%
of the subjects had taken more than 4 computer courses in either high school
or college.

Forty-three percent of students in the experimental group had never
taken a computer course in either high school or college; 32.3% had taken one
computer course; 18.5% had 2 computer courses, and 6.2% had 3 computer
courses. Similarly, 44.8% of students in the control group never had a
computer course before; 37.9% had taken one course; 12.9% had 2 computer
courses; 4.5% had 3 computer courses, and 0.8% had 4 or more computer
courses either in the high school or college level (see Appendix B, Table 31).

Computer ownership Eighteen percent of the total sample had their own
computer at home. About twenty percent of the students in the experimental
treatment had their own computer at home. Sixteen percent of the students
in the control group had their own computer (see Appendix B, Table 32).

Computer confidence In response to 10 questions measuring computer
confidence, 12.1% of students reported that they were not confident; 50% were
a little confident; 25.8% were confident; 12.1% were very confident.

Responses from students in the experimental group indicated that 15.4% were
not confident; 52.3% were a little confident; 20% were confident; 12.3% were
very confident. Nine percent of students in the control group reported
that they were not confident; 47.7% responded that they were a little confident;
31.4% were confident; 11.9% were very confident (see Appendix B, Table 33).

Distribution of ACT score Although students were asked to report their
ACT scores on the survey, the researcher obtained students' ACT scores from
the registrar office in order to ensure accurate data. Data accessed from the
registrar's office indicated that the mean for the total subjects was 19.717 and
the standard deviation was 3.448. For the experimental group, the mean of
ACT scores was 19.828 and the standard deviation was 3.688. The mean of
ACT scores for the control group was 19.603 and standard deviation was 3.211
(see Appendix B, Table 34).
Research Design

Random assignment

The study employed a one factor analysis of covariance design in order to examine both the near and far transfer effects of the treatment.

ACT scores were used as the pre-experimental measurement of students' academic performance. The researcher accessed students' ACT scores from the Registrar's office. ACT scores for five students out of the 132 were unavailable. ACT means for each of the nine laboratory sections were calculated. Due to the complex laboratory schedules, assigning each individual randomly into either experimental or control group was practically impossible. Thus, the subjects were randomly assigned to the respective treatment group according to laboratory means of their ACT scores by use of a table of random numbers and a class roster. Seven laboratories ranged from 18 to 20 students. Two laboratories ranged from 6 to 8 students. As a result of the stratified random sampling and assignment, five sections of 65 students were assigned into the experimental group and four sections of 67 students were assigned into the control group. A test of equality of mean ACT scores for the groups was computed and resulted in a failure to reject the null hypothesis. It was therefore inferred that the groups were equivalent on the ACT measure at the 95% confidence level.

Experimental procedures

The initial demographic questionnaire was given to students during the first week of the course. After completing the initial questionnaire, students
received two weeks of instruction on Appleworks word processing as a regular part of the course schedule preceding the experimental treatment.

The experiment began in the fourth week of the course. Students, who were randomly assigned to the experimental or control treatment, received a four week Logo programming unit in both lecture and laboratory work. The treatment continued through week seven of the semester, with a total of 16 hours of treatment (see Figure 3).

<table>
<thead>
<tr>
<th></th>
<th>Week 1</th>
<th>Week 4-7</th>
<th>Week 8</th>
<th>Week 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>O</td>
<td>R</td>
<td>X</td>
<td>O1 O2 O3 O4 O5 O6</td>
</tr>
<tr>
<td>Q</td>
<td>Q</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **O** • Accessed student ACT composite score
- **Q** • Initial questionnaire administered
- **R** • Randomized by laboratory session
- **X** • Instructional treatment of guided Logo instruction applying formal cognitive monitoring strategies
- **Y** • Instructional treatment of traditional Logo programming applying a self-discovery learning method
- **O1** • General planning test
- **O2** • Logo decomposing and planning test
- **O3** • Logo error identification test
- **O4** • Basic Logo comprehension test
- **O5** • General decomposing test
- **O6** • General error identification test

FIGURE 3. Sequence of experimental study events

The 16 hours of treatment were 8 sessions of one hour lecture and 4 sessions of two hour laboratory work. Four different units of homework assignment
were given during the study period. Each homework assignment required at least two hours of work (see Appendices N, O, P, and Q). Outcome measures were completed during weeks 8 and 9 of the study.

Procedures for additional research controls

Lecture instructor controls In order to control the instructor variable in the lecture sessions, a specific lesson outline was provided to each of the two instructors each day. The two instructors were the professor for the course, and a laboratory instructor who had taught elementary school students for seven years. The second instructor also had extensive experience in teaching problem solving. Both instructors were female. The instructors had prior experience in working together to teach problem solving skills.

The instructors rotated teaching assignments so that they each taught both the experimental and control groups an equal amount of time as shown in Figure 4. That is, one instructor taught the experimental treatment in both morning and afternoon sections, while the other instructor was teaching the other group of students with a control group treatment in a different room for the same morning and afternoon sections. On the second day of the lecture for each week, the instructor who previously used the experimental treatment with the appropriate sample, used the control treatment with the other sample group and the other instructor used the experimental treatment with the appropriate group. The two instructors followed this rotation plan until the research experiment was over.
<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Treatment</th>
<th>Instructor</th>
<th>Logo Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td>A.M.</td>
<td>Experimental</td>
<td>A</td>
<td>Introduction to philosophy of Logo,</td>
</tr>
<tr>
<td></td>
<td>A.M.</td>
<td>Control</td>
<td>B</td>
<td>cognitive monitoring, & Logo primitives</td>
</tr>
<tr>
<td></td>
<td>P.M.</td>
<td>Experimental</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P.M.</td>
<td>Control</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Day 2</td>
<td>A.M.</td>
<td>Experimental</td>
<td>B</td>
<td>Repeat & procedures</td>
</tr>
<tr>
<td></td>
<td>A.M.</td>
<td>Control</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P.M.</td>
<td>Experimental</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P.M.</td>
<td>Control</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Day 3</td>
<td>A.M.</td>
<td>Experimental</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A.M.</td>
<td>Control</td>
<td>B</td>
<td>Super procedure & subprocedure</td>
</tr>
<tr>
<td></td>
<td>P.M.</td>
<td>Experimental</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P.M.</td>
<td>Control</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Day 4</td>
<td>A.M.</td>
<td>Experimental</td>
<td>B</td>
<td>Total turtle trip theorem</td>
</tr>
<tr>
<td></td>
<td>A.M.</td>
<td>Control</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P.M.</td>
<td>Experimental</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P.M.</td>
<td>Control</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Day 5</td>
<td>A.M.</td>
<td>Experimental</td>
<td>A</td>
<td>Variables</td>
</tr>
<tr>
<td></td>
<td>A.M.</td>
<td>Control</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P.M.</td>
<td>Experimental</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P.M.</td>
<td>Control</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Day 6</td>
<td>A.M.</td>
<td>Experimental</td>
<td>B</td>
<td>More than one variables</td>
</tr>
<tr>
<td></td>
<td>A.M.</td>
<td>Control</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P.M.</td>
<td>Experimental</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P.M.</td>
<td>Control</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Day 7</td>
<td>A.M.</td>
<td>Experimental</td>
<td>A</td>
<td>Recursion</td>
</tr>
<tr>
<td></td>
<td>A.M.</td>
<td>Control</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P.M.</td>
<td>Experimental</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P.M.</td>
<td>Control</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Day 8</td>
<td>A.M.</td>
<td>Experimental</td>
<td>B</td>
<td>Recursion</td>
</tr>
<tr>
<td></td>
<td>A.M.</td>
<td>Control</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P.M.</td>
<td>Experimental</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P.M.</td>
<td>Control</td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 4. Instructor rotation and Logo units for lecture sections

Laboratory instructor controls In order to minimize instructor variability in instruction across nine laboratory sections, a specific laboratory lesson
81

outline was provided to instructors of both treatment groups. Each of four instructors taught both an experimental and control group, and an additional instructor taught one laboratory section with an experimental treatment.

Pedagogical controls In order to ensure that instructors utilized a pure instructional treatment and did not mix other instructional techniques, explicit instructional outlines and content were provided for each class meeting (Appendices D, E, H, and I). These pedagogical outlines, along with the student worksheets, were carefully sequenced, containing the identical content of problems and examples for both treatment groups. These detailed lesson outlines were used in all lectures and laboratory work throughout the entire unit.

In addition to daily lesson outlines, the researcher provided individualized training for each class session to help instructors eliminate mixing instructional treatments. For laboratory sessions, this training included reading the instructional materials and discussing the methodology for the class session. Then, the instructors watched a 20 minute videotape that included a model of teaching techniques for a guided instruction in Logo programming. The laboratory instructor also micro taught a sample lesson in front of the researcher and received suggestions from the researcher. Finally, in order to ensure that the training and materials were being correctly implemented by the laboratory instructors, the major professor of the class periodically monitored the laboratory instruction in person.

The researcher also observed the lecture instructional process. The lecture instructors met with the researcher twice a week for 60 minutes each
week in order to review previous and future lessons. The researcher also videotaped each lecture instruction as well as laboratory instruction, reviewed the videotape, and commented about each instructor's teaching method.

Introduction for cognitive monitoring strategies control Both the experimental and control groups received the 30 minute introduction of the philosophy of Logo programming, cognitive monitoring, and the component processes of cognitive monitoring at the beginning of the Logo programming unit. The brief introduction to cognitive monitoring included a general definition of cognitive monitoring, an example of utilizing cognitive monitoring strategies in an everyday life problem, a brief definition of the theoretical components of the skills, an example of utilizing specific components in solving a problem, and an example of the components used in Logo programming (Appendix F).

Following this brief introduction, students began to receive their respective instructional treatments. The treatment for the experimental group emphasized use of the cognitive monitoring components in solving their programming problems, whereas the control group emphasized self-discovery learning with use of their own strategies in solving the programming problems.

Classroom Controls In order to prevent differences due to the environment effect, the classroom environment was controlled. For the lecture session, since classes were split into two groups meeting simultaneously, two separate rooms were necessary for each class. The schedules were adjusted so that each of the rooms was used an equal number
of times by the experimental and control treatments. Thus, half of the experimental sections, and half of the control sections were scheduled in each of the two classrooms. Individual experimental and control sections always met in the same location. Careful attendance records and quizzes were kept to prevent students from showing up in the wrong room. All of the instructional aids, such as an overhead projector, liquid crystal projection devices, mobile computers for demonstration, etc., were equally provided to both classrooms. For the laboratory sessions, each treatment group used the same room and equipment for the laboratory work, thus, no laboratory environmental difference for the experimental and control groups was expected.

Procedures for administration of study instruments

Each of the test instruments for the study was administered over the two week period directly following the programming unit. Two students, one from the experimental group and the other from the control group, dropped the course during the experimental period because of personal problems. Thus, 130 students completed the entire study. All of the tests were required course activities and used to determine course grades.

The general planning test, the Logo decomposing and planning test, and the Logo error identification test were administered the eighth week of the course. This was the first week following the completion of the Logo unit. The general planning test was administered in the lecture and had a time limit of forty minutes. The Logo decomposing and planning test and the Logo error identification test were treated as part of a laboratory midterm.
examination and the students were given two hours to complete the tests. The Logo comprehension test, the general decomposing test, and the general error identification test were administered the ninth week of the course. The Logo comprehension test was given as part of a graded lecture midterm examination and was one hour long. Students were allowed one hour to complete the general decomposing test and the general error identification test. All of the test instruments were administered by the researcher and instructors. Both treatment groups took each of the tests simultaneously in the same classroom in order to maintain consistency and similarity of the test environment (Figure 5).

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Period</th>
<th>Time to spend</th>
</tr>
</thead>
<tbody>
<tr>
<td>General planning test</td>
<td>Week 8</td>
<td>Forty minutes</td>
</tr>
<tr>
<td>Logo decomposing & planning test</td>
<td>Week 8</td>
<td>One hour</td>
</tr>
<tr>
<td>Logo error identification test</td>
<td>Week 8</td>
<td>One hour</td>
</tr>
<tr>
<td>Logo comprehension test</td>
<td>Week 9</td>
<td>One hour</td>
</tr>
<tr>
<td>General decomposing test</td>
<td>Week 9</td>
<td>Thirty minutes</td>
</tr>
<tr>
<td>General error identification test</td>
<td>Week 9</td>
<td>Thirty minutes</td>
</tr>
</tbody>
</table>

FIGURE 5. Test administration period

Procedures for pilot test instructional materials

The Logo instructional materials (Appendices D, H, J, and L), developed by the researcher, were based on cognitive monitoring strategies. These
instructional materials were piloted to ensure their appropriateness for use in the actual study. A regularly scheduled Secondary Education 101 class, during the summer of 1990, was used for this purpose. During the pilot study, instructional materials were critiqued and revised for both content and sequence. The fall semester instructors for the course, a summer instructor for Secondary Education 101 class, and the researcher shared information, observed instructional processes, discussed the merits and weaknesses, and suggested revisions. The researcher's records, student feedback, and daily videotaped classroom observations were also used to revise the instructional materials.

Instructional Materials

Instructional materials for the treatment

Instructional unit The Logo lesson unit involved five main sections; introduction to Logo programming and primitives, procedures and sub-procedures, total turtle trip theorem, variables, and recursions. Logo problems and examples ranged successively from simple procedures using turtle graphics, to more difficult problems utilizing multiple variables and recursion. As resources for developing course content, *LogoWorks: Lessons in Logo*, by Cory and Walker (1986) and *Logo: MIT Logo for the Apple*, by Billstein, Libeskind, and Lott (1985) were referred to provide in-class problems and examples. Content sheets for the experimental and control groups are given in Appendices J, K, L, and M. Each Logo session consisted of two sections: lecture and laboratory instructional materials.
Lecture materials. Each instructional outline for the lecture section contained an introduction of new programming commands, rationale for learning these commands, demonstration of programming with the new commands, two sets of Logo programming problems for the student activity, introduction to homework assignment, and a quiz (Appendix D). The instruction outline also indicated the role of the instructor in the experimental group. The instructor's role indicated in the outline was to encourage students to follow the cognitive monitoring activities consciously by using Socratic dialogue. The activity worksheets for the experimental group contained one set of problems for a teacher-student cooperative activity utilizing formal cognitive monitoring steps and one set of problems for a student activity for practicing formal cognitive monitoring activities (Appendix J). In addition, an example of daily life problems was presented so that students could apply formal cognitive monitoring activities to general problem situations (Appendix G).

The Logo programming content for the control group was exactly the same as the experimental group (Appendix E). Only the role of instructor, as indicated in the instructional outline, was different than in the experimental group. The role of the instructor indicated in the instructional outline for the control group was to facilitate a self-discovery approach to the problems, to encourage students to attack the problems with their own learning style, and to monitor the progress. The activity sheets for the control group contained two sets of problems for a student activity. The activity sheets included general guidelines of solving problems so that students could refer to their
problem solving tasks (Appendix K). However, students were encouraged to utilize their own methods to solve the problems.

Laboratory materials For the laboratory work, each instructional outline for the experimental group contained a review of new commands learned from the lecture, in-depth demonstration of examples applying the new commands, three sets of Logo problems from a simple to a more complex difficulty level, and an introduction to the homework assignment (Appendix H). The laboratory instructor's role indicated in the instructional outline was to guide students to employ cognitive monitoring strategies to solve the problems. The activity worksheets contained one set of problem for the teacher-student cooperative activity utilizing formal cognitive monitoring activities and two sets of problems for a student activity to practice consciously formal cognitive monitoring activities (Appendix L).

The Logo programming content for the control group was the same as the experimental group (Appendix L). The laboratory instructor's role, as indicated in the instructional outline, was that of a facilitator to provide a self-discovery learning environment. The activity worksheets for the control group contained three sets of problems for a student activity. Although the general guidelines of the problem solving process were provided at the bottom of the worksheets, students were allowed a large degree of freedom in the process of solving the problems (Appendix M).
Experimental Treatment

Experimental group

The experimental group received guided Logo instruction as an experimental treatment. The guided instruction involved taking students step-by-step through a structured approach of applying specific cognitive monitoring strategies to solve a given programming problem. The students in the experimental group were required to use specifically modeled cognitive monitoring activities whenever they solved the programming problems. Thus, the experimental treatment emphasized an acquisition of metacognitive skills in the process of solving programming problems. They were also encouraged to transfer the learned skills to other learning domains. The following three pedagogical elements were stressed in the guided instruction: (1) selecting Logo programming as a particular tool to teach cognitive monitoring strategies, (2) modeling explicit instruction of cognitive monitoring activities, and (3) teacher mediated learning to guide students to apply the cognitive monitoring strategies to Logo problems as well as other learning domains.

First pedagogical element The experimental treatment used Logo programming as a tool to practice cognitive monitoring strategies rather than learning programming as an activity itself. Students were told not to jump into programming on the computer, but rather to follow sequentially the steps of cognitive monitoring activities. Students were allowed about 10 minutes to work through the first two steps of the cognitive monitoring activities before they turned on the computer. Then, they spent 10 minutes more working
through the last two steps of the cognitive monitoring activities. The instructor guided students to follow consciously these cognitive monitoring processes by Socratic questioning, and close observation to ensure that everyone was actively engaged in the step-by-step process as it was designed on the instructional worksheets. The instructor also emphasized that Logo programming is a way to learn cognitive monitoring strategies and encouraged students to focus on the cognitive monitoring activities while solving an assigned programming problem.

Second pedagogical element In order to facilitate the development of cognitive monitoring strategies, five cognitive monitoring activities were modeled for solving the programming problems (Appendix C). The components of decomposing, planning, executing, identifying the error, and debugging were explicitly structured into the programming activity to help students consciously monitor their on-going thinking processes (Appendices J and L).

The decomposing activity was designed to help students search for definite and necessary elements or segments of a complex graphic problem. Students were encouraged to find critical clues that could make the graphic less confusing. For example, students might select the following three elementary shapes in order to draw a house: a square for a house frame and windows, a rectangle for a door and a chimney, and a triangle for the roof.

The planning activity was designed to help students organize and sequence the decomposed information and elements. Most important, students needed to search for strategies to develop an efficient solution to the
problem. They also needed to consider structure and modularity of the program. Thus, the planning activity helped students understand important concepts of total turtle trip theorem, repeat, procedures, variables, and recursion and apply those concepts to develop an efficient solution to the programming problem.

The executing step was designed to help students translate the planned solution into Logo programming commands and execute them on a computer. Students were encouraged to reflect their planning steps while writing the codes for the solution.

In the process of identifying the error, students were encouraged to describe the discrepancy between the desired graphic and the actual outcome, if there were any errors. Describing discrepancies also helped students to easily locate the statements which might cause the errors. For example, if the discrepancy was the orientation of the graphic, then students would look at the turtle's turn, rather than the distance. Then, students needed to locate procedures that might cause critical errors. Finally, students needed to state what was wrong with the procedures they located. In the identifying the error activity, students were encouraged to consciously attempt to understand their misconception or thinking errors. Then, as a debugging activity, students were told to correct the errors on the computer.

The structured model of cognitive monitoring activities was employed recursively until students solved a given problem. Students were encouraged to utilize a cognitive monitoring cycle in a non-linear way in which they went back to any step of the components if they thought the critical errors occurred
in a certain step. Thus, with the recursive, non-linear cognitive monitoring activities, students could reformat their original strategy or method and refine the solution to a given programming problem.

Third pedagogical element Within the experimental treatment, the instructor intentionally raised Socratic dialogue to help students concentrate on formal cognitive monitoring activities (Figure 6). With the instructor's

<table>
<thead>
<tr>
<th>Cognitive monitoring activities</th>
<th>Examples of Socratic dialogue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decomposing step</td>
<td>• What shall we do with this problem?</td>
</tr>
<tr>
<td></td>
<td>• Shall we write codes now? If yes, what do we know about this problem?</td>
</tr>
<tr>
<td></td>
<td>• What are the important elements of this problem?</td>
</tr>
<tr>
<td>Planning step</td>
<td>• How would you relate the decomposed elements to solve the problem?</td>
</tr>
<tr>
<td></td>
<td>• Where would be the best place for the turtle to start to travel?</td>
</tr>
<tr>
<td></td>
<td>• Can we organize gathered information in more efficient ways?</td>
</tr>
<tr>
<td></td>
<td>• What strategies would you use?</td>
</tr>
<tr>
<td>Executing step</td>
<td>• How does the turtle understand our plan so that he can carry it out?</td>
</tr>
<tr>
<td></td>
<td>• Does this procedure draw what we want?</td>
</tr>
<tr>
<td>Identifying the error step</td>
<td>• Ooh, what happened?</td>
</tr>
<tr>
<td></td>
<td>• Can you describe differences between the planned graphic and the actual outcome?</td>
</tr>
<tr>
<td>Debugging step</td>
<td>• Where might the errors be?</td>
</tr>
<tr>
<td></td>
<td>• Did our plan seem O.K.?</td>
</tr>
<tr>
<td></td>
<td>• Did our decomposed elements seem fine?</td>
</tr>
<tr>
<td></td>
<td>• Can you describe what is wrong with the procedure you mentioned?</td>
</tr>
<tr>
<td></td>
<td>• What would be the correct codes?</td>
</tr>
<tr>
<td></td>
<td>• How can you fix our errors?</td>
</tr>
</tbody>
</table>

FIGURE 6. Examples of Socratic dialogues to elicit cognitive monitoring
mediation, students worked through the steps of formal cognitive monitoring activities on worksheets which were designed to elicit the cognitive monitoring strategies. The first time, the instructor and students completed the worksheet together through a Socratic dialogue format. Then, students went through the formal cognitive monitoring activities on the student activity worksheet by themselves. The student activity worksheets contained an explicit model for the formal cognitive monitoring activities (see Appendices J and L).

Finally, the instructor presented general problem situations from various subject areas and guided students to utilize learned cognitive monitoring processes while they were solving the given problem (Appendix G). The instructor emphasized that such cognitive monitoring strategies are the highest level of approach to solve problems and can be applied across subjects and situations. She also stressed why monitoring on-going thinking processes was important in the problem solving process.

As the Logo session progressed, the instructor gradually reduced her responsibility to lead students to engage in cognitive monitoring activities and passed the leadership to the students. Thus, each student gradually took more responsibility for her learning. In the experimental treatment, the most important goal was that the students gradually internalized learned strategies and were able to utilize those strategies whenever they needed them.

The control group

The control group was involved in Logo programming based on a self-discovery learning method. In contrast to the experimental group, students in
the control group did not focus explicitly on the formal cognitive monitoring process while solving the Logo problems. However, the lesson outline was carefully designed in order to deliver the same information given to the experimental group (Appendices E and D). In the lecture, the instructor introduced rationale, new concepts, and commands for the Logo instruction unit. Then, students worked individually on activity sheets in order to solve the given programming problems. Students in the control group received a large degree of freedom when they solved Logo programming problems. Finally, the instructor gathered one or more different answers from students and presented the solution to the entire class. If the answer produced errors, then students debugged the errors by themselves without the instructor's help. Thus, students in the control group spent more time programming according to their own learning style and were able to compare several different solutions.

The role of the laboratory instructor was also rather limited in the control group, since the instructor led the students' activities by following the traditional Logo philosophy of self-discovery, in which students explored their ideas, and attempted to utilize various problem solving strategies and methods according to their own learning styles with minimal adult intervention. Thus, both lecture and laboratory instruction for the control group allowed students as much freedom as possible in solving each assigned programming problem so that students could test their ideas and strategies.

In order to prevent students from randomly engaging in problem solving, Polya's (1973) four steps to mathematical problem solving were
presented in the activity sheets as general guidelines for the control group (Appendices K and M). However, the instructor did not use these steps formally. Problem solving activities for the control group were not structured as the experimental group and did not use formal cognitive monitoring components.

Instructors working in the control group were directed to maintain, as much as possible, a self-discovery Logo programming environment while students worked at the computer. The instructors avoided helping students unless they specifically asked for assistance. They avoided giving direct answers and assisted students by asking small Socratic questions when students were having trouble with programming. The students in the control group were encouraged to keep records of their work. Thus, in the control group, the solution process and strategies were expected to be quite different from student to student according to their own learning styles.

The instructional sequence of the control group provided hands-on computer time approximately twice as long as that of the experimental group. The experimental group spent more time practicing cognitive monitoring strategies by using specific components of cognitive monitoring activities and less time experiencing hands-on computer programming. On the other hand, students in the control group spent most of their time on the computer, trying to program and experiment with their solutions. This additional exploration time was thought to be helpful to the self-discovery Logo approach.
Test Instruments

Seven instruments used in this study were as follows:

1) the questionnaire for the sample demographic information,
2) the Logo decomposing and planning test,
3) the Logo error identification test,
4) the general decomposing test,
5) the general planning test,
6) the general error identification test, and
7) the basic Logo comprehension test.

The questionnaire was used as a pre-experimental measurement. The Logo decomposing and planning test, and the Logo error identification test were used to measure near transfer effects of cognitive monitoring strategies. The general decomposing test, the general planning test, and the general error identification test were used to measure far transfer effects of cognitive monitoring strategies. The basic Logo comprehension test, developed by Grandgenett (1989), was used to measure students' knowledge of basic Logo content.

Development of questionnaire

The questionnaire was developed in order to collect demographic information on the subjects (Appendix A). The questionnaire items were selected by the researcher with advise from her major professor, a psychology professor, and a computer science professor. The items were designed to obtain students' academic background information as well as their attitudes
toward the computer. Among those items, the following seven variables were selected as pre-experimental measurements in order to control differences between the experimental and control groups: gender, year in school, mathematics course experience, computer course experience, computer ownership, computer confidence, and ACT score.

Development of test instruments

In this section, the process of developing five test instruments was described. In order to develop the following test instruments, the researcher conducted a literature review in each of the subject areas. The main literature review included:

Then using telephone discussion, the researcher consulted some of the authors to develop test items in the context of this research theme. After the consultation, some of authors provided the researcher with detailed research materials relevant to this work. Following this consultation and a review of the provided materials, the researcher also had discussion on potential test items with professors in computer science, psychology, mathematics, and teacher education, in order to confirm the content validity of the test items. After several informal pilot studies, the researcher modified and refined the tests. Then, the refined tests were again piloted with the students in Secondary Education 101, in Spring and Summer, 1990 (the same course used in the main study in Fall, 1990).

The researcher and one other instructor scored the collected tests individually in order to test the reliability of scoring system. A Pearson correlation was applied to measure the reliability of scoring-rescoring for each test. The correlation coefficients for scoring-rescoring reliability were $r=0.97$ ($p<0.001$) for the Logo decomposing and planning test, $r=0.97$ ($p<0.001$) for the Logo error identification test, $r=0.98$ ($p<0.001$) for the general decomposing test, $r=0.94$ ($p<0.001$) for the general planning test, and $r=0.97$ ($p<0.001$) for the general error identification test.

Logo decomposing and planning test

The purpose of this test was to evaluate students' abilities to break a complex Logo graphic into simpler, elementary shapes and to devise a modular and efficient solution to the programming problem. This test contained five different items from simple problems to difficult ones.
Each problem provided a graphic which had not been used in the class activity and was scored first for the decomposing skills and second for the planning skills.

There were three questions for each problem. The first question (part A) was to measure a student’s decomposing skills. Students were asked to break down the given graphic and list the names of subprocedures they would use in a program to create the graphic. The second question (part B) was to measure a student’s ability to plan an efficient solution to the problem. Students needed to think not only about the efficient turtle trip but also the logic and modularity of the planning to solve the problem. In the third question (part C), students were requested to write Logo code consistent with their solution. The third question was used to help an instructor better understand a student’s planning strategies.

The decomposing portion was scored according to the following procedures:

1. $|\text{Absolute value of score}| = \text{the optimal number of decomposed subprocedures} - \text{the number of student's subprocedures}$
2. Possible score $= 5 - |\text{Absolute value of score}|$

For example, in the following Logo decomposing and planning problem (Figure 7), the optimal number of subprocedures was set up as one (a rectangle) in the example, because the same rectangle could be used repeatedly to obtain the solution. If the student indicated one subprocedure, her absolute value of score became zero. Then, her possible score for this problem would be five points. If the students indicated three subprocedures, her absolute
A. Break the shown graphic into smaller parts and list names of subprocedures you would use to draw the graphic.

B. Write a plan of how you would put the subprocedures together to draw the graphic in the most efficient manner possible. You should use the names of the subprocedures you listed above in your plan.

C. Write codes (procedures) to draw the above graphic.

FIGURE 7. An example of Logo decomposing and planning problem
value of score became two. Thus, her possible decomposing score would be three points. The optimal number of decomposed subprocedures was different from one problem to another, but the possible decomposing score for each problem was five. Thus total possible decomposing score was 25 points (5 points for each problem \(\times 5 \)).

For the Logo planning, the optimal planning solution was to demonstrate logic in thinking, contain no error in their planning (e.g., if students missed a turtle movement in their planning, turning the turtle, size, and so on.), and demonstrate modularity of planning. The total possible planning score for part B in each problem was five points. For example, in Figure 7, the optimal planning would be: (1) move the turtle to center, (2) draw size of 20 60 rectangle, (3) turn 90 degrees, and (4) repeat this procedure four times in applying the total turtle trip theorem. If the student indicated the above procedures for part B, she gained five points for that problem. For the logic of thinking, if the student missed a turtle movement first, one point was subtracted from 5 (-1 point); no repeat statements received minus two points (-2 points); if the planning produced a totally different figure, then zero points (0 points) was given for scoring part B. The optimal planning strategy was different for each problem but the possible score for part B in each problem was five.

For scoring the part C, a total of 10 points were given for each problem. Omitting necessary statements in the procedure yielded minus one point (-1 point) for each (e.g., Rt, Lt, Fd, Bk, Pu, Pd, ";" for verifying variables, and To-End statement). Missing a necessary subprocedure produced minus two
points (-2 points) for each. If no calling procedure (super procedure) was included, two more points were subtracted (-2 points). If the sequence was not correct or the program was unnecessarily complex, then three points were subtracted (-3 points).

The execution question for part C was considered as part of the understanding planning and the score was added to the planning score. Thus, the possible total points for planning for each problem was 15 points; 5 points for the part B and 10 points for the part C. The reason for choosing a paper and pencil test to measure Logo decomposing and planning skills was to be able to see a student's thinking process clearly by requesting her to write down her approach. If the test utilized the computer directly, then the instructor could see the product only, regardless of how a student had obtained the product or the number of program changes made. Thus, hands-on computer problems would have been difficult for the researcher to observe a student's original plan or thinking.

The Cronbach alpha coefficient was used to measure the reliability of this test. One hundred and thirty-two students completed the test. The result indicated that the Logo decomposing and planning test had an alpha coefficient of .79 with an average inter-item correlation of .20 (Table 1).

<table>
<thead>
<tr>
<th>Items</th>
<th>N</th>
<th>Mean</th>
<th>Variance</th>
<th>Standard Deviation</th>
<th>Alpha coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 15</td>
<td>130</td>
<td>67.808</td>
<td>171.660</td>
<td>13.102</td>
<td>.7908</td>
</tr>
</tbody>
</table>
Logo error identification test

The purpose of this test was to evaluate a student's error identification and debugging skills in Logo. The test contained six problems (Appendix S). Each problem presented two graphics: the planned graphic and the actual outcome. Each problem also included codes of procedures for the actual outcome.

Students were asked four specific questions: (1) describe the discrepancy between the planned graphic and the actual outcome (1 point); (2) circle the specific statement(s) that caused the critical error (2 points); (3) describe what is wrong with the statement(s) circled (2 points); and (4) write the correct code(s) for the circled statement(s) (2 points). Some problems had more than one mistake and had more than one possible solution. Therefore, student responses varied. However, re-writing all codes over again was not allowed. A possible total score for the Logo error identification test was 42 points (7 points X 6 problems).

As indicated in Table 2, the Cronbach alpha reliability coefficient for the Logo error identification test was .79 with an average inter-item correlation of .24.

TABLE 2. Reliability coefficient of the Logo error identification test

<table>
<thead>
<tr>
<th>Items</th>
<th>N</th>
<th>Mean</th>
<th>Variance</th>
<th>Standard Deviation</th>
<th>Alpha coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 12</td>
<td>130</td>
<td>27.354</td>
<td>65.456</td>
<td>8.090</td>
<td>.7863</td>
</tr>
</tbody>
</table>
General decomposing test

The purpose of this test was to evaluate students' ability to break a complex problem into manageable parts and correctly construct the solution using the decomposed parts. The measurement was designed to test if students were able to apply principles of Logo decomposing skills to general complex problems. The test contained six word problems combining with mathematical and non-mathematical items (Appendix T).

As shown in the following example of a problem, students needed to break down the given problem into simpler parts, solve decomposed steps, and give a final answer to the problem. The number of decomposing steps and the correctness of the decomposed problem solution were calculated separately. For example, in the following problem (Figure 8), six steps of decomposing were necessary.

3. Paul sold 160 sandwiches for $2.00 each. Each sandwich consisted of 4 oz of ham, 2 slices of bread, and mustard. Paul paid $3.00 a pound for the ham, $.60 a loaf for the bread (20 slices per loaf) and used 8 jars of mustard at $.50 each. How much profit did he make?

<table>
<thead>
<tr>
<th>STEP 1:</th>
<th>Total sold = 160 sandwiches x $2.00 = $320</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEP 2:</td>
<td>Ham cost = 160 x 4 oz = 40 lbs (640/16); 40 lbs x $3.00 = $120</td>
</tr>
<tr>
<td>STEP 3:</td>
<td>Bread cost = 160 x 2 slices = 320 (320/20 = 16); 16 lo. x $.60 = $9.60</td>
</tr>
<tr>
<td>STEP 4:</td>
<td>Mustard = 8 x $.50 = $4.00</td>
</tr>
<tr>
<td>STEP 5:</td>
<td>Total cost = $120 + $9.60 + $4.00 = $133.60</td>
</tr>
<tr>
<td>STEP 6:</td>
<td>Profit = $320 - $133.60 = $186.40</td>
</tr>
<tr>
<td>STEP 7:</td>
<td></td>
</tr>
<tr>
<td>STEP 8:</td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 8. An example of general decomposing problem
Each correctly decomposed step gained one point (1 point) and each correct answer to the decomposed problem solution also gained one point (1 point). However, if students obtained an incorrect answer at an earlier step and used the same answer consistently, they lost a point only once. Thus, the scoring criteria contained the following points:

- problem 1: 5 steps of decomposing (5 points in total) and correctness of each step of the decomposed problem (5 points in total),
- problem 2: 6 steps of decomposing (6 points in total) and correctness of each step of the decomposed problem (6 points in total),
- problem 3: 6 steps of decomposing (6 points in total) and correctness of each step of the decomposed problem (6 points in total),
- problem 4: 6 steps of decomposing (6 points in total) and correctness of each step of the decomposed problem (6 points in total),
- problem 5: 5 steps of decomposing (5 points in total) and correctness of each step of the decomposed problem (5 points total),
- problem 6: 5 steps of decomposing (4 points in total) and correctness of each step of the decomposed problem (4 points in total).

Thus, the possible total score for the general decomposing test was 64 points.

The Cronbach alpha reliability coefficient for the general decomposing test was .74 with an average inter-item correlation of .19 (Table 3).

General planning test

The purpose of this test was to measure a student's ability to organize given information, to order a sequence of actions to be performed, and to think logically in order to achieve the goal most efficiently. The test contained
two complex problems (Appendix U). The first problem was about meal planning. Students were asked to finish six different tasks to prepare a dinner. The time constraint was given in this problem statement. For scoring the first problem, the computer was programmed to calculate differences between the optimal time to start cooking and the student's planned time to start cooking for each task. Since "set the table" could be done prior to "make a salad" and vice versa, the computer waited to enter both times and calculated the differences. The optimal time difference was zero minutes and the maximum time difference could be 2160 minutes for the six tasks.

The second problem was about shopping planning. In this problem, students were required to think not only about the limited given time to do shopping, but also about the sequence of important tasks to be done prior to other tasks (e.g., need to sign paper at the lawyer's office since it is due today), and content of shopping (e.g., buy the ice cream at the end of shopping). Since the shopping map provided several stores, students needed to plan an efficient route for shopping in order to maximize task performance within the limited time. The score for each subject was calculated by a computer program. For the shopping problem, no matter which store students went to, the computer program was able to calculate the differences between the total

<table>
<thead>
<tr>
<th>Items</th>
<th>N</th>
<th>Mean</th>
<th>Variance</th>
<th>Standard Deviation</th>
<th>Alpha coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-12</td>
<td>130</td>
<td>42.569</td>
<td>125.301</td>
<td>11.194</td>
<td>.7405</td>
</tr>
</tbody>
</table>
of optimal shopping time and the total of a student's shopping time. If students spent the given time, 140 minutes, the difference was zero.

The thoughtful planning strategy was also scored by counting the number of necessary shopping contents included. If students included all five necessary tasks (fill prescription, sign papers, buy books, buy a tennis racket, and buy fresh vegetables and ice cream), they gained zero points. If they did not include a necessary task, they gained three points for each omitted task. Buying ice cream required careful thought in order to keep the ice cream from melting. If students planned to buy the ice cream last, they gained zero points. Otherwise, they earned a five point penalty. Notice that the scores were reversed. That is, the better a student planned, the fewer points the student was penalized. The possible total score the poorest planners could gain is 2320 (2160 + 140 + 20).

Using the subjects' raw scores, the Cronbach alpha coefficient was utilized to measure the reliability of the general planning test. The result indicated that the test had an alpha coefficient of .65 with an average inter-item correlation of .19 as indicated Table 4.

\[
\begin{array}{cccc}
\text{Items} & \text{N} & \text{Mean} & \text{Variance} & \text{Standard Deviation} & \text{Alpha coefficient} \\
1 - 8 & 130 & 104.769 & 11569.295 & 107.561 & .6505 \\
\end{array}
\]
The raw scores were linearly transformed in order to make high performance positive. The scores were converted to a percentage by using the following formula:

\[
\text{Percentage} = \frac{\text{Total maximum points} - \text{Student total points}}{\text{Total maximum points}} \times 100
\]

Then, the transformed scores for each subject were used for the statistical analysis of the hypotheses. Since the planning score was linearly transformed, it did not affect the correlation of this score with other measures.

General error identification test

The purpose of this test was to evaluate students' ability to detect what was wrong with a given problem, find errors in a given solution process, explain cause of the errors, and correct the indicated errors. The measurement was to test if students were able to apply monitoring strategies to other domain problems. The test contained six word problems combined with mathematical and non-mathematical items (Appendix V). Each problem presented steps of the solution process and final answer. Then students were asked four specific questions: (1) whether the given solution process and answer to the problem is correct or not; (2) if the solution is not correct, then circle the specific statement(s) that caused the critical error (2 points); (3) describe what is wrong with the statement(s) circled (2 points); and (4) write the correct answer (2 points). For the second question, if students included the
most crucial error statement(s), they gained two points (2 points). The total possible score for this test was 36 points (6 points X 6 problems).

The Cronbach alpha reliability coefficient for the general error identification test was .74 with an average inter-item correlation of .20 (Table 5).

<table>
<thead>
<tr>
<th>Items</th>
<th>N</th>
<th>Mean</th>
<th>Variance</th>
<th>Standard Deviation</th>
<th>Alpha coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 12</td>
<td>130</td>
<td>18.100</td>
<td>63.657</td>
<td>7.979</td>
<td>.7447</td>
</tr>
</tbody>
</table>

Basic Logo comprehension test

To determine the differences on domain specific task performance between the two treatment groups, the Logo comprehension test was administered to both groups of students. The Logo comprehension test was developed by a previous researcher (Grandgenett, 1989: Appendix W) and locally standardized. The test contains 30 questions of multiple choice format. The test objectives were to measure a student's knowledge of: (1) basic turtle commands, (2) repeat commands, (3) defining procedures, (4) subprocedures and super procedures, (5) inputs and variables, and (6) recursion. From Grandgenett's study, the KR-20 reliability of .82 was obtained for this test.
Analysis of Data

Data collected from the tests were analyzed by using the Statistical Package for Social Science (SPSS) program at the Computation Center, Iowa State University. Statistical analyses consisted of two parts: (1) descriptive statistics for the general description of the data and (2) inferential statistics to test the research hypotheses.

Descriptive statistics were used to give a general picture of the characteristics of the sample. Descriptive statistics on the general characteristics of the sample were summarized in the sample section of this chapter.

A student t-test was applied to the following five background variables to test for any significant differences between the experimental and control group: mathematics courses taken at high school, computer courses taken either at high school or college, computer confidence scores, and ACT scores. A non-parametric Chi-square test was used to test independence of selected categorical measures: gender, year in college, and computer ownership.

A t-test of the Pearson product-moment correlation was applied to test any significant relationships among the following six dependent variables: Logo decomposing score, Logo planning score, Logo error identification score, general decomposing score, general planning score, and general error identification score.

To test the research hypotheses, several statistical methods were employed. First, multivariate analysis of covariance (MANOVA) was used to test overall transfer effects of guided instruction with Logo programming.
Second, analysis of covariance (ANCOVA) was used to test hypotheses of each individual dependent variable. Gender, year in college, mathematics courses taken in high school, computer courses taken in either high school or college, computer ownership, computer confidence scores, and ACT scores were used as covariates. A multiple regression analysis was also used to identify the most influenced dependent variable by the treatment.
RESULTS

Introduction

The purpose of this chapter is to present the results of the statistical analyses applied to the data collected from the research instruments. The study focused on the effects of guided instruction with Logo programming on the development of cognitive monitoring strategies. To achieve the purpose of the study, the instructional treatment (guided instruction vs. self-discovery learning) was implemented as the independent variable. Then, the transfer effect (near vs. far transfer) was measured by administering research instruments. Effects of the instructional treatment on the acquisition of basic Logo programming concepts were also tested by administering the multiple choice basic Logo comprehension test.

This chapter is organized into five sections. In the first section, comparisons of the groups on the pre-experimental measures are presented. The findings are presented to establish the equality of the two groups prior to the beginning of the experiment after random assignment. In the second section, each of the seven formal hypotheses is presented and relevant findings are summarized. In the third section, findings from the basic Logo comprehension test are presented. Findings of this research that were not included in the hypotheses are presented in the forth section titled auxiliary findings. The final section of the chapter provides a summary of the research results.
Analysis of Pre-Experimental Measures

As stated in Chapter 3, a questionnaire was given to collect data on gender, year in college, number of mathematics courses taken in high school, number of computer courses taken either in high school or college, computer ownership, and computer confidence. The students' ACT scores, from the Iowa State University Registrar's office, were also obtained. These data were analyzed to determine whether or not differences existed between the experimental and control groups prior to the treatment.

A t-test was calculated to determine if differences on the following selected measures existed: mathematics courses taken in high school, computer courses taken either in high school or college, computer confidence scores, and ACT scores (Table 6). A nonparametric Chi-square test was conducted to determine independence of selected categorical measures: gender, year in college, and computer ownership (Table 7).

The results from both tests showed that there were no significant differences between the two groups on the variables of gender, year in college, mathematics courses taken in high school, computer courses taken either in high school or college, computer ownership, computer confidence scores, and ACT scores. Seven subjects did not have ACT score records, four from the control group and three from the experimental group. In the experimental period, two subjects dropped out of the course for personal reasons, one from each group. Thus, a total 125 subjects were used to analyze the hypotheses for this study.
TABLE 6. Comparisons of covariate variable means for treatment groups

<table>
<thead>
<tr>
<th>Variable</th>
<th>Treatment</th>
<th>N</th>
<th>Mean</th>
<th>S.D.</th>
<th>t value</th>
<th>df</th>
<th>2-tail. prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math. courses taken</td>
<td>Experimental</td>
<td>65</td>
<td>2.12</td>
<td>0.90</td>
<td>0.59</td>
<td>130</td>
<td>0.56</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>67</td>
<td>2.03</td>
<td>0.92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comp. courses taken</td>
<td>Experimental</td>
<td>65</td>
<td>0.88</td>
<td>0.93</td>
<td>0.94</td>
<td>130</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>67</td>
<td>0.73</td>
<td>0.85</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comp. confidence</td>
<td>Experimental</td>
<td>65</td>
<td>27.2</td>
<td>5.35</td>
<td>-0.84</td>
<td>130</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>67</td>
<td>27.9</td>
<td>4.80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACT score</td>
<td>Experimental</td>
<td>62</td>
<td>19.83</td>
<td>3.69</td>
<td>0.37</td>
<td>125</td>
<td>0.72</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>63</td>
<td>19.60</td>
<td>3.21</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 7. Comparisons of categorical variable frequencies for treatment groups

<table>
<thead>
<tr>
<th>Variables</th>
<th>Chi-square</th>
<th>df</th>
<th>Signif.</th>
<th>Min E.F.</th>
<th>Cell with E.F.<5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>0.108</td>
<td>1</td>
<td>0.743</td>
<td>14.280</td>
<td>none</td>
</tr>
<tr>
<td>Year in Col.</td>
<td>0.826</td>
<td>3</td>
<td>0.842</td>
<td>8.371</td>
<td>none</td>
</tr>
<tr>
<td>Own comp.</td>
<td>0.095</td>
<td>1</td>
<td>0.758</td>
<td>11.818</td>
<td>none</td>
</tr>
</tbody>
</table>
Hypothesis One

Hypothesis one was stated as follows:

The vector of means for the six dependent variables, adjusted by the contribution of the seven covariates, will be significantly different for students in the guided Logo instruction group and students in the self-discovery learning group.

Multiple analysis of covariance (MANCOVA) was used in order to test the overall effects of guided instruction with Logo programming on the development of students' cognitive monitoring strategies. An F statistic from Wilks' multivariate test of significance was used to determine if a statistically significant difference existed between the two treatment groups. The results of the MANCOVA revealed that a significant difference existed between two treatment groups, F (6, 111) = 17.78, p<.001. Thus, the researcher rejected the null hypothesis and accepted the research hypothesis, that there were statistically significant differences between the experimental and control groups on the vector of means for the dependent variables (Table 8).

<table>
<thead>
<tr>
<th>Value</th>
<th>Exact F</th>
<th>Hypoth. DF</th>
<th>Error DF</th>
<th>Signif. of F</th>
</tr>
</thead>
<tbody>
<tr>
<td>.510</td>
<td>17.78</td>
<td>6</td>
<td>111</td>
<td>.001***</td>
</tr>
</tbody>
</table>
Hypothesis Two

Hypothesis two was stated as follows:

The students in the guided Logo instruction group will receive a higher average score than students in the self-discovery learning group on the total points of the Logo decomposing test while covarying seven variables: gender, year in college, mathematics courses taken in high school, computer courses taken in either high school or college, computer ownership, computer confidence, and ACT score.

Out of 25 total possible points, the scores on the Logo decomposing test ranged from 8 to 25. After adjusting for the covariates, the total sample mean was 18.91. The mean score on the test for the experimental group was 19.46 and the mean score for the control group was 18.37. The experimental group scored 0.55 points higher than the total sample mean and 1.09 points higher on the average than the students in the control group (Table 9).

<table>
<thead>
<tr>
<th>Treatment</th>
<th>N</th>
<th>Mean</th>
<th>Adjusted Mean</th>
<th>Standard Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental</td>
<td>62</td>
<td>19.42</td>
<td>19.46</td>
<td>3.36</td>
</tr>
<tr>
<td>Control</td>
<td>63</td>
<td>18.41</td>
<td>18.37</td>
<td>3.75</td>
</tr>
</tbody>
</table>

TABLE 9. Means and Standard deviations for the Logo decomposing test
An F statistic from the analysis of covariance (ANCOVA) was utilized to
determine if a statistically significant difference existed. The data showed that
no statistically significant difference existed between the experimental and
control groups on the average score of the decomposing test while adjusted for
the contribution of the seven covariates, $F(1, 116) = 2.76$, $p<.099$. The
researcher retained the null hypothesis that there are no statistically
significant differences between the experimental and control groups on the
total points received in the Logo decomposing test (Table 10).

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Signif. of F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariates</td>
<td>67.36</td>
<td>7</td>
<td>9.62</td>
<td>.75</td>
<td>.631</td>
</tr>
<tr>
<td>Gender</td>
<td>.51</td>
<td>1</td>
<td>.51</td>
<td>.04</td>
<td>.842</td>
</tr>
<tr>
<td>Year in college</td>
<td>1.68</td>
<td>1</td>
<td>1.68</td>
<td>.13</td>
<td>.718</td>
</tr>
<tr>
<td>Math courses</td>
<td>13.08</td>
<td>1</td>
<td>13.08</td>
<td>1.02</td>
<td>.315</td>
</tr>
<tr>
<td>Comp. courses</td>
<td>1.37</td>
<td>1</td>
<td>1.37</td>
<td>.11</td>
<td>.744</td>
</tr>
<tr>
<td>Own computer</td>
<td>.21</td>
<td>1</td>
<td>.21</td>
<td>.02</td>
<td>.896</td>
</tr>
<tr>
<td>Comp. confid.</td>
<td>11.02</td>
<td>1</td>
<td>11.02</td>
<td>.86</td>
<td>.356</td>
</tr>
<tr>
<td>ACT score</td>
<td>5.71</td>
<td>1</td>
<td>5.71</td>
<td>.45</td>
<td>.506</td>
</tr>
</tbody>
</table>

| Main Effects | | | | | |
| Treatment | 35.42 | 1 | 35.42 | 2.76 | .099 |

| Explained | 102.78 | 8 | 12.85 | 1.00 | .439 |

| Residual | 1489.26 | 116| 12.84 | | |

| Total | 1592.03 | 124| 12.84 | | |
Hypothesis Three

Hypothesis three was stated as follows:

The students in the guided Logo instruction group will receive a higher average score than the students in the traditional self-discovery learning group on the total points of the Logo planning test while covarying seven variables: gender, year in college, mathematics courses taken in high school, computer courses taken in either high school or college, computer ownership, computer confidence, and ACT score.

The scores on the Logo planning test ranged from 17 to 71 out of 75 total possible points. The mean for the experimental group was 52.90 and the mean score for the control group was 45.12 after adjusting for the covariates. The total sample mean was 48.98. Therefore, the experimental group scored 3.92 points higher than the total sample mean and 7.78 points higher on the average than the students in the control group (Table 11).

TABLE 11. Means and Standard deviations for the Logo planning test

<table>
<thead>
<tr>
<th>Treatment</th>
<th>N</th>
<th>Mean</th>
<th>Adjusted Mean</th>
<th>Standard Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental</td>
<td>62</td>
<td>52.79</td>
<td>52.90</td>
<td>8.93</td>
</tr>
<tr>
<td>Control</td>
<td>63</td>
<td>45.22</td>
<td>45.12</td>
<td>11.66</td>
</tr>
</tbody>
</table>

Total Sample Mean

48.98 (N = 125)
The result of the ANCOVA showed that there was a statistically significant effect of the treatment while adjusted for the contribution of the seven covariates, $F(1, 116) = 18.77, p<.001$. The researcher rejected the null hypothesis that there is no difference between the two groups and accepted the research hypothesis that students in the experimental group received a higher average score than students in the control group on the measurement of Logo planning skills. It is of interest to note that among the covariates, students' ACT score contributed significantly to the reduction of within group variance at the .05 level of significance (Table 12).

TABLE 12. Analysis of covariance for the Logo planning test

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Signif. of F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariates</td>
<td>1865.52</td>
<td>7</td>
<td>266.50</td>
<td>2.75</td>
<td>.011</td>
</tr>
<tr>
<td>Gender</td>
<td>4.31</td>
<td>1</td>
<td>4.31</td>
<td>.04</td>
<td>.833</td>
</tr>
<tr>
<td>Year in college</td>
<td>74.19</td>
<td>1</td>
<td>74.19</td>
<td>.76</td>
<td>.384</td>
</tr>
<tr>
<td>Math courses</td>
<td>44.70</td>
<td>1</td>
<td>44.70</td>
<td>.46</td>
<td>.499</td>
</tr>
<tr>
<td>Comp. courses</td>
<td>6.55</td>
<td>1</td>
<td>6.55</td>
<td>.07</td>
<td>.795</td>
</tr>
<tr>
<td>Own computer</td>
<td>296.89</td>
<td>1</td>
<td>296.89</td>
<td>3.06</td>
<td>.083</td>
</tr>
<tr>
<td>Comp. confid.</td>
<td>25.01</td>
<td>1</td>
<td>25.01</td>
<td>.26</td>
<td>.613</td>
</tr>
<tr>
<td>ACT score</td>
<td>647.75</td>
<td>1</td>
<td>647.75</td>
<td>6.67</td>
<td>.011*</td>
</tr>
<tr>
<td>Main Effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>1821.62</td>
<td>1</td>
<td>1821.62</td>
<td>18.77</td>
<td>.001***</td>
</tr>
<tr>
<td>Explained</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Explained</td>
<td>3687.14</td>
<td>8</td>
<td>460.89</td>
<td>4.75</td>
<td>.001</td>
</tr>
<tr>
<td>Residual</td>
<td>11259.79</td>
<td>116</td>
<td>97.07</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total 14946.93 124 120.54
Hypothesis Four

Hypothesis four was stated as follows:

The students in the guided Logo instruction group will receive a higher average score than students in the traditional self-discovery learning group on the total points of the Logo error identification test while covarying seven variables: gender, year in college, mathematics courses taken in high school, computer courses taken in either high school or college, computer ownership, computer confidence, and ACT score.

The scores on the Logo error identification test ranged from 4 to 42 out of 42 possible total points. After adjusting for the covariates, the mean for the experimental group was 32.60 and the mean score for the control group was 22.40. The total sample mean was 27.46. Therefore, the experimental group scored 5.14 points higher than the total sample mean and 10.20 points higher on the average than the students in the control group (Table 13).

<p>| TABLE 13. Means and Standard deviations for the Logo error identification test |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|</p>
<table>
<thead>
<tr>
<th></th>
<th>Treatment</th>
<th>N</th>
<th>Mean</th>
<th>Adjusted Mean</th>
<th>Standard Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Experimental</td>
<td>62</td>
<td>32.61</td>
<td>32.60</td>
<td>4.80</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>63</td>
<td>22.40</td>
<td>22.40</td>
<td>7.38</td>
</tr>
<tr>
<td>Total Sample Mean</td>
<td>27.46 (N = 125)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
An F statistic from ANCOVA was calculated to determine if a statistically significant difference existed. The data showed that a statistically significant difference existed between the experimental and control groups while adjusted for the contribution of the seven covariates, \(F(1, 116) = 100.86, p<.001 \). The researcher rejected the null hypothesis and accepted the research hypothesis that there are statistically significant differences between the two groups on the Logo error identification test. Two control variables were statistically significant contributors to the reduction of error variance: computer ownership and ACT scores (Table 14).

TABLE 14. Analysis of covariance for the Logo error identification test

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Signif. of F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariates</td>
<td>1435.85</td>
<td>7</td>
<td>205.12</td>
<td>6.61</td>
<td>.001</td>
</tr>
<tr>
<td>Gender</td>
<td>121.14</td>
<td>1</td>
<td>121.14</td>
<td>3.91</td>
<td>.051</td>
</tr>
<tr>
<td>Year in college</td>
<td>3731</td>
<td>1</td>
<td>37.31</td>
<td>1.20</td>
<td>.275</td>
</tr>
<tr>
<td>Math courses</td>
<td>2.51</td>
<td>1</td>
<td>2.51</td>
<td>.08</td>
<td>.777</td>
</tr>
<tr>
<td>Comp. courses</td>
<td>14.67</td>
<td>1</td>
<td>14.67</td>
<td>.47</td>
<td>.493</td>
</tr>
<tr>
<td>Own computer</td>
<td>195.38</td>
<td>1</td>
<td>195.38</td>
<td>6.30</td>
<td>.013*</td>
</tr>
<tr>
<td>Comp. confid.</td>
<td>15.03</td>
<td>1</td>
<td>15.03</td>
<td>.48</td>
<td>.488</td>
</tr>
<tr>
<td>ACT score</td>
<td>731.17</td>
<td>1</td>
<td>731.17</td>
<td>23.57</td>
<td>.001***</td>
</tr>
<tr>
<td>Main Effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>3128.84</td>
<td>1</td>
<td>3128.84</td>
<td>100.86</td>
<td>.001***</td>
</tr>
<tr>
<td>Explained</td>
<td>4564.69</td>
<td>8</td>
<td>570.59</td>
<td>18.39</td>
<td>.001</td>
</tr>
<tr>
<td>Residual</td>
<td>3598.40</td>
<td>116</td>
<td>31.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>8163.09</td>
<td>124</td>
<td>65.83</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hypothesis Five

Hypothesis five was stated as follows:

The students in the guided Logo instruction group will receive a higher average score than students in the traditional self-discovery learning group on the total points of the general decomposing test while covarying seven variables: gender, year in college, mathematics courses taken in high school, computer courses taken in either high school or college, computer ownership, computer confidence, and ACT score.

The scores on the general decomposing test ranged from 14 to 60 out of 64 possible total score on the test. The mean for the experimental group was 46.70 and the mean score for the control group was 38.09 after adjusting for the covariates. The total sample mean was 42.36. Therefore, the experimental group scored 4.34 points higher than the total sample mean and 8.61 points higher on the average than the students in the control group (Table 15).

TABLE 15. Means and Standard deviations for the general decomposing test

<table>
<thead>
<tr>
<th>Treatment</th>
<th>N</th>
<th>Mean</th>
<th>Adjusted Mean</th>
<th>Standard Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental</td>
<td>62</td>
<td>46.73</td>
<td>46.70</td>
<td>11.03</td>
</tr>
<tr>
<td>Control</td>
<td>63</td>
<td>38.06</td>
<td>38.09</td>
<td>9.76</td>
</tr>
</tbody>
</table>
The result of the ANCOVA revealed that a statistically significant difference existed between the experimental and control groups while adjusted for the contribution of the seven covariates, F(1, 116) = 24.96, p<.001. The researcher rejected the null hypothesis and accepted the research hypothesis that the students in the guided Logo instruction receive a higher average score on the Logo error identification test than the students in the self-discovery instruction. The control variable of ACT score was a statistically significant contributor to the reduction of error variance (Table 16).

TABLE 16. Analysis of covariance for the general decomposing test

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Signif. of F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariates</td>
<td>2778.68</td>
<td>7</td>
<td>396.96</td>
<td>4.44</td>
<td>.001</td>
</tr>
<tr>
<td>Gender</td>
<td>2.37</td>
<td>1</td>
<td>2.37</td>
<td>.03</td>
<td>.871</td>
</tr>
<tr>
<td>Year in college</td>
<td>44.72</td>
<td>1</td>
<td>44.72</td>
<td>.50</td>
<td>.481</td>
</tr>
<tr>
<td>Math courses</td>
<td>35.95</td>
<td>1</td>
<td>35.95</td>
<td>.40</td>
<td>.527</td>
</tr>
<tr>
<td>Comp. courses</td>
<td>13.75</td>
<td>1</td>
<td>13.75</td>
<td>.15</td>
<td>.696</td>
</tr>
<tr>
<td>Own computer</td>
<td>301.30</td>
<td>1</td>
<td>301.30</td>
<td>3.37</td>
<td>.069</td>
</tr>
<tr>
<td>Comp. confid.</td>
<td>11.29</td>
<td>1</td>
<td>11.29</td>
<td>.13</td>
<td>.723</td>
</tr>
<tr>
<td>ACT score</td>
<td>1483.18</td>
<td>1</td>
<td>1483.18</td>
<td>16.58</td>
<td>.001***</td>
</tr>
</tbody>
</table>

| Main Effects | | | | | |
| Treatment | 2232.14 | 1 | 2232.14 | 24.96 | .001*** |

| Explained | | | | | |
| | 5010.82 | 8 | 626.35 | 7.00 | .001 |

| Residual | | | | | |
| | 10375.98 | 116| 89.45 | | |

| Total | 15386.80 | 124| 124.09 | | |
Hypothesis Six

Hypothesis six was stated as follows:

The students in the guided Logo instruction group will receive a higher average score than students in the traditional self-discovery learning group on the total points of the general planning test while covarying seven variables: gender, year in college, mathematics courses taken in high school, computer courses taken in either high school or college, computer ownership, computer confidence, and ACT score.

The scores on the general planning test ranged from 69 to 99 out of 100 possible total percentage on the test. After adjusting for the covariates, the mean for the experimental group was 96.46 and the mean score for the control group was 94.57. The total sample mean was 95.51. Therefore, the experimental group scored 0.95 points higher than the total sample mean and 1.89 points higher on the average than the students in the control group (Table 17).

<table>
<thead>
<tr>
<th>Treatment</th>
<th>N</th>
<th>Mean</th>
<th>Adjusted Mean</th>
<th>Standard Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental</td>
<td>62</td>
<td>96.58</td>
<td>96.46</td>
<td>3.03</td>
</tr>
<tr>
<td>Control</td>
<td>63</td>
<td>94.46</td>
<td>94.57</td>
<td>5.58</td>
</tr>
</tbody>
</table>
An F statistic from ANCOVA was calculated to determine if a statistically significant difference existed. The data showed that there was a significant main effect of treatment while adjusted for the contribution of the seven covariates, F(1, 116) = 5.41, p<.02. The researcher rejected the null hypothesis and accepted the research hypothesis that the experimental group performed better than the control group on the measurement of general planning skills. The ACT scores were, again, a significant contributor to the reduction of error variance (Table 18).

TABLE 18. Analysis of covariance for the general planning test

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Signif. of F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariates</td>
<td>307.68</td>
<td>7</td>
<td>43.96</td>
<td>2.22</td>
<td>.037</td>
</tr>
<tr>
<td>Gender</td>
<td>53.02</td>
<td>1</td>
<td>53.02</td>
<td>2.69</td>
<td>.104</td>
</tr>
<tr>
<td>Year in college</td>
<td>11.74</td>
<td>1</td>
<td>11.74</td>
<td>.59</td>
<td>.443</td>
</tr>
<tr>
<td>Math courses</td>
<td>.57</td>
<td>1</td>
<td>.57</td>
<td>.03</td>
<td>.866</td>
</tr>
<tr>
<td>Comp. courses</td>
<td>4.73</td>
<td>1</td>
<td>4.73</td>
<td>.24</td>
<td>.626</td>
</tr>
<tr>
<td>Own computer</td>
<td>18.03</td>
<td>1</td>
<td>18.03</td>
<td>.91</td>
<td>.342</td>
</tr>
<tr>
<td>Comp. confid.</td>
<td>74.17</td>
<td>1</td>
<td>74.17</td>
<td>3.75</td>
<td>.055</td>
</tr>
<tr>
<td>ACT score</td>
<td>154.78</td>
<td>1</td>
<td>154.78</td>
<td>7.82</td>
<td>.006**</td>
</tr>
<tr>
<td>Main Effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>107.12</td>
<td>1</td>
<td>107.12</td>
<td>5.41</td>
<td>.022*</td>
</tr>
<tr>
<td>Explained</td>
<td>414.80</td>
<td>8</td>
<td>51.85</td>
<td>2.62</td>
<td>.011</td>
</tr>
<tr>
<td>Residual</td>
<td>2295.32</td>
<td>116</td>
<td>19.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>2710.12</td>
<td>124</td>
<td>21.86</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hypothesis Seven

Hypothesis seven was stated as follows:

The students in the guided Logo instruction group will receive a higher average score than students in the traditional self-discovery learning group on the total points of the general error identification test while covarying seven variables: gender, year in college, mathematics courses taken in high school, computer courses taken in either high school or college, computer ownership, computer confidence, and ACT score.

Out of 36 possible total points, the scores on the general error identification test ranged from 0 to 36. The mean for the experimental group was 21.36 and the mean score for the control group was 14.84 after adjusting for the covariates. The total sample mean was 18.07. Therefore, the experimental group scored 3.29 points higher than the total sample mean and 6.52 points higher on the average than the students in the control group (Table 19).

| TABLE 19. Means and Standard deviations for the general error identification test |
|---------------------------------|------|-----------------|-----------------|----------------|
| | N | Mean | Adjusted Mean | Standard Dev. |
| Total Sample Mean | 18.07 (N = 125) |
| Experimental | 62 | 21.37 | 21.36 | 7.77 |
| Control | 63 | 14.83 | 14.84 | 6.76 |
An F statistic from the one-way ANCOVA was calculated to determine if a statistically significant difference existed. The result of the ANCOVA yielded a significant main effect of the treatment while adjusted for the contribution of the seven covariates, $F(1, 116) = 26.88, p < .001$. Again, the researcher rejected the null hypothesis that there is no difference between the two groups and accepted the research hypothesis that students in the guided Logo instruction received a higher average score than students in the self-discovery Logo instruction on the general error identification test. The control variable of ACT score was significant (Table 20).

Table 20. Analysis of covariance for the general error identification test

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Signif. of F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariates</td>
<td>1106.39</td>
<td>7</td>
<td>158.06</td>
<td>3.32</td>
<td>.003</td>
</tr>
<tr>
<td>Gender</td>
<td>6.48</td>
<td>1</td>
<td>6.48</td>
<td>.14</td>
<td>.713</td>
</tr>
<tr>
<td>Year in college</td>
<td>44.05</td>
<td>1</td>
<td>44.05</td>
<td>.93</td>
<td>.338</td>
</tr>
<tr>
<td>Math courses</td>
<td>6.88</td>
<td>1</td>
<td>6.88</td>
<td>.15</td>
<td>.705</td>
</tr>
<tr>
<td>Comp. courses</td>
<td>2.18</td>
<td>1</td>
<td>2.18</td>
<td>.05</td>
<td>.831</td>
</tr>
<tr>
<td>Own computer</td>
<td>4.88</td>
<td>1</td>
<td>4.88</td>
<td>.10</td>
<td>.750</td>
</tr>
<tr>
<td>Comp. confid.</td>
<td>4.52</td>
<td>1</td>
<td>4.52</td>
<td>.10</td>
<td>.759</td>
</tr>
<tr>
<td>ACT score</td>
<td>846.13</td>
<td>1</td>
<td>846.13</td>
<td>17.77</td>
<td>.001***</td>
</tr>
<tr>
<td>Main Effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>1279.62</td>
<td>1</td>
<td>1279.62</td>
<td>26.88</td>
<td>.001***</td>
</tr>
<tr>
<td>Explained</td>
<td>2386.01</td>
<td>8</td>
<td>298.25</td>
<td>6.27</td>
<td>.001</td>
</tr>
<tr>
<td>Residual</td>
<td>5522.34</td>
<td>116</td>
<td>47.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>7908.35</td>
<td>124</td>
<td>63.78</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results for the Basic Logo Comprehension Test

The multiple choice basic Logo comprehension test was administered to measure students' ability to demonstrate basic commands and concepts of the Logo programming language. The test was used to measure whether both the experimental and the control group received an equal amount of comprehensive knowledge about Logo. Since, the treatment for the study was delivery method, not instructional content, the researcher expected that the students in both the experimental and control groups should be able to demonstrate comparable amounts of basic knowledge about Logo.

To test the difference between the experimental and control group means for the basic Logo comprehension test, analysis of covariance was used. The scores on the basic Logo comprehension test ranged from 12 to 29 out of 30 possible points. After adjusting for the covariates, the mean for the experimental group was 22.52 and the mean score for the control group was 21.84. The total sample mean was 22.18. Therefore, the experimental group scored 0.34 points higher than the total sample mean and 0.68 points higher on the average than the students in the control group (Table 21).

An F statistic was calculated to determine if a statistically significant difference existed. An F value of 1.30 was calculated. The data did not show that a statistically significant difference existed between the experimental and control groups while adjusted for the contribution of the seven covariates. The researcher failed to reject the null hypothesis. The result showed that the ACT covariate contributed significantly to reducing the mean square error (Table 22).
TABLE 21. Means and Standard deviations for the multiple choice basic Logo comprehension test

<table>
<thead>
<tr>
<th>Treatment</th>
<th>N</th>
<th>Mean</th>
<th>Adjusted Mean</th>
<th>Standard Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental</td>
<td>62</td>
<td>22.50</td>
<td>22.52</td>
<td>3.18</td>
</tr>
<tr>
<td>Control</td>
<td>63</td>
<td>21.87</td>
<td>21.84</td>
<td>3.72</td>
</tr>
</tbody>
</table>

Total Sample Mean

22.18 (N = 125)

TABLE 22. Analysis of covariance for the multiple choice basic Logo comprehension test

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Signif. of F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariates</td>
<td>277.29</td>
<td>7</td>
<td>39.61</td>
<td>3.67</td>
<td>.001</td>
</tr>
<tr>
<td>Gender</td>
<td>37.44</td>
<td>1</td>
<td>37.44</td>
<td>3.47</td>
<td>.065</td>
</tr>
<tr>
<td>Year in college</td>
<td>8.11</td>
<td>1</td>
<td>8.11</td>
<td>.75</td>
<td>.388</td>
</tr>
<tr>
<td>Math courses</td>
<td>1.01</td>
<td>1</td>
<td>1.01</td>
<td>.09</td>
<td>.760</td>
</tr>
<tr>
<td>Comp. courses</td>
<td>5.50</td>
<td>1</td>
<td>5.50</td>
<td>.51</td>
<td>.477</td>
</tr>
<tr>
<td>Own computer</td>
<td>2.28</td>
<td>1</td>
<td>2.28</td>
<td>.21</td>
<td>.646</td>
</tr>
<tr>
<td>Comp. confid.</td>
<td>4.93</td>
<td>1</td>
<td>4.93</td>
<td>.46</td>
<td>.501</td>
</tr>
<tr>
<td>ACT score</td>
<td>152.46</td>
<td>1</td>
<td>152.46</td>
<td>14.13</td>
<td>.001***</td>
</tr>
</tbody>
</table>

Main Effects

| Treatment | 14.07 | 1 | 14.07 | 1.30 | .256 |

Explained

| | 291.35 | 8 | 36.42 | 3.38 | .002 |

Residual

| | 1251.42 | 116| 10.79 |

Total

| | 1542.77 | 124| 12.44 |
Auxiliary Findings

In the process of analyzing the data collected for this study, the researcher was interested in finding which dependent variable was most significantly influenced by the two different treatments. Along with this finding, the researcher was also interested in the relationships of covariates and the dependent variables.

The most influenced dependent variable by the treatment

In conducting the analysis of the data gathered for this study, the researcher was interested in the level of treatment influence on the dependent variables. Thus, the researcher was interested in finding which dependent variable was influenced most by the treatment.

The stepwise multiple regression was done to examine a combined contribution of the dependent variables to the prediction of the classification of subjects: the guided Logo instruction group and the self-discovery learning group. First, the seven covariates were entered in the multiple regression. R^2 for seven covariates were .036. The result of the enter regression method revealed that none of the covariates contributed to the prediction of the treatments, $F(7, 117) = .631, p < .729$. Then, the six dependent variables were treated as independent variables and were entered stepwise. On the basis of the stepwise multiple regression analysis, the result revealed that the treatment had the most influence on the Logo error identification test score at the .001 level of significance, $F(8, 116) = 13.63, p < .001$. R^2 for the Logo error identification test was .485 and the gained R^2 was .449. The next entered
variable was general error identification skills; total of R^2 was .498. However, the gained R^2 was only .013. The last variable entered in the stepwise multiple regression was general decomposing skills with $R^2 = .502$ and the gained $R^2 = .004$ at 0.5 level of pin (Table 23).

TABLE 23. Stepwise multiple regression effect on the treatments of Logo instructional methodology

<table>
<thead>
<tr>
<th>Variable</th>
<th>Multiple R</th>
<th>R Square</th>
<th>Changed R Square</th>
<th>Adjusted R Square</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariate.</td>
<td>.1907</td>
<td>.0364</td>
<td>—</td>
<td>-.0213</td>
<td></td>
</tr>
<tr>
<td>Act</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-.0092</td>
</tr>
<tr>
<td>Comsci</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-.0626</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-.0590</td>
</tr>
<tr>
<td>Own</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-.0838</td>
</tr>
<tr>
<td>Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.0324</td>
</tr>
<tr>
<td>Confid.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.0180</td>
</tr>
<tr>
<td>Math</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.0005</td>
</tr>
<tr>
<td>(Constant)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.2099</td>
</tr>
</tbody>
</table>

| Logo Mon | .6961 | .4845 | +.4481 | .4490 | -.0456 |
| (Constant)| | | | | 1.9667 |

| Gen Mon | .7059 | .4983 | +.0138 | .4591 | -.0090 |
| (Constant)| | | | | 1.9320 |

| Gen Dec | .7089 | .5025 | +.0042 | .4589 | -.0037 |
| (Constant)| | | | | 1.9591 |

a Changed R^2 is the gained R^2 value when other variables were entered.
b B is the coefficient of the variable in the prediction equation.
c Seven covariates were entered all together prior to the stepwise multiple regression.
d Logo mon indicates Logo error identification skills.
e Gen mon indicates general error identification skills.
f Gen dec indicates general decomposing skills.
The relationship of covariates and dependent variables

The researcher was interested in examining if there were any significant relationships among covariates and dependent variables. The Pearson correlation was calculated among the seven covariates and six dependent variables.

The result indicated that ACT score was statistically correlated to the five test scores at the .05 level of significance: Logo planning test ($r=.30$), Logo error identification test ($r=.35$), general decomposing test ($r=.38$), general planning test ($r=.24$), and general error identification test ($r=.36$). Although the significant correlations were detected, the magnitude of the correlation is relatively low. The coefficient of determination (r^2) indicated that only 9% of the variance in the ACT variable could be associated with the Logo planning test; 12% of the variance in the ACT variable could be associated with the Logo error identification test; 14% of the variance in the ACT variable could be associated with the general decomposing test; 6% of the variance in the ACT variable could be associated with the general planning test; 13% of the variance in the ACT variable could be associated with the general error identification test. No statistically significant correlation was found between the ACT score and the Logo decomposing test ($r=.13$). The scores on the mathematics courses taken in high school showed a statistically significant correlation to the general decomposing test ($r=.17$). Only 3% of the variance in mathematics experience variable could be associated with the general decomposing test.
The results indicated that computer ownership correlated statistically to three test scores at the .05 level of significance: Logo planning test \((r=.20)\), Logo error identification test \((r=.22)\), and general decomposing test \((r=.21)\). The correlation coefficient indicated that 4% of the variance in computer ownership variable could be associated with the Logo planning test; 5% of the variance could be associated with the Logo error identification test; 4% of the variance could be associated with the general decomposing test.

The correlation matrix showed that gender, year in college, number of computer courses taken either in high school or college, and the computer confidence had no correlation to any dependent variables (Table 24, p. 136).

Correlations among covariates

The correlation matrix was calculated to determine the relationships of the seven covariates. The correlation matrix revealed that there was a relatively low correlation between ACT and year in college \((r = .235)\), mathematics courses taken in high school \((r = .284)\), and computer confidence \((r = .215)\). The squared correlation coefficient \((r^2)\) indicated that only 6% of the variance in the ACT variable could be associated with the variance in year in college; 8% could be associated with the variance in mathematics courses; 5% could be associated with the variance in computer confidence. The computer confidence also had low correlation to computer ownership \((r = .217)\), mathematics courses taken in high school \((r = .280)\), and computer courses taken in either high school or college \((r = .276)\). The coefficient of determination \((r^2)\) indicated that only 5% of the variance in the computer confidence could be associated with the variance in computer ownership; 8%
could be associated with the variance in mathematics courses; 8% could be associated with the variance in computer courses. There was a significant relationship between mathematics courses taken in high school and computer courses taken in either high school or college \((r = .295)\). However, only 9% of the variance in mathematics courses could be associated with the variance in the computer courses (Table 25, p. 137).

Correlations among the six dependent variables

A correlation matrix was calculated to determine the relationships of the six dependent variables. The correlation matrix showed that there were statistically significant relationships between the Logo error identification skills and Logo planning skills \((r = .609)\), Logo error identification skills and general decomposing skills \((r = .578)\), and Logo error identification skills and general error identification skills \((r = .552)\). The squared correlation coefficient \((r^2)\) indicated that over 37% of the variance in Logo error identification skills was related to the variances in Logo planning skills; 33% of the variance was associated with general error identification skills; 30% of the variance was associated with general error identification skills.

The result revealed that there were relatively significant relationships between Logo planning skills and general decomposing skills \((r = .494)\); Logo planning skills and Logo decomposing skills \((r = .407)\); Logo planning skills and general error identification skills \((r = .447)\); and Logo planning skills and general planning skills \((r = .402)\). Coefficients of determination indicated that over 24% of the variance in Logo planning skills was associated with the variance in general decomposing skills; 17% was related to Logo decomposing...
skills; 20% was related to general monitoring skills; 16% was related to general planning skills.

The result showed that general decomposing skills had a relatively significant relationship with general error identification skills. The correlation coefficient indicated that 21% of the variance in general decomposing skills was associated with the variance in general error identification skills (Table 26, p. 138).

Summary

In this chapter, results were reported from the examination of the effects of guided instruction in Logo programming on the development of cognitive monitoring strategies. In the first section, statistical analysis of the pre-experimental measures was reported. No statistically significant differences were found between the experimental and the control groups on the students' academic and demographic backgrounds.

In the second section, the results relating to the seven hypotheses were reported. Multivariate analysis of covariance was used to analyze the hypothesis on the effectiveness of the treatment on the overall dependent variables. The result indicated that there was a statistically significant difference between the two groups on the vector of means for the six dependent variables. The analysis of covariance was utilized to test the following six dependent variables: Logo decomposing skills, Logo planning skills, Logo error identification skills, general decomposing skills, general planning skills, and general error identification skills. The ANCOVA results
indicated that students in the guided Logo instruction group performed
significantly higher than students in self-discovery instruction group on the
measurements of the following skills: Logo planning skills, Logo error
identification skills, general decomposing skills, general planning skills, and
general error identification skills. There was no statistically difference
between the two groups on the Logo decomposing test.

In the auxiliary finding section, the dependent variable most significantly
influenced by the treatment was reported. The multiple regression analysis
showed that Logo error identification skills were influenced the most by the
experimental treatment. In addition to this, the correlation of covariates and
dependent variables were reported. The ACT variable showed significant
relationships with dependent variables. The correlations among seven
covariates and among six dependent variables were also reported in this
section. Relatively low or no statistically significant relationships between
covariates were found. There were relatively significant correlations among
several dependent variables.
Tables for auxiliary results

TABLE 24. Correlation matrix among covariates and dependent variables

<table>
<thead>
<tr>
<th></th>
<th>Logo decomp.</th>
<th>Logo planning</th>
<th>Logo error.</th>
<th>general decomp.</th>
<th>general planning</th>
<th>general error.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>-.017</td>
<td>.043</td>
<td>-.158</td>
<td>-.020</td>
<td>.094</td>
<td>-.068</td>
</tr>
<tr>
<td>Year in college</td>
<td>.041</td>
<td>.095</td>
<td>-.018</td>
<td>.014</td>
<td>.159</td>
<td>.011</td>
</tr>
<tr>
<td>(N=130)</td>
<td>p=.646</td>
<td>p=.281</td>
<td>p=.838</td>
<td>p=.874</td>
<td>p=.072</td>
<td>p=.903</td>
</tr>
<tr>
<td>Math. courses</td>
<td>.133</td>
<td>.169</td>
<td>.145</td>
<td>.176*</td>
<td>.026</td>
<td>125</td>
</tr>
<tr>
<td>(N=130)</td>
<td>p=.132</td>
<td>p=.054</td>
<td>p=.099</td>
<td>p=.047</td>
<td>p=.766</td>
<td>p=.156</td>
</tr>
<tr>
<td>Comp. courses</td>
<td>.057</td>
<td>.022</td>
<td>.058</td>
<td>.055</td>
<td>.008</td>
<td>-.027</td>
</tr>
<tr>
<td>Access. of own comp.</td>
<td>.091</td>
<td>.204*</td>
<td>.216*</td>
<td>.209*</td>
<td>.0917</td>
<td>.111</td>
</tr>
<tr>
<td>Comp. confid.</td>
<td>.121</td>
<td>.157</td>
<td>.071</td>
<td>.128</td>
<td>-.078</td>
<td>.086</td>
</tr>
<tr>
<td>(N=130)</td>
<td>p=.171</td>
<td>p=.074</td>
<td>p=.423</td>
<td>p=.147</td>
<td>p=.380</td>
<td>p=.332</td>
</tr>
<tr>
<td>ACT score</td>
<td>.129</td>
<td>.300**</td>
<td>.351***</td>
<td>.380***</td>
<td>.243**</td>
<td>.360***</td>
</tr>
<tr>
<td>(N=125)</td>
<td>p=.153</td>
<td>p=.001</td>
<td>p=.000</td>
<td>p=.000</td>
<td>p=.006</td>
<td>p=.000</td>
</tr>
</tbody>
</table>
TABLE 25. Correlation matrix for the seven covariates

<table>
<thead>
<tr>
<th></th>
<th>Gender</th>
<th>Year</th>
<th>Math</th>
<th>Comp.</th>
<th>Own</th>
<th>Confid</th>
<th>ACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>1.000</td>
<td>0.081</td>
<td>0.123</td>
<td>0.004</td>
<td>-0.031</td>
<td>0.142</td>
<td>-0.083</td>
</tr>
<tr>
<td></td>
<td>(N=130)</td>
<td>(N=130)</td>
<td>(N=130)</td>
<td>(N=130)</td>
<td>(N=130)</td>
<td>(N=125)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>p=0.363</td>
<td>p=0.164</td>
<td>p=0.963</td>
<td>p=0.728</td>
<td>p=0.106</td>
<td>p=0.355</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>1.000</td>
<td>-0.103</td>
<td>-0.018</td>
<td>0.051</td>
<td>-0.005</td>
<td>0.235**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(N=130)</td>
<td>(N=130)</td>
<td>(N=130)</td>
<td>(N=130)</td>
<td>(N=130)</td>
<td>(N=125)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>p=0.246</td>
<td>p=0.843</td>
<td>p=0.565</td>
<td>p=0.956</td>
<td>p=0.008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math</td>
<td>1.000</td>
<td>0.295**</td>
<td>0.183</td>
<td>0.280**</td>
<td>0.284**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(N=130)</td>
<td>(N=130)</td>
<td>(N=130)</td>
<td>(N=130)</td>
<td>(N=125)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>p=0.001</td>
<td>p=0.037*</td>
<td>p=0.001</td>
<td>p=0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comp.</td>
<td>1.000</td>
<td>0.062</td>
<td>0.276</td>
<td>0.023</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(N=130)</td>
<td>(N=130)</td>
<td>(N=130)</td>
<td>(N=125)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>p=0.480</td>
<td>p=0.001</td>
<td>p=0.796</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Own</td>
<td>1.000</td>
<td>0.217*</td>
<td>0.154</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(N=130)</td>
<td>(N=130)</td>
<td>(N=125)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>p=0.013</td>
<td>p=0.087</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confid.</td>
<td>1.000</td>
<td>0.215</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(N=130)</td>
<td>(N=125)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>p=0.016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACT</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(N=125)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>p=0.016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*aYear indicates year in college.

*bMath indicates number of mathematics courses taken in high school.

*cComp. indicates number of computer courses taken either in high school or college.

*dOwn indicates computer ownership.

*eConfid indicates computer confidence score.
TABLE 26. Correlation matrix for the six dependent variables

<table>
<thead>
<tr>
<th></th>
<th>LDTOT</th>
<th>LOPTOT</th>
<th>LMTOT</th>
<th>DCTOT</th>
<th>PLTOT</th>
<th>MNTOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDTOT</td>
<td>1.000</td>
<td>.407***</td>
<td>.205*</td>
<td>.286**</td>
<td>.134</td>
<td>.183*</td>
</tr>
<tr>
<td>(N=130)</td>
<td>(N=130)</td>
<td>(N=130)</td>
<td>(N=130)</td>
<td>(N=130)</td>
<td>(N=130)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>p=.</td>
<td>p=.000</td>
<td>p=.019</td>
<td>p=.001</td>
<td>p=.128</td>
<td>p=.028</td>
</tr>
<tr>
<td>LOPTOT</td>
<td>1.000</td>
<td>.609***</td>
<td>.494***</td>
<td>.402***</td>
<td>.447***</td>
<td></td>
</tr>
<tr>
<td>(N=130)</td>
<td>(N=130)</td>
<td>(N=130)</td>
<td>(N=130)</td>
<td>(N=130)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>p=.</td>
<td>p=.000</td>
<td>p=.000</td>
<td>p=.000</td>
<td>p=.000</td>
<td></td>
</tr>
<tr>
<td>LMTOT</td>
<td>1.000</td>
<td>.578***</td>
<td>.390***</td>
<td>.552***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(N=130)</td>
<td>(N=130)</td>
<td>(N=130)</td>
<td>(N=130)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>p=.</td>
<td>p=.000</td>
<td>p=.000</td>
<td>p=.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCTOT</td>
<td>1.000</td>
<td>.311***</td>
<td>.460***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(N=130)</td>
<td>(N=130)</td>
<td>(N=130)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>p=.000</td>
<td>p=.000</td>
<td>p=.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLTOT</td>
<td>1.000</td>
<td>.316***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(N=130)</td>
<td>(N=130)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>p=.</td>
<td>p=.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MNTOT</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(N=130)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>p=.</td>
<td>p=.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^{a}\)LDTOT presents a total point of the Logo decomposing test.
\(^{b}\)LOPTOT presents a total point of the Logo planning test.
\(^{c}\)LMTOT presents a total point of the Logo error identification test.
\(^{d}\)DCTOT presents a total point of general decomposing test.
\(^{e}\)PLTOT presents a total point of general planning test.
\(^{f}\)MNTOT presents a total point of general error identification test.
SUMMARY, DISCUSSION, IMPLICATIONS, AND RECOMMENDATIONS

The purpose of this chapter is to summarize the research study, discuss the findings, present implications for guided instruction with Logo programming, and suggest recommendations for further research. The chapter is organized into the following sections:

1. Summary of the research study
2. Discussion of the study results
3. Implications for guided instruction with Logo programming
4. Recommendations for further research
5. Concluding remarks

Summary of the Research Study

The focus of the research was to examine the effects of guided instruction with Logo programming on the development of cognitive monitoring strategies.

Development of the study

As our society changes and becomes more complex, and as new knowledge and technology emerge, the need for teaching students independent thinking and problem solving skills is increasing. Responding to ever increasing societal demands, educators continue to search for proper learning tools and methodologies to improve students' higher-order thinking and problem solving skills. In particular, cognitive monitoring has been a
primary concern of educators and cognitive psychologists as research indicates that cognitive monitoring is an important strategy for efficient thinking and problem solving. The term cognitive monitoring is relatively new, but the basic concept has been widely accepted in most areas of research. Cognitive monitoring is defined as regulating and monitoring one's on-going thinking process consciously and deliberately (Brown, 1987; Lawson, 1984; Van Haneghan & Baker, 1989). Although, it has been considered as one of the most important strategies in efficient thinking and problem solving, special training focusing on cognitive monitoring has been relatively limited. More empirical research is needed to test the potential effects of various instructional tools and methods used to develop cognitive monitoring strategies. One learning tool that has been advocated as a potential tool to improve problem solving strategies is Logo programming. However, there is very little empirical research available that tests the effects of using Logo programming as a learning tool to improve students' cognitive monitoring strategies.

The purpose of this study was to empirically examine the effectiveness of guided instruction with Logo programming on the development of cognitive monitoring strategies among college students. Logo programming was selected as a learning tool to provide a dynamic and challenging learning environment.

Three pedagogical elements were employed in constructing the guided instruction. First, Logo programming was selected as the particular tool to teach cognitive monitoring strategies. Second, an explicit model of the
components of the cognitive monitoring processes was incorporated into learning Logo programming; this model included the following steps: decomposing, planning, executing, identifying the error, and debugging. Third, teacher mediated learning of cognitive monitoring activities was provided not only in solving domain specific Logo problems, but also in utilizing the transfer of learned strategies to everyday problem solving situations. The teacher mediated learning environment, in which the teacher encouraged students to follow the steps of the cognitive monitoring process through Socratic dialogue and monitored a student's work, was designed to help students gradually progress in the use of cognitive monitoring strategies and internalize these strategies.

This research focused on two transfer effects of guided instruction with Logo programming. First, the near transfer effect of such instruction on the development of cognitive monitoring strategies in solving Logo programming problems was examined. Second, the far transfer effect of guided Logo instruction on the development of cognitive monitoring strategies in solving everyday problems was studied.

Methodology

The subjects were 132 students enrolled in class of Secondary Education 101 in the Fall, 1990 at Iowa State University. This class entitled “Educational Applications of Computers”, is a three credit elective course for pre-service teachers. At the beginning of the course, a questionnaire was given to the subjects in order to obtain academic and demographic data on each student. From the academic and demographic data, the following seven variables were
used as covariates: gender, year in college, mathematics courses taken in high school, computer courses taken in either high school or college, computer ownership, computer confidence, and students' ACT score. The study employed a one factor analysis of covariance design. ACT scores, obtained from the Registrar's office, were used as the pre-experimental measurement of students' academic performance. ACT means for each of the nine laboratory sections were calculated. Then, students were randomly assigned to either the experimental or control treatment by laboratory means of their ACT scores. As a result, 65 students were in the experimental group and 67 were in the control group. No significant differences existed between the experimental and control groups on the mean of ACT scores. During the experimental period, two students dropped the course because of personal reasons, one from each treatment. Therefore, 130 subjects completed the entire study.

The experimental group received guided instruction in Logo programming that systematically guided students through formal cognitive monitoring activities while solving Logo problems; students practiced each of the following: decomposing, planning, executing, identifying errors, and debugging errors. Students in the experimental group also received teacher mediated practice in cognitive monitoring activities dealing with everyday problems. In the teacher mediated learning environment, either the teacher provided problem situations or asked students to list problem situations where cognitive monitoring strategies could be utilized. Then, through Socratic dialogue, the teacher guided students in applying the learned
strategies from Logo problem solving to the given non-Logo problem situations.

The control group received instruction based on a self-discovery learning approach. The lesson outline was carefully designed in order to deliver the same information given to the experimental group. Thus, both groups received the same Logo programming content, problem sets, and assignments. Only the instructional treatment delivering that content varied between the guided Logo group and traditional self-discovery group.

After four weeks of intensive Logo instruction, both groups were given five tests in order to determine the transfer effects. Two tests were used to measure the near transfer effect: (1) the Logo decomposing and planning test and (2) the Logo error identification test. The following three tests were used to determine the far transfer effect: (1) the general decomposing test, (2) the general planning test, and (3) the general error identification test. These tests involved non-Logo problems. A multiple choice Logo comprehension test was also administered to indicate relative basic comprehensive knowledge of Logo programming in both treatment groups.

Collected data were analyzed using the SPSS\(^X\) program. The statistical techniques used were:

1. Descriptive statistics were used to obtain a general picture of the sample regarding the research variables. Those statistics included frequencies, percentages, mean, standard deviation, etc.
2. A student t-test and nonparametric Chi-square test were used to obtain homogeneity of academic and demographic background between the two treatment groups.

3. A Multiple analysis of covariance (MANCOVA) was used to determine the differences in combined means of the dependent variables for the two groups.

4. An analysis of covariance (ANCOVA) was used to determine the differences between the two groups on the Logo decomposing skills, Logo planning skills, Logo error identification skills, general decomposing skills, general planning skills, general error identification skills, and basic Logo comprehensive knowledge.

5. A stepwise multiple regression was used to determine the best contributor of dependent variables for the classification of treatments when the covariates were encountered.

6. The Pearson correlation was used to observe the relationships among covariates and dependent variables, covariates themselves, and dependent variables.

Results of the study

Statistical analysis of the pre-experimental measures was reported. Based on the statistical analysis of student t-test and nonparametric Chi-square test, the researcher noted that there were no statistically significant differences between the two groups on any of the following background characteristics: (1) demographic background: gender, year in college, accessibility of their own computer, and computer confidence, and (2) academic background:
mathematics courses taken in high school, computer courses taken either in high school or college, and ACT scores.

Seven hypotheses were established to examine the transfer effects of guided Logo instruction on the development of cognitive monitoring strategies. The independent variable was the instructional methodology to teach Logo programming: guided Logo instruction vs. self-discovery instruction. The six dependent variables for the study were Logo decomposing skills, Logo planning skills, Logo error identification skills, general decomposing skills, general planning skills, and general error identification skills. Seven variables were used as covariates in the analysis of the hypotheses: gender, year in college, mathematics courses taken in high school, computer courses taken in either high school or college, computer ownership, computer confidence, and ACT scores.

Hypothesis one predicted there were differences in the combined means of the dependent variables between the guided Logo instruction group and the self-discovery instruction group while adjusted for the contribution of the seven covariates. A MANCOVA test was used to analyze the hypothesis. The result revealed that there were statistically significant differences in the vector of means for the experimental group and the control group. Following this test, an ANCOVA test was used to test if there were difference between the two groups on each of the dependent variable.

Hypothesis two predicted that students in the guided Logo instruction group would receive a higher average score than students in the self-discovery learning group on the Logo decomposing test while adjusted for the
contribution of the seven covariates. The result showed that there was no significant main effect of the treatment on the Logo decomposing test.

Hypothesis three of the study predicted that students in the guided Logo instruction group would receive a higher average score than students in the self-discovery learning group on the Logo planning test while adjusted for the contribution of the seven covariates. The result revealed that there was a statistically significant difference between two groups on the Logo planning test.

Hypothesis four predicted that students in the guided Logo instruction group would receive a higher average score than students in the self-discovery learning group on the Logo error identification test while adjusted for the contribution of the seven covariates. The result showed that there was a statistically significant difference between the two groups on the Logo error identification test.

Hypothesis five predicted that students in the guided Logo instruction group would receive a higher average score than students in the self-discovery learning group on the general decomposing test while adjusted for the contribution of the seven covariates. The result indicated that there was a statistically significant difference between the two groups on the general decomposing test.

Hypothesis six predicted that students in the guided Logo instruction group would receive a higher average score than students in the self-discovery learning group on the general planning test while adjusted for the contribution of the seven covariates. The result revealed that there was a
statistically significant difference between the two groups on the general planning test.

Hypothesis seven for the study predicted that students in the guided Logo instruction group would receive a higher average score than students in the self-discovery learning group on the general error identification test while adjusted for the contribution of the seven covariates. The result showed that there was a statistically significant difference between the two groups on the general error identification test.

The results of the basic Logo comprehension test were reported. Since this test was used to examine the equality of Logo instructional content, the researcher expected that there would be no difference between the two groups on the acquisition of basic knowledge of Logo programming. An ANCOVA test was used to analyze the basic Logo comprehension test. The result revealed that there was no statistically significant difference between the two groups on the test.

Auxiliary findings were also reported. The researcher first was interested in finding which dependent variable was influenced the most by the treatment. A stepwise multiple regression was used to test. The result indicated that the Logo error identification skills were most significantly influenced by the treatment. Then, the correlation matrix was reported to determine if there were significant relationships among covariates and dependent variables. The result revealed that low correlations of covariates and dependent variables existed. The largest correlation was between the ACT covariate and general decomposing skills.
The correlation matrix of the seven control variables was reported to determine the relationship among covariates. The result indicated that there were very low or no significant relationships among covariates. The computer confidence and mathematics courses taken in high school showed the largest relationship with 8% of the shared variance.

The correlation matrix among the six dependent variables was also reported. The result indicated that there were statistically significant relationships among several of the dependent variables. These included significant relationships between Logo planning skills and Logo error identification skills; general decomposing skills and Logo error identification skills; Logo error identification skills and general error identification skills.

Discussion of the Study Results

Discussion of overall transfer effect results

As reported in the previous chapter, the vector means of the dependent variables were significantly different between the guided Logo group and the self-discovery group. Since the combined dependent variables included both the near and far transfer effects of guided instruction, the significant result indicates that the treatment influenced the acquisition of cognitive monitoring strategies in Logo programming as well as outside of programming domains. This finding supports previous Logo research suggesting that guided instruction with Logo programming could facilitate the development of specifically targeted strategies (Grandgenett, 1989; Seidman, 1987; Swan & Black, 1989). This finding also contributes to the research
suggesting that guided instruction focusing on specific strategies helps students acquire and transfer those strategies to their learning in other domains (Brown, 1983; Brown, Campione, & Day, 1981; Palinscar & Brown, 1989). Thus, this result suggests that guided instruction with Logo programming targeting cognitive monitoring strategies will make a positive difference in the development of students' cognitive monitoring strategies.

Discussion of near transfer effect results

Three main cognitive monitoring strategies, which were utilized in the Logo programming instruction, were measured in order to determine the near transfer effect of the treatment.

Logo decomposing skills Since students in the guided Logo group were strongly encouraged and guided to decompose given Logo problems before they planned and executed the problem, the researcher expected that this group would develop a higher level of decomposing skills than the control group. However, the result indicated that no statistically significant difference existed between the two groups on the measurement of decomposing skills. Both the guided instruction group and self-discovery group showed relatively equal performance on the decomposing test.

One possible explanation for the statistically non-significant result would be that the nature of Logo programming itself encourages students to break down a complex graphic into subparts. Since Logo is a graphic oriented and procedural programming language, it may help students naturally break a large chunk of program into smaller pieces and write separate procedures for each piece. Thus, the structure of the language itself may encourage the
development of decomposing skills. Both treatment groups were able to break down a complex graphic into simpler, essential shapes (e.g., circle, square, triangle, etc.) after four weeks of intensive Logo programming instruction.

Another possible interpretation would be that identifying elemental shapes from the given graphic was a rather simple problem for college students. Students in both groups might have developed a certain level of decomposing skills and were able to use them when the problem was obviously breakable into subproblems. However, it is possible that more complex problems might have yielded different results.

Logo planning skills Students in the guided Logo programming group earned a higher mean score on the Logo planning test than students in the self-discovery group. Explicitly modeled instruction for planning activities in the guided Logo group seemed to facilitate the development of planning strategies. Particularly, with a mediated intervention, the instructors in the guided Logo group not only encouraged students to plan the solution, but also encouraged students to sequence the given information, and create an efficient solution before jumping into the execution.

When an explicit model for the planning process is delivered through teacher mediated planning activities, this learning environment may encourage students to begin to intentionally and deliberately decide on the nature of problem constraints, organize given information, and search for an efficient solution. Students in the experimental group were able to demonstrate a more logical, modular, and efficient solution process than students in the control group.
This result supports and expands the previous research on Logo programming and planning skills. In the Pea and Kurland study (1984), a self-discovery approach to Logo programming was emphasized. Well trained Logo teachers carefully monitored student work, but did not provide structured instruction. The result of a year-long and intensive study concluded that self-discovery learning in Logo did not facilitate any aspects of planning skills. On the contrary, Lehrer, Guckenberg, and Sancilio's study (1988b) indicated that teacher mediated Logo experience facilitated students' planning skills. The result of this study supports previous research suggesting teacher mediated instruction in Logo programming is needed for developing planning skills. It appears that guided instruction is necessary in order to help students learn beyond technical programming skills.

Logo error identification skills: The result of Logo error identification test revealed that students in the guided Logo instruction group performed significantly higher on the Logo error identification test than students in the self-discovery learning environment. This positive outcome was expected since students in the guided Logo instruction group learned a systematic approach to identifying the errors. The students were first asked to identify the discrepancy of the planned graphic and the actual outcome. This first step led students to visibly think about particular error statements or errors in the product (e.g., the leaves did not turn a greater degree, the orientation needed to be left to right, and the door in the house was skewed to the left, etc.). Then, students were led to the second step, to locate a procedure that possibly caused errors. Once they located the error procedure, the instructor encouraged
students to explain clearly what was wrong in that procedure before they
began debugging (e.g., the right turn angle turned too much, the turtle needed
to turn left before going forward, and the turtle needed to move back to the
initial position before drawing the next figure, etc.). These specific steps for
identifying the error alerted students to consciously regulate and monitor
error identification part of the solution processes.

This result indicated that although Logo has the potential to facilitate the
debugging process, students do not develop these skills automatically by just
experiencing Logo. In the error identification test, students were asked to
write down clearly information about errors in the given solutions. Students
who had received guidance on a systematic approach to the error
identification activity showed better ability to clearly identify and explain the
errors than students in the self-discovery group. The former group also
showed better debugging skills than the latter group. The result strongly
supports previous research suggesting explicitly modeled instruction for error
identification and debugging helps students develop these skills (e.g., Carver,
1987; Carver & Klahr, 1986).

Summary of discussion for the near transfer effects

Overall, the positive near transfer effects for the cognitive monitoring
strategies support the use of guided Logo instruction. The students in the
guided Logo group were encouraged to follow steps of formal cognitive
monitoring activities to solve in-class Logo problems as well as to complete
homework assignments. Students in the guided Logo instruction spent much
less time on programming experience than the self-discovery group since
Logo was used as a tool to practice particular problem solving strategies. Nevertheless, this group performed better on the measurement of Logo planning and Logo error identification skills. This study supports the previous research suggesting that a self-discovery approach to Logo programming does not seem to develop planning skills, debugging skills, and problem solving skills (Carver, 1987; Leron, 1985; Mayer, 1988; Pea & Kurland, 1984). The results from this study, combined with the others, suggest that a guided instructional approach to teaching cognitive monitoring strategies through Logo programming is necessary to achieve near transfer effects. Thus, positive results on the near transfer effect of guided instruction in Logo programming significantly contribute to the body of research knowledge on the importance of Logo instructional methodology.

Discussion of far transfer effects of cognitive monitoring

In addition to the Logo tests, general decomposing skills, planning skills, and error identification skills were measured to determine the far transfer effect of the experimental treatment.

General decomposing skills Since Logo itself heavily relies on mathematical concepts, the general decomposing test items consisted equally of math related problems and non-math related problems. Students who received guided instruction performed significantly better than students in the self-discovery learning group not only on the steps of decomposing a given problem, but also on the correctness of decomposed, partial problem solutions.

A major question was raised from this finding. There was no significant near transfer effect of guided Logo instruction whereas there was a significant
far transfer effect. Two possible interpretations emerge from this result. First, the decomposing skills of breaking down the problem into simpler units may not be fully explored when students solve rather simple and visible problems. However, students who were encouraged and explicitly taught to decompose Logo problems might have internalized these skills. Thus, when students were challenged with complex and unfamiliar problems, they might have deliberately utilized the principle of decomposing strategies that they learned.

Second, in the guided instruction with Logo programming, teacher mediated practice of decomposing strategies was provided to solve everyday problem situations. This may have helped students to apply the underlying principle of decomposing to complex problems outside of the Logo domains. Although, the nature of Logo programming may facilitate decomposing skills within Logo problem domains, students may not be able to apply these skills outside Logo programming domains unless teacher mediated practice of decomposing skills outside the Logo domains is provided.

General planning skills A test with everyday problem situations (meal planning and shopping planning) was administered to determine planning strategies. Students in the experimental group performed significantly better on the measurement of general planning skills than students in the control group. This finding supports previous research suggesting that a guided learning environment using Logo programming improves students' planning skills in non-Logo problem situations (Bamberger, 1984; Lehrer, Guckenber, & Leonard, 1988b).
In this study, students in the guided Logo instruction group were encouraged to emphasize planning the solution to given Logo problems as a part of the cognitive monitoring activities. The planning activity was more than just solving the problem. Through Socratic dialogue, students were directed to intentionally look for hints and clues from the given information and were continually encouraged to organize the information, arrange the sequence of action, and devise an efficient solution to the problem. The teacher also presented examples of everyday problems and guided students to apply the principle of learned planning strategies to solve the given problems. These conscious efforts to teach planning appear to have empowered students to increase their ability to apply planning skills to real-life problem situations.

General error identification skills Students in the guided Logo instruction performed significantly better on the general error identification test than students in the self-discovery Logo group. When a systematic approach to the error identification and debugging was provided and practiced, students were able to utilize this approach to solve problems outside the Logo domains.

Students in the guided Logo instruction group were encouraged to consciously utilize the steps of error identification through teacher mediated error identification activities: explain the difference between the initial goal and the actual outcome, locate statements where the error might occur, explain the misconception in the statements located, and debug the errors. These systematic steps of error identification were consistent during the Logo instruction as well as solving outside of the Logo problems. Intensive practice
in these specific steps of identifying the error and debugging activities might have helped students internalize the principles of error identification and utilize these principles in other domains of learning.

Summary of discussion for the far transfer effects

Although some researchers agreed that experiencing computer programming itself enhances higher-order thinking skills and general problem solving skills (e.g., Green & Jaeger, 1983; Lawler, 1985; Papert, 1980a; Watt, 1982), the results from this research do not support these claims. The results strongly support the body of research knowledge that an explicit instructional model of particular problem solving skills along with teacher mediated learning is necessary to produce the positive transfer of those problem solving skills (e.g., Derry, 1989; Grandgenett, 1989; Palinscar & Brown, 1984, 1989; Schoenfeld, 1985; Swan & Black, 1989; Van Haneghan & Baker, 1989).

The positive results of far transfer effects in this study also significantly contribute to the theoretical research on the high road transfer mechanism. When students were trained to utilize decontextualized strategies and principles deliberately and consciously, they are likely to transfer them to any other learning domains even though the strategies and principles were not automatized (e.g., Salomon & Gardner, 1987; Salomon & Globerson, 1987; Vygotsky, 1978). The researcher did not expect that students would master cognitive monitoring strategies automatically from four weeks of guided Logo instruction. However, the research clearly supported the concept that students were able to use the principles of these strategies in solving problems within
the Logo domains as well as outside of the programming domains. The results suggest that the guided Logo instruction environment is necessary in order to help students develop specific problem solving strategies while learning Logo programming.

Discussion of basic Logo comprehension results

A basic Logo comprehension multiple choice test was administered in the study to determine the basic knowledge and concepts of Logo programming. This test was used to examine the Logo instructional content between the guided Logo group and the self-discovery Logo group. The result revealed that no significant differences existed between treatment groups on the mean score for the basic Logo comprehension test. Since the content of the test was related to Logo instructional objectives taught in both treatment groups, this result implied that both treatment groups achieved a relatively equal knowledge about basic Logo commands and concepts.

The statistically shown equal achievement of both treatment groups on the basic Logo comprehension test provided the researcher with an encouraging interpretation for the transfer effects of the treatment. This study examined the effectiveness of different instructional methodologies delivering the same instructional content. If basic knowledge about Logo programming had differed significantly, then conclusions about transfer effects would be confounded. It could have been concluded that not just instructional technique affected the transfer effect, but also instructional content could have affected transfer effect. However, the measurement of comprehensive knowledge of Logo content did not show a difference between
the two treatments. Therefore, it is reasonable to conclude that the study was relatively successful in focusing on cognitive monitoring transfer differences, rather than on the basic comprehensive knowledge difference between the Logo instructional treatments.

It is also interesting to note that the comprehension of the instructional Logo content between groups was statistically equivalent although the students in the guided Logo group generally spent less time on the hands-on Logo programming experience and spent more time on utilizing cognitive monitoring strategies than the students in the self-discovery Logo group. Such a result suggests that guided programming instruction, not focusing on the programming experience itself but emphasizing content-free strategies, still achieves at least an equivalent acquisition of knowledge about the Logo programming language.

Discussion of auxiliary findings

Several additional statistics were gathered and reported in the study in order to support the discussion of the main hypotheses results. Discussion and implications of these additional findings will be reported in this section.

Discussion for the most influenced dependent variable The researcher was interested in examining which dependent variable was most significantly influenced by the treatments. In order to examine this, a stepwise multiple regression was used. The result of this analysis indicated that the Logo error identification skills contributed most to the classification of the treatments. According to this result, it seemed reasonable to conclude that the guided
instruction in Logo programming had the most significant impact on the Logo error identification skills.

A possible explanation would be that an explicit instructional model for error identification and the Logo learning environment provided a very powerful way to help students monitor their solution process and debug errors while solving problems. Logo, which provides graphic output and explicit error messages on the screen, appeared to be a powerful tool to facilitate a model of the error identification process. According to Papert (1980a), the learning of Logo programming helps students learn debugging strategies and develop self-monitoring. The results of this study support Papert's point of view that Logo can be a tool to develop student debugging skills. It appears that when the nature of the Logo environment is combined with an explicit model of error identification and debugging, students may accelerate their error identification and debugging skills. Thus, it seems reasonable to suggest that a systematic model for error identification that can be incorporated into the Logo environment is needed in order to maximize the development of error identification and debugging skills (e.g., Carver & Klahr, 1986; Carver, 1987).

Discussion of contributions of the control variables An analysis of covariance indicated that only one covariate, ACT score, consistently contributed to the reduction of error variance across the dependent variables within the treatment groups. Students with higher ACT scores demonstrated better performance on any task given in this study regardless of the treatment. Given that the ACT test is designed to predict academic success and that all
tests administered in this study were academically oriented, this result is not surprising.

Computer ownership contributed only to the reduction of error variance on the Logo error identification skills within two groups. Although students own computers, such computer ownership did not seem to impact significantly on students' outcomes as measured in this study.

The result of no significant contribution of computer course experiences and math course experiences to the error reduction also suggests that although Logo is a math oriented computer programming language, the instructional methodology could make a difference on the development of student's thinking skills regardless of their previous computer or math experience.

Discussion of correlation result among covariates The result of the correlation among covariates revealed that very low or no significant relationships among covariates existed among the seven covariates. Among the variables, computer confidence and mathematics courses taken in high school showed the largest magnitude of relationship with only eight percent of the shared variance. This was a supportive result for this study. If there were significant correlations among covariates that were used to reduce error variance within the treatment groups, it would be concluded that similar covariates were used, and increased degrees of freedom unnecessarily. Fortunately, relatively low or no significant correlations among control variables existed. Thus, it seems reasonable to conclude that the covariates selected for this study were relatively independent and were used successfully in order to control errors within the two groups.
One interesting insight was gained from this result. The computer confidence did not show significant relationships with either students' computer experience or computer ownership. Instead, it showed a positive correlation to the students' mathematics course experiences in high school. It appears that students who have taken more advanced math courses have more confidence in the use of computers in general.

Discussion of correlation result among dependent variables The relationships among six dependent variables were also reported as auxiliary findings. Relatively moderate but statistically significant relationships among dependent variables were found. Among them, Logo planning skills and Logo error identification skills showed the largest magnitude of a relationship with 36% of the shared variance. A possible explanation would be that when students spend more time planning the solution and defining the nature of the problem, they are better prepared to clearly identify the error in the outcome. Possibly, elements of these two tests could be combined into a single test in order to measure Logo planning and error identification skills.

Although the correlation results were statistically significant for the Logo error identification skills with general decomposing skills and general error identification skills, the shared variances for these dependent variables were below 26%. Thus, these dependent variables seem to be measuring relatively independent outcomes.
Implications for Guided Instruction with Logo Programming

It has been suggested that Logo programming helps students develop problem solving strategies and an awareness of their thinking processes (Clements, 1990; Papert, 1980a; Watt, 1982). However, previous research produced conflicting results for this claim. The empirical research conducted in this study supports the previous research suggesting that systematically guided instruction needs to be provided in Logo programming in order to help students develop efficient thinking skills and problem solving strategies (Grandgenett, 1989; Leron, 1985; Pea & Kurland, 1987; Seidman, 1987; Swan & Black, 1989).

Proponents of self-discovery learning may argue that structuring instruction for Logo programming limits students' imagination and opportunities to explore their own ideas and thoughts. However, in this study, although teacher framewored instruction and problems were provided, students were strongly encouraged to create their own solutions and multiple solutions were encouraged. In the guided instruction for this study, only the steps of cognitive monitoring processes while solving the problems were structured and explicitly guided. For example, students could not use the computer unless they completed the steps of decomposing and planning. However, various solutions according to student learning style were encouraged and accepted. Several different solutions to a given problem were discussed with the use of the cognitive monitoring model. Thus, although students used a uniform model of cognitive monitoring activities, their solutions could be different from each other. Students also had chances to
create their own problems. Homework assignments were given each week and students were encouraged to create their own challenges. For example, students were asked to create their own graphic designs that utilized total turtle trip theorem, variables, and recursion, etc. However, they were required to follow the steps of cognitive monitoring activities given to them on planning sheets.

There are several advantages of structuring Logo programming instruction. First, teacher provided problems may give students more challenging and exciting directions. When students select their own problems, they may create very limited problems that do not go beyond their ability. Thus, students lose motivation to experience challenging problems. On the other hand, some students design very complex problems beyond their capabilities of solving. Students in this situation often become discouraged easily and acquire negative attitudes toward learning programming. Thus, guided Logo instruction may help students gradually develop their programming skills and understand underlying concepts of Logo programming. Guided instruction in Logo programming also helps students develop specific problem solving strategies and guides them to apply these strategies beyond the programming level. Guided Logo instruction can clarify the degree of the teacher's role in the learning environment. Structuring the degree of the teacher's mediated role helps the teacher constantly monitor her level of intervention. Thus, guided Logo instruction helps a teacher and the students recognize the level of learning progress and develop mutual interaction. Guided Logo instruction also helps the teacher lead students
gradually from simple to difficult problem situations with minimal threatening situations. Thus, guided instruction in Logo programming can provide the learning environment in which the teacher and the students become co-constructors of intellectual and emotional growth.

The results of this study strongly support the benefits of guided Logo instruction over a self-discovery approach to Logo programming. Specifically, the results from this study suggest the following for Logo instructional programs:

1. Teaching decontextual strategies intensively and deliberately empowered students' capability of utilizing these strategies in other learning domain. In this study, five specific components of cognitive monitoring strategies were illustrated and targeted as cross contextual strategies: decomposing, planning, executing, identifying errors, and debugging errors. Students who were encouraged to focus on specific cognitive monitoring strategies demonstrated better performance in programming domain tasks as well as outside programming domain tasks.

2. An explicit and recursive model for cognitive monitoring activities: decomposing, planning, executing, identifying the error, and debugging empowered students practicing cognitive monitoring strategies in the process of solving computer programming problems, while not focusing on the technical programming skill itself. The results of this study indicate that a structured model of cognitive monitoring activities facilitates students to consciously engage in monitoring their learning progress, thus, allowing them to manage the complex information to be learned.
3. The teacher mediated practice of cognitive monitoring activities provided a promising teaching technique to facilitate student involvement in an active problem solving process. The results of this study provide strong evidence that teacher mediated Logo instruction progressively guides students to learn efficient thinking and problem solving skills. Through teacher mediated intervention, students actively engage in learning beyond the technical programming skills (Emihovich & Miller, 1986; Leron, 1985; Pea & Kurland, 1987; Salomon & Perkins, 1987; Swan & Black, 1989). The results demonstrated the efficiency of an explicit instructional model and mediated intervention for teaching cognitive monitoring strategies in Logo programming.

4. This study also indicated that teacher mediated practice of cognitive monitoring strategies outside programming problems facilitated far transfer. The role of the teacher in this study was not only to encourage students to engage in cognitive monitoring activities in Logo programming but also to present various examples of everyday problems and to guide students to utilize learned strategies in general problem situations. Thus, teacher mediated problem solving activities provide an opportunity for students to mindfully engage in the acquisition of cognitive and metacognitive skills and to transfer those learned skills to other domains of learning (Anderson & Reiser, 1985; Feuerstein, 1980; Salomon & Perkins, 1987; Singley & Anderson, 1989; Vygotsky, 1978). The teacher mediated practice of cognitive monitoring strategies in solving everyday problems provided encouraging results for the far transfer effect.
5. Positive results from this study indicated that a structured instructional model with teacher mediated training of cognitive monitoring helped students intensively and deliberately monitor their on-going thinking processes, thus internalize these strategies although the length of instructional time was relatively short.

Recommendations for Further Research

Based on the findings of the study, the following recommendations for further research emerge:

1. The treatment period in this study was relatively short. A study over a longer period of time seems warranted from the positive findings of this study. A longer study might reveal different effects for each group.

2. It is possible that an explicit instructional model of cognitive monitoring and the nature of mediated learning can be constructed in other subject matters and can be utilized as effectively as the Logo computing environment to teach cognitive monitoring strategies. Further investigation of these possibilities could yield alternative learning tools to teach higher-order thinking strategies.

3. This research focused on college students in order to examine the effects of guided instruction with Logo programming. Younger students may respond differently to the guided Logo instruction. The positive results from this study suggest the need of further research on guided instruction with Logo programming and the development of cognitive monitoring strategies among various age levels and grade levels.
4. Some studies indicated that students learn differently according to their achievement level. Low achievers might learn better through systematically guided instruction whereas high achievers might learn better through self-discovery learning. However, this issue was not addressed in this study. Further studies should examine the influence of student achievement level and other learner characteristics on the treatment effects.

Concluding Remarks

This study focused on guided Logo instruction and the development of cognitive monitoring strategies. The study was conducted to provide empirical evidence for the conflicting results on the effects of instructional methodology in teaching problem solving through Logo programming. There are numerous research studies on Logo programming targeting elementary school students. Yet, there is little evidence of how Logo programming can be used for college students in order to improve their thinking skills and problem solving skills. Although it is known that younger students learn more effectively through structured instruction than older students, this research suggested that adults also need guided instruction in order to develop problem solving skills through programming activities.

The study also clearly supported the power of guided instruction with Logo programming to develop cognitive monitoring strategies. Specifically, Logo programming appears to be a powerful tool to provide dynamic learning environments where students can develop abstract thinking. This study
indicated that guided instruction facilitated the potential of Logo programming to provide students with cognitive monitoring activities.

Educators are facing the fundamental issue of teaching transferrable skills to help students become independent learners and problem solvers in order to keep up with a rapidly changing technological information society. Cognitive monitoring has been considered as teachable, decontextual, and transferrable higher-order thinking strategy. It has been regarded as one of the most important and essential strategies for efficient thinking and problem solving. To respond to the need of a technological information society, this research demonstrated a successful instructional technique for developing cognitive monitoring strategies. Guided instruction with computer programming and the development of cognitive monitoring is an area of research that deserves continued attention.
BIBLIOGRAPHY

ACKNOWLEDGEMENTS

I am deeply indebted to Dr. Ann D. Thompson for her assistance with my graduate study in curriculum and instructional technology. In developing and implementing this research project, she allowed an enormous amount of time for the discussion of the research. Without her thoughtful and insightful comments, this research would not be possible. She also supported me in many emotional aspects. My sincere thanks to Dr. Ann D. Thompson.

I extend my deep gratitude to the following committee members for their support, guidance, and cooperation: Dr. Tom Andre, Dr. William Miller, Dr. Anton Netusil, and Dr. Rex Thomas. Dr. Andre's guidance was very helpful for the development of the theoretical framework for this research. Dr. William Miller and Dr. Rex Thomas helped me develop very interesting and reliable test instruments. Dr. Anton Netusil's and Dr. William Miller's guidance was very helpful for the statistical analysis of the research data.

There are many who have helped me along the way to enlighten, refine and enhance any thought and concept that I had for research: Dr. Douglas Clements at New York State University in Buffalo, Dr. Karen Swan at SUNY Albany in New York, Dr. Richard Lehrer at University of Wisconsin-Madison, Dr. George Rebok at State University of New York, Dr. Robert Sternberg at Stanford University, and Dr. Michael Pressley at University of Wisconsin-Madison. I also thank my colleagues who participated as instructors in my study: Julie Hamilton, Connie Hargrave, Matt Maurer, Sarvinder Naberhaus, and Denise Schmidt. Each of these people deserves my sincere gratitude for the significant part they played in this endeavor.
I would like to especially thank those who supported me and encouraged me to get through the end of the tunnel: my brothers and sisters for their support and encouragement over the years, my mother for her prayers and her hopes for me to achieve high academic goals, my father-in-law and mother-in-law for their encouragement.

Above all, I thank my wonderful husband, Kwan Eung, for his love, encouragement, and support. Being grateful to all of them, I dedicate this dissertation to my daughter who at five, shared my excitement, hope, discouragement, and frustration along the way. She has always brought a shiny smile into my heart. Without her love, patience, and help I could never have finished my research. She asked everyday, "study done, mommy?" Yes. Young, it's done because of your love!
APPENDIX A: SAMPLE BACKGROUND QUESTIONNAIRE
SECONDARY EDUCATION 101 QUESTIONNAIRE

Please check or write the appropriate answer:

Part I: Background information

Name: ________________ Sex: F M
Age: ________________ Major: ________________

1. What is your ACT or SAT test score?
ACT _____ SAT _____

2. What is your current college GPA? ________________

3. Please list all the high school mathematics courses you have had:
 1. ________________ 4. ________________
 2. ________________ 5. ________________
 3. ________________ 6. ________________

4. Please list any high school or college computer science courses you have had:

<table>
<thead>
<tr>
<th>High School Computer Course</th>
<th>College Computer Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ________________</td>
<td>1. ________________</td>
</tr>
<tr>
<td>2. ________________</td>
<td>2. ________________</td>
</tr>
<tr>
<td>3. ________________</td>
<td>3. ________________</td>
</tr>
<tr>
<td>4. ________________</td>
<td>4. ________________</td>
</tr>
<tr>
<td>5. ________________</td>
<td>5. ________________</td>
</tr>
</tbody>
</table>

4. Check the languages that you have used and then write the type of the microcomputer you used:

<table>
<thead>
<tr>
<th>Language</th>
<th>Microcomputer used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic</td>
<td>________________</td>
</tr>
<tr>
<td>Pascal</td>
<td>________________</td>
</tr>
<tr>
<td>PL/1</td>
<td>________________</td>
</tr>
<tr>
<td>Logo</td>
<td>________________</td>
</tr>
<tr>
<td>Cobol</td>
<td>________________</td>
</tr>
<tr>
<td>Others</td>
<td>________________</td>
</tr>
</tbody>
</table>
5. What microcomputer software packages have you used for the following applications? List no more than three for each application and leave it blank if you have used none.

a. Word processing & text editing (e.g. Appleworks, Macwrite, Wordstar, others..)
 1. ____________ 2. ____________ 3. ____________

b. Desktop publishing (e.g. Printshop, Newsroom, Pagemaker, others...)
 1. ____________ 2. ____________ 3. ____________

c. Database management (e.g. Bankstreet filer, PC file, Microsoftworks, others.)
 1. ____________ 2. ____________ 3. ____________

d. Electronic spreadsheet (e.g. Lotus 123, Microsoftworks, Appleworks, others...)
 1. ____________ 2. ____________ 3. ____________

e. Programming (e.g. Logo, Logowriter, Basic, Superpilot, others..)
 1. ____________ 2. ____________ 3. ____________

f. Educational software (e.g. Oregon trail, Racket boot, others..)
 1. ____________ 2. ____________ 3. ____________

g. Graphic tools (e.g. Macpaint, Macdraw, Harvard Graphics , others..)
 1. ____________ 2. ____________ 3. ____________

h. Games (Specify..)
 1. ____________ 2. ____________ 3. ____________

i. Electronic networks (Telecommunications)
 1. ____________ 2. ____________ 3. ____________

j. Other, please specify..
 __

6. Do you have your own computer?
 1. __ Yes
 2. __ No
7. If yes, what kind of computer is it?
 1. Apple
 2. Macintosh
 3. IBM PC
 4. Zenith
 5. Texas Instruments
 6. Radio Shack
 7. Commodore
 8. Atari
 9. Others, specify

Part II: Computer Attitudes

Please indicate how you feel about the following statements. Use the scale below to indicate your feeling. Circle one answer for each.

1 = Strongly Disagree
2 = Disagree
3 = Agree
4 = Strongly Agree

1. I'm no good with computers.
2. Generally, I would feel OK about trying a new problem on the computer.
3. I don't think I would do advanced computer coursework.
4. I am sure I could do work with computers.
5. I'm not the type to do well with computers.
6. I am sure I could learn a computer language.
7. I think using a computer would be very hard for me.
8. I could get good grades in computer courses.
9. I don't think I could handle a computer course.
10. I have a lot of self-confidence when it comes to working with computers.
APPENDIX B: HOMOGENEITY OF SAMPLE BACKGROUNDS
Homogeneity of subject backgrounds

TABLE 27. Distribution of students by college major

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Elementary Ed. Freq. (%)</th>
<th>Secondary Ed. Freq. (%)</th>
<th>Physical Ed. Freq. (%)</th>
<th>Others Freq. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental</td>
<td>45 (69.2)</td>
<td>4 (6.2)</td>
<td>6 (9.2)</td>
<td>10 (15.4)</td>
</tr>
<tr>
<td>Control</td>
<td>42 (62.7)</td>
<td>3 (4.5)</td>
<td>8 (11.9)</td>
<td>14 (20.9)</td>
</tr>
<tr>
<td>Total sample</td>
<td>87 (65.9)</td>
<td>7 (5.3)</td>
<td>14 (10.6)</td>
<td>24 (18.2)</td>
</tr>
</tbody>
</table>

TABLE 28. Distribution of students by gender

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Female Freq. (%)</th>
<th>Male Freq. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental</td>
<td>52 (80.0)</td>
<td>13 (20.0)</td>
</tr>
<tr>
<td>Control</td>
<td>51 (76.1)</td>
<td>16 (23.9)</td>
</tr>
<tr>
<td>Total sample</td>
<td>103 (78.0)</td>
<td>29 (22.0)</td>
</tr>
</tbody>
</table>

TABLE 29. Distribution of students by year in college

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Freshmen Freq. (%)</th>
<th>Sophomore Freq. (%)</th>
<th>Junior Freq. (%)</th>
<th>Senior Freq. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental</td>
<td>9 (13.8)</td>
<td>16 (24.6)</td>
<td>25 (38.5)</td>
<td>15 (23.1)</td>
</tr>
<tr>
<td>Control</td>
<td>8 (11.9)</td>
<td>16 (23.9)</td>
<td>23 (34.3)</td>
<td>20 (29.9)</td>
</tr>
<tr>
<td>Total sample</td>
<td>17 (12.9)</td>
<td>32 (24.2)</td>
<td>48 (36.4)</td>
<td>35 (26.5)</td>
</tr>
</tbody>
</table>
TABLE 30. Distribution of students by number of mathematics courses taken in high school

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Zero Freq. (%)</th>
<th>One Freq. (%)</th>
<th>Two Freq. (%)</th>
<th>Three Freq. (%)</th>
<th>Four Freq. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental</td>
<td>3 (4.6)</td>
<td>10 (15.4)</td>
<td>31 (47.7)</td>
<td>18 (27.7)</td>
<td>3 (4.6)</td>
</tr>
<tr>
<td>Control</td>
<td>4 (6.0)</td>
<td>13 (19.4)</td>
<td>29 (43.3)</td>
<td>19 (28.4)</td>
<td>2 (3.0)</td>
</tr>
<tr>
<td>Total sample</td>
<td>7 (5.3)</td>
<td>23 (17.4)</td>
<td>60 (45.5)</td>
<td>37 (28)</td>
<td>5 (3.8)</td>
</tr>
</tbody>
</table>

TABLE 31. Distribution of students by number of computer courses taken either in high school or college

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Zero Freq. (%)</th>
<th>One Freq. (%)</th>
<th>Two Freq. (%)</th>
<th>Three Freq. (%)</th>
<th>Four Freq. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental</td>
<td>28 (43.1)</td>
<td>21 (32.3)</td>
<td>12 (18.5)</td>
<td>4 (6.2)</td>
<td>-</td>
</tr>
<tr>
<td>Control</td>
<td>30 (44.8)</td>
<td>29 (43.3)</td>
<td>5 (7.5)</td>
<td>2 (3.0)</td>
<td>1 (1.5)</td>
</tr>
<tr>
<td>Total sample</td>
<td>58 (43.9)</td>
<td>50 (37.9)</td>
<td>17 (12.9)</td>
<td>6 (4.5)</td>
<td>1 (0.8)</td>
</tr>
</tbody>
</table>

TABLE 32. Distribution of students by computer ownership

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Yes Freq. (%)</th>
<th>No Freq. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental</td>
<td>13 (20.0)</td>
<td>52 (80.0)</td>
</tr>
<tr>
<td>Control</td>
<td>11 (16.4)</td>
<td>56 (83.6)</td>
</tr>
<tr>
<td>Total sample</td>
<td>24 (18.2)</td>
<td>108 (81.8)</td>
</tr>
</tbody>
</table>
TABLE 33. Distribution of students by computer confidence scores

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Not confid Freq. (%)</th>
<th>A little confid Freq. (%)</th>
<th>Confident Freq. (%)</th>
<th>Very confid Freq. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental</td>
<td>10 (15.4)</td>
<td>34 (52.3)</td>
<td>13 (20.0)</td>
<td>8 (12.3)</td>
</tr>
<tr>
<td>Control</td>
<td>6 (9.0)</td>
<td>29 (47.7)</td>
<td>21 (31.4)</td>
<td>8 (11.9)</td>
</tr>
<tr>
<td>Total sample</td>
<td>16 (12.1)</td>
<td>66 (50.0)</td>
<td>34 (25.8)</td>
<td>16 (21.1)</td>
</tr>
</tbody>
</table>

TABLE 34. Means and Standard deviations for the ACT scores

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Mean</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental</td>
<td>19.828</td>
<td>3.688</td>
</tr>
<tr>
<td>Control</td>
<td>19.603</td>
<td>3.211</td>
</tr>
<tr>
<td>Total sample</td>
<td>19.717</td>
<td>3.448</td>
</tr>
</tbody>
</table>
APPENDIX C: A MODEL OF LOGO-BASED COGNITIVE MONITORING ACTIVITIES
A Model to Organize Programming Instruction for the Transfer of Cognitive Monitoring Strategies

Instructional Process
The experimental group was encouraged to follow explicitly the following cognitive monitoring activities, while the control group was directed to employ self-discovery learning approach.

Instructional Steps:

Decompose First students in the experimental group were directed to look at a given problem and break it into smaller, elemental shapes and find the number of move statements necessary.

Plan The students were asked to organize and sequence the decomposed shapes and move statements in order to devise the solution to the problem efficiently. They were encouraged to find efficient turtle trip in their planning procedure.

Execute Students were allowed to write codes to transform the plan to the Logo language.

Identify errors
1. Students were asked to evaluate the actual outcome and describe discrepancy between the given outcome and the original graphic.
2. Then, they were allowed to go to the procedures written, and locate procedures that might have caused errors.
3. They were asked to explain what was wrong with the procedures they indicated.

Debug Finally, students were encouraged to correct the codes.

Recursive Cognitive Monitoring Activities
Students were encouraged to go back to the any steps of activities in order to debug the problems. For example, if initial decompsing was not correct, they could decompose the problem over again.
APPENDIX D: INSTRUCTION OUTLINE FOR LECTURE: EXPERIMENTAL GROUP
201
Lecture Day 1
Group A - Lesson Outline

Attendance:
1) The instructor makes sure that all students are in the A group. Have students check their schedules, or if needed, check the master lists at the front of the classroom.
2) Pass around the split lecture attendance sheets.

Announcements:
1) Split labs start Monday September 17.
2) Need to purchase LogoWriter Disks in the IRC.
3) Others: ________________________________

Introduce Logo and the Logo Philosophy
Transparency1: • Introduce Logo and the Logo philosophy.
• Indicate that we will discuss cognitive monitoring strategies in more detail as strategies typical of programming.

Introduce Cognitive Monitoring and Its Components
Transparency2: • Define cognitive monitoring
• Discuss the process of cognitive monitoring

Relate Cognitive Monitoring to Real-World Situation
Transparency3: • Discuss how people use cognitive monitoring in real-life problem situations.

Relate Cognitive Monitoring to Programming
Transparency4: • Discuss how programmers use cognitive monitoring strategies.

Introduce LogoWriter
Boot up a disk: • Show initial entry screen and select new page.
• Show the following primitives:
(ask students to take notes and show the outcome of typed primitive commands)

FD XX RT XX PU CG ST
BK XX LT XX PD HOME HT

Distribute Mini-Quiz (if time allows)
Pass out the quiz, allow students to answer in the space provided on the paper. Remind students to place name, lab section, and A/B group on quiz.
Lecture Day 2
Group A - Lesson Outline

Attendance:
1) The instructor makes sure that all students are in the A group. Have students check their schedules, or if needed, check the master lists at the front of the classroom. (Before class starts.)
2) Pass around the split lecture attendance sheets.

Announcements:
1) Split labs started yesterday Monday September 17.
2) Need to purchase LogoWriter Disks in the IRC.
3) Others:__

Review Primitives
On computer: • Review briefly booting up LogoWriter as it boots.
 • Review primitives (emphasize PU, PD, CG).
 • Discuss primitive sequence to draw a SQUARE.

Introduce the Repeat Command
On computer: • Introduce the repeat command for drawing a SQUARE.
 Repeat 4 [FD 50 RT 90]
 • Ask students to predict what will happen, and where the
turtle will be positioned when a change is made:
 Repeat 4 ———> Repeat 3, Repeat 8

Introduce Procedures

• Rationale of learning procedures:
 1. Most problems are larger and more complex than the human can handle.
 • Decomposition of complex problems into manageable "mind-size" bites is important to successful problem solving.
 2. Dealing with a chunk of information rather than a single piece of information is important to solving problems.
 • Students can more easily understand the meaning of given information and better utilize it.
 3. Programming in chunks is a more efficient way of handling the information than as a whole.
 4. "Top-down" approach of solving the problem is useful to develop good planning strategies. (Super procedure - subprocedure)
 • View the whole problem and see how its parts are inter-related.
 5. Flexibility of dealing with information.
 • Students apply the information to other problem situations.
 6. Developing organizational strategies.
 • Organizing partitioned subprocedures to make meaningful products.
On computer:

• Introduce Flip Side and explain the difference between Flip Side and Front Screen. (Apple-F for editor)

To Square
Repeat 4 [Fd 40 Rt 90]
End

• Change input number within the editor to a different size: Fd 50 ———> Fd 80

• Show that the computer now knows a new word by:
 Repeat 12 [Square Rt 30]

Activity Sheet Lecture2/Group A; (pass out sheet)
(Students need to write on the sheet in case of a quiz and midterm test, which may or may not be open notes!!)

Transparency1:
• The instructor leads students in applying the steps of cognitive monitoring strategies on the sheet. She uses Socratic dialogue in order for students to focus on their thinking process deliberately. (Decompose, Plan, Execute)

On Computer:
• Show the result.
 • Identify Problem:
 1. Locate the code(s) that causes bugs.
 2. Discuss what the problem is in the code(s).

 • Debug: 3. Correct the code.

Transparency2:
• Allow students to apply the steps of cognitive monitoring strategies for about 5 minutes. (Decompose, Plan, Execute)
 • Gather a common solution and write it on the transparency.

On Computer:
• Show a student example of the solution.
 • Identify Problem:
 1. Locate the code(s) that causes bugs.
 2. Discuss what the problem is in the code(s).

 • Debug: 3. Correct the code.

• Ask students if they have a different solution.
• Discuss internal angle of 120 degrees and external angle of 120 degrees.
Relate Cognitive Monitoring to Word Problem Solving

Transparency 3: Discuss how to utilize cognitive monitoring components in a given problem solving situation.

Saving the Project On the Disk

On computer: Show namepage command of: np "name-of-project.

Discuss a necessity of hitting <escape> to save the project.
205
Lecture Day 3
Group A - Lesson Outline

Attendance:
1) The instructor makes sure that all students are in the A group. Have students check their schedules, or if needed, check the master lists at the front of the classroom. (Before class starts.)
2) Pass around the split lecture attendance sheets.

Announcements:
1) Split labs started Monday September 17. (Lists at the front of the room will show where students need to go)
2) Need to purchase LogoWriter Disks in the IRC before the lab starts.
3) Others: ______________________________

Review Procedures
On Computer: • Briefly show again the following procedures:
 (including getting in and out of the editor: Apple-F)
 To Square To Triangle
 Repeat 4 [Fd 40 Rt 90] Repeat 3 [Fd 50 Rt 120]
 End End

Introduce Procedures Within Procedures
On Computer: • Show that procedures can be placed within procedures:
 To Stack (Square already in the editor)
 Square
 Fd 40
 Square
 End

Activity Sheet Lecture3/Group A (pass out sheets)
Transparency1: • The instructor leads students in applying the steps of cognitive monitoring strategies on the sheet. She uses Socratic dialogue in order for students to focus on their thinking process deliberately. (Decompose, Plan, Execute)
On Computer: • Show the result.
 • Identify Problem:
 1. Locate the code(s) that causes bugs.
 2. Discuss what the problem is in the code(s).
 • Debug: 3. Correct the code.
Transparency2: • Allow students to apply the steps of cognitive monitoring strategies for about 10 minutes. (Decompose, Plan, Execute)
 • Gather a common solution and write it on the transparency.
On Computer: • Show a student example of the solution.
 • Identify Problem:
 1. Locate the code(s) that causes bugs.
 2. Discuss what the problem is in the code(s).
 • Debug: 3. Correct the code.

 • Ask students if they have a more efficient solution.
 • Emphasize the move statement, and modularity for an efficient solution.

Relate Cognitive Monitoring to a writing problem
Transparency3: • Discuss how to utilize cognitive monitoring components in a given problem solving situation.

Discuss Homework Assignment #1
(Three sheets of the following will be passed out and discussed in the lab)

Transparency: • Show an example of project for Homework #1
 • Project should be extensive and run with a single procedure name.
 • Students should plan first by carefully looking at the example project.

Transparency: • Show the planning sheet and explain how to use it.
 • Students will need to turn in a project on a disk, planning sheet, and criteria sheet.

Distribute Mini-Quiz (if time allows)
Pass out the quiz, allow students to answer in the space provided on the paper. Remind students to place name, lab section, and A/B group on quiz.
Lecture Day 4
Group A - Lesson Outline

Attendance:
1) The instructor makes sure that all students are in the A group. Have
students check their schedules, or if needed, check the master lists at the
front of the classroom. (Before class starts.)
2) Pass around the split lecture attendance sheets.

Announcements:
1) Remind students they should be attending split labs now.
(Lists at the front of the room will show where students need to go)
2) Need to purchase LogoWriter Disks in the IRC before the lab starts.
3) Remind students that first LogoWriter project will be due at the start of
their second LogoWriter Lab, and that three things will need to be turned
in:
 1. a project on disk of at least 6 procedures
 2. a planning sheet with a written copy of the program
 3. a criteria sheet with the name of the project.
4) Others

Introduce Regular Polygon

*Rationale of learning total turtle trip theorem
1. Improving spatial ability is important to understanding
geometrical concepts (Orientation, Rotation, Direction, etc.)
2. Allow Students to understand angles and definition of geometrical
figures in a meaningful, relevant way.

Transparency:
*Discuss a regular polygon: Each of its sides is the same
length and each of its turns is the same number of
degrees.
*Discuss total turtle trip theorem:
 Repeat _____ [Fd ___ Rt ___] or
 Repeat _____ [Fd ___ Rt ___]
*Show transparency and explain that these Logo
commands allow students to make any regular polygon by
repeating a Side (Fd ___) and a degree (Rt ___ or Lt ___)
a given number of times.

Activity Sheet Lecture4/Group A (Pass out sheet)
Transparency1:
*The instructor leads students in applying the steps of
cognitive monitoring strategies on the sheet. She uses
Socratic dialogue in order for students to focus on their
thinking process deliberately. (Decompose, Plan, Execute)
On Computer: •Show the result.
•Identify Problem:
 1. Locate the code(s) that causes bugs.
 2. Discuss what the problem is in the code(s).
•Debug: 3. Correct the code.

Application of Cognitive Monitoring Strategies
(Mention that students can use cognitive monitoring strategies to solve math problems.)
Transparency 2: •Show the money problem.
•Discuss how students can utilize decomposing, planning, and debugging skills.
•Brainstorm other possible applications

Discuss Homework Assignment #2
(Three sheets of the following will be passed out and discussed again in the lab)
Transparency: •Mention that students need to apply total turtle trip theorem in their homework assignment #2.
•Show an example of project of "Flower" and explain the importance of using a cognitive monitoring sheet for the homework assignment.
•Mention that students should hand in a project on a disk, planning sheet, and criteria sheet.

Distribute Mini-Quiz (if time allows)
Pass out the quiz, allow students to answer in the space provided on the paper. Remind students to place name, lab section, and A/B group on quiz.
209
Lecture Day 5
Group A - Lesson Outline

Attendance:
1) The instructor makes sure that all students are in the A group. Have students check their schedules, or if needed, the master lists at the front of the classroom. (Before class starts.)
2) Pass around the split lecture attendance sheets.

Announcements:
1) Remind students that their quizzes will be returned during the LogoWriter lab.
2) Others __

Review Names of Procedures
- Remind students that they need to use different names of procedures for a different direction of moves, a different orientation of graphics, and so on: Move, Move1, Move2...

\[\text{Triangle} (\triangle) \quad \text{Triangle } 1(\bigtriangleup) \quad \text{Tri}(\bigtriangleup) \]

Introduce Variables

\begin{itemize}
 \item Rationale of learning variables
 \begin{enumerate}
 \item Utilizing specific information for a general purpose is important to solving various problems successfully.
 \item Practice looking for a general solution to a specific problem so that it can be applied to new and different problem situations.
 \item Variable is an important idea in mathematics (abstract, general).
 \item Variable allows students to manipulate expressions.
 \end{enumerate}
\end{itemize}

On Computer:
- Briefly show the square procedure:
 \begin{verbatim}
 To Square
 Repeat 4 [Fd 50 Rt 90]
 End
 \end{verbatim}
 Discuss that if we want a square of a different size, we need to go in and actually change the procedure or retype with a slightly different name.

 \begin{verbatim}
 To Square :X
 Repeat 4 [Fd :X Rt 90]
 \end{verbatim}
 Show that this procedure is much more powerful and flexible.

- Mention that the name of the variable can be anything but numbers. However, a letter followed by a number is acceptable (No space between a letter and a number).
Activity Sheet Lecture 5/Group A (Pass out sheet)

Transparency 1:
• The instructor leads students in applying the steps of cognitive monitoring strategies on the sheet. She uses Socratic dialogue in order for students to focus on their thinking process deliberately. (Decompose, Plan, Execute)

On Computer:
• Show the result.
 • Identify Problem:
 1. Locate the code(s) that causes bugs.
 2. Discuss what the problem is in the code(s).
 • Debug: 3. Correct the code.

Transparency 2:
• Allow students to apply the steps of cognitive monitoring strategies for about 5 to 10 minutes. (Decompose, Plan, Execute)
• Gather a common solution and write it on the transparency.

On Computer:
• Show a student example of the solution.
 • Identify Problem:
 1. Locate the code(s) that causes bugs.
 2. Discuss what the problem is in the code(s).
 • Debug: 3. Correct the code.
• Ask students if they have a more efficient solution.
• Emphasize the syntax format for variable procedures.

Relate Cognitive Monitoring to Building a House

Transparency 3:
• Discuss how to utilize cognitive monitoring components in a given problem solving situation.

Mention Homework Assignment #3
• Mention that homework assignment #3 will be similar to the previous projects, but will use variables.
• More details will be discussed in the next lecture and lab.

Distribute Mini-Quiz (if time allows)
Lecture Day 6
Group A - Lesson Outline

Announcements:
1) Remind students that they should be attending split lecture and labs.
2) Others ________________________________

Review Single Variable Procedures
On Computer: • Show the single variable procedure for a Rectangle:
 • Run the procedure with various inputs.
 To Rectangle :W
 Repeat 2 [Fd :W Rt 90 Fd 100 Rt 90]
 End

Introduce Two Variable Procedures
On Computer: • Modify the rectangle procedure to use two inputs:
 • Run the procedure with various inputs.
 To Rectangle :W :L
 Repeat 2 [Fd :W Rt 90 Fd :L Rt 90]
 End

Show the Fill Command
On Computer: • Draw a rectangle of typical dimensions.
 • Fill in the rectangle using the following:
 Type the following in the command center:
 Colors
 Pu 0 Black
 Rt 45 1 White
 Fd 10 2 Green
 Pd 3 Violet
 SetC 2 4 Orange
 Fill 5 Blue
 • Mention that Fill is a Logo command, so students can
 not use fill as a name of a procedure.
 • Emphasize that the turtle needs to be inside the closed
 graphics before Fill.

Activity Sheet Lecture6/Group A (Pass out sheet)
Transparency1: • Allow students to apply the steps of cognitive
 monitoring strategies for about 5 to 10 minutes.
 (Decompose, Plan, Execute)
 • Gather a common solution and write on transparency.
On Computer:
• Show a student example of the solution.
• Identify Problem:
 1. Locate the code(s) that causes bugs.
 2. Discuss what the problem is in the code(s).
• Debug: 3. Correct the code.
• Ask students if they have a more efficient solution.
• Emphasize the syntax format for fill procedure (Pu-Pd).

Review the General Nature of Cognitive Monitoring
Transparency2: • Remind students of the general definition of cognitive monitoring and that we have been attempting to use it to help us program.

Relate Cognitive Monitoring to Language Problem
Transparency3: • Discuss how to utilize cognitive monitoring components in a given problem solving situation.

Review Homework Assignment #3
Transparency: • Show "Flags" example project using variables and explain the importance of using the cognitive monitoring strategies to finish a complex programming task.
• Mention that students can use their previous homework projects, but need to develop them using variables.
• Mention that students should hand in a project on a disk, planning sheet, and criteria sheet.

Distribute Mini-Quiz (if time allows)
Lecture Day 7
Group A - Lesson Outline

Announcements:
1) Remind students that the Lecture midterm will be Tuesday October 16.
2) Remind students that Lab Midterms will begin Tuesday October 16.
3) Remind students that Tuesday October 9 will be the last split lecture, but split labs will continue for a total of four LogoWriter lab meetings.
4) Others

Review Two Variable Procedures
On computer: • Briefly show the procedure of:
 To Rectangle :W :L
 Repeat 2 [Fd :W Rt 90 Fd :L Rt 90]
 End

Introduce Recursion

• Rationale of learning recursion
1. A person's daily activities are carried out in a cycle.
 • Learning of looping process is extremely important to understanding daily life problems.
2. In mathematics, many geometric figures can be expressed as repetition of a single figure.
3. Recursion is a powerful tool for computer scientists.
 • It is powerful when they know what to do but don't know how many times to repeat.

On Computer: • Type the following, ask students to predict the output:
(explain that recursion is a procedure calling itself, etc...)

 To Square :X
 To Boxes :X (Ask Students to repeat 4[Fd :X Rt 90]
 End
 Square :X predict output
 Boxes :X - 10
 End (run the program)

 • Add a conditional statement to stop the recursion:

 If :X < 0 [Stop] (place after To Boxes :X, ask students to predict the outcome)

Activity Sheet Lecture7/Group A (Pass out sheets)
Transparency1: • The instructor leads students in applying the steps of cognitive monitoring strategies on the sheet. She uses Socratic dialogue in order for students to focus on their thinking process deliberately. (Decompose, Plan, Execute)
On Computer: •Show the result.

•Identify Problem:
 1. Locate the code(s) that causes bugs.
 2. Discuss what the problem is in the code(s).

•Debug: 3. Correct the code.

Transparency2: •Allow students to apply the steps of cognitive monitoring strategies for about 5 to 10 minutes.
(Decompose, Plan, Execute)
•Gather a common solution and write it on the transparency.

On Computer: •Show a student example of the solution.

•Identify Problem:
 1. Locate the code(s) that causes bugs.
 2. Discuss what the problem is in the code(s).

•Debug: 3. Correct the code.
•Ask students if they have a more efficient solution.
•Emphasize the syntax format for recursion.
•Emphasize the move statement, and modularity.

Relate Cognitive Monitoring to Roller Skating problem

Transparency3: •Discuss how to utilize cognitive monitoring components in a given problem solving situation.

Discuss Homework Assignment #4

Transparency: •Show Example Homework Assignment #4, and explain that students need to use recursion.
•Mention that students should hand in a project on a disk, planning sheet, and criteria sheet.

Distribute Mini-Quiz (if time allows)
•Students can use their notes.
Announcements:
1) Remind students that the Lecture midterm will be Tuesday October 16.
2) Remind students that Lab Midterms will begin Tuesday October 16.
3) Remind students that Today will be the last split lecture, but split labs will continue until Monday October 15. (total of four LogoWriter lab meetings)
4) Others

Review Recursion
On Computer:
• Type the following, ask students to predict the output:
 To Pentagon :X
 Repeat 5 [Fd :X Rt 72]
 End

• Show the picture of Mystery and ask students to write a procedure for the graphic using recursion:

 • Mystery will draw pentagons infinitely with each succeeding pentagon getting bigger!!

 To Mystery :X
 Pentagon :X
 Mystery :X + 10
 End

• Ask students how we can stop the above program.

Activity Sheet Lecture8/Group A (Pass out sheet)
Transparency1:
• The instructor leads students in applying the steps of cognitive monitoring strategies on the sheet. She uses Socratic dialogue in order for students to focus on their thinking process deliberately. (Decompose, Plan, Execute)

On Computer:
• Show the result.
• Identify Problem:
 1. Locate the code(s) that causes bugs.
 2. Discuss what the problem is in the code(s).
• Debug: 3. Correct the code.

Review the General Nature of Cognitive Monitoring
Transparency2:
• Remind students of the general definition of cognitive monitoring, and that we have been attempting to use it to help us program.

Administrate a General Planning Strategy Test (30 minutes)
APPENDIX E: INSTRUCTION OUTLINE FOR LECTURE:
CONTROL GROUP
Lecture Day 1
Group B - Lesson Outline

Attendance:
1) The instructor makes sure that students are in the B group. Let students check their schedules, or if needed, the master lists at the front of the classroom.
2) Pass around the split lecture attendance sheets.

Announcements:
1) Split labs start Monday September 17.
2) Need to purchase LogoWriter Disks in the IRC.
3) Others: ________________________________

Introduce Logo and the Logo Philosophy
Transparency1: • Introduce Logo and the Logo philosophy.
• Indicate that we will discuss cognitive monitoring strategies in more detail as strategies typical of programming.

Introduce Cognitive Monitoring and Its Components
Transparency2: • Define cognitive monitoring
• Discuss the process of cognitive monitoring

Relate Cognitive Monitoring to Real-World Situation
Transparency3: • Discuss how people use cognitive monitoring in real-life problem situations.

Relate Cognitive Monitoring to Programming
Transparency4: • Discuss how programmers use cognitive monitoring strategies.

Introduce LogoWriter
Boot up a disk: • Show an initial entry screen and select a new page
• Show the following primitives:
 (ask students to take notes and predict the outcome of typed primitive commands)

FD \times RT \times PU CG ST
BK \times LT \times PD HOME HT

Distribute Mini-Quiz (if time allows)
Pass out the quiz, allow students to answer in the space provided on the paper. Remind students to place name, lab section, and A/B group on the quiz.
Lecture Day 2
Group B - Lesson Outline

Attendance:
1) The instructor makes sure that students are in the B group. Let students check their schedules, or if needed, the master lists at the front of the classroom. (Before class starts.)
2) Pass around the split lecture attendance sheets.

Announcements:
1) Split labs started yesterday Monday September 17.
2) Need to purchase LogoWriter Disks in the IRC.
3) Others: ______________________________________

Review Primitives
On computer: • Review briefly booting up LogoWriter as it boots.
• Review primitives (emphasize PU, PD, CG).
• Discuss a primitive sequence to draw a SQUARE.

Introduce the Repeat Command
On computer: • Introduce the repeat command for drawing a SQUARE.
Repeat 4 [FD 50 RT 90]

• Ask students to predict what will happens, and where the turtle will be positioned when a change is made:
 Repeat 4 --------> Repeat 3, Repeat 8

Introduce Procedures

• Rationale of learning procedures:
 1. Most problems are larger and more complex than the human can handle.
 • Decomposition of complex problems into manageable "mind-size" bites is important to successful problem solving.
 2. Dealing with a chunk of information rather than a single piece of information is important to solving problems.
 • Students can more easily understand the meaning of given information and better utilize it.
 3. Programming in chunks is a more efficient way of handling the information than as a whole.
 4. "Top-down" approach of solving the problem is useful to develop good planning strategies. (Super procedure - subprocedure)
 • View the whole problem and see how its parts are inter-related.
 5. Flexibility of dealing with information.
 • Students apply the information to other problem situations.
 6. Developing organizational strategies.
 • Organizing partitioned subprocedures to make meaningful products.
On computer: • Introduce Flip Side and explain the difference between
Flip Side and Front Screen. (Apple-F for editor)

To Square
Repeat 4 [Fd 40 Rt 90]
End

• Change the input number within the editor to a different
size: Fd 50 ———> Fd 80

• Show that the computer now knows a new word by:
 Repeat 12 [Square Rt 30]

Activity Sheet Lecture2/Group B1: (pass out sheet)
(Students need to write on the sheet in case of a quiz and midterm test,
which may or may not be open notes!!)
Transparency1: • Ask students to write a procedure for a triangle.
On Computer: • Show a student example.
 (If running out of time, use the transparency answer.)

Activity Sheet Lecture2/Group B2: (pass out sheet)
Transparency2: • Ask students to write a procedure for a TwinTriangle.
On Computer: • Show a student example.
 (If running out of time, use the transparency answer.)
 • Discuss an internal angle of 120 degrees and external
angle of 120 degrees.

Saving the project on the disk
On computer: • Show the namepage command of: np "name-of-project
• Discuss the necessity of hitting <escape> to save the
 project.
Lecture Day 3
Group B - Lesson Outline

Attendance:
1) The instructor makes sure that students are in the B group. Let students check their schedules, or if needed, the master lists at the front of the classroom. *(Before class starts.)*
2) Pass around the split lecture attendance sheets.

Announcements:
1) Split labs started Monday September 17.
 (Lists at the front of the room will show where students need to go)
2) Need to purchase LogoWriter Disks in the IRC before the lab.
3) Others:__

Review Procedures
On Computer: *Briefly show again the following procedures:
 (including getting in and out of the editor: Apple-F)

 To Square To Triangle
 Repeat 4 [Fd 40 Rt 90] Repeat 3 [Fd 50 Rt 120]
 End End

Introduce Procedures Within Procedures
On Computer: *Show that procedures can be placed within procedures:
 (Square already in the editor)

 To Stack
 Square
 Fd 40
 Square
 End

Activity Sheet Lecture3/Group B1 *(pass out sheet)*
(Mention that students will receive an answer sheet later. They need to focus on the problem solving process rather than write down an answer on the transparency.)

 Transparency1: *Ask students to try and write a procedure for a TriStack.
 On Computer: *Show a student example and discuss it.
 *Debrief the prepared answer shown on the transparency.
 *Emphasize the move statement and modularity.

Activity Sheet Lecture3/Group B2 *(pass out sheet)*

 Transparency2: *Ask students to write a procedure for a house.
 On Computer: *Show a student example and discuss it.
 (If running out of time, use the transparency answer.)
 Emphasize the move statement and modularity for an efficient solution.
Discuss Homework Assignment #1

(Three sheets of the following will be passed out and discussed again in the lab.)

Transparency: • Show example project for Homework #1.
 • Project should be extensive and run with a single name of procedure.
 • Students should plan first by carefully looking at the example project.

Transparency: • Show the planning sheet and explain how to use it.
 • Students will need to turn in a project on disk, a planning sheet, and a criteria sheet (refer to book.)

Distribute Mini-Quiz (if time allows)
Pass out the quiz, allow students to answer in the space provided on the paper. Remind students to place name, lab section, and A/B group on the quiz.
Lecture Day 4
Group B - Lesson Outline

Attendance:
1) The instructor makes sure that students are in the B group. Let students check their schedules, or if needed, the master lists at the front of the classroom. (Before class starts.)
2) Pass around the split lecture attendance sheets.

Announcements:
1) Remind students they should be attending the split labs now. (Lists at the front of the room will show where students need to go.)
2) Need to purchase LogoWriter Disks in the IRC before the lab.
3) Remind students that the first LogoWriter project will be due at the start of their second LogoWriter Lab, and that three things will need to be turned in:
 1. a project on disk with at least 6 procedures
 2. a planning sheet with a written copy of the program
 3. a criteria sheet with the name of the project
4) Others

Introduce Regular Polygon

Rationale of learning total turtle trip theorem
1. Improving spatial ability is important to understanding geometrical concepts (Orientation, Rotation, Direction, etc.)
2. Allow Students to understand angles and definition of geometrical figures in a meaningful, relevant way.

Transparency:
• Discuss a regular polygon: Each of its sides has the same length and each of its turns has the same number of degrees.
• Discuss the total turtle trip theorem:
 Repeat ____ [Fd __ Rt __] or
 Repeat ____ [Fd __ Rt __]
• Show the transparency and explain that these Logo commands allow students to make any regular polygon by repeating a side (Fd __) and a degree (Rt __ or Lt __) a given number of times.

Activity Sheet Lecture4/Group B1 (pass out sheet.)
(Mention that students will receive an answer sheet later. They need to focus on a problem solving process rather than write down an answer on the transparency.)

Transparency1: • Ask students to try and write a procedure for a Snowflake.
On Computer: • Show a student example and discuss it.

Discuss Homework Assignment #2
(Three sheets of the following will be passed out and discussed again in the labs)

Transparency: • Mention that homework assignment #2 needs to apply the total turtle trip theorem.
• Show an example project of "Flower" for homework assignment #2.
• Mention that students should hand in a project on a disk, planning sheet, and criteria sheet.

Distribute Mini-Quiz (if time allows.)
Pass out the quiz, allow students to answer in the space provided on the paper. Remind students to place name, lab section, and A/B group on the quiz.
Lecture Day 5
Group B - Lesson Outline

Attendance:
1) The instructor makes sure that students are in the B group. Let students check their schedules, or if needed, the master lists at the front of the classroom. (Before class starts.)
2) Pass around the split lecture attendance sheets.

Announcements:
1) Remind students that their quizzes will be returned during the second LogoWriter lab.
2) Others

Review Names of Procedures
- Remind students that they need to use different procedure names for different directions of moves, different orientations of graphics, and so on: Move, Move1, Move2...

\[
\text{Triangle (} \Box \text{) Triangle 1(} \Box \text{) Tri (} \Box \text{)}
\]

Introduce Variables

- Rationale of learning variables
 1. Utilizing specific information for a general purpose is important to solving various problems successfully.
 2. Practice looking for a general solution to a specific problem so that it can be applied to new and different problem situations.
 3. Variable is an important idea in mathematics (abstract, general).
 4. Variable allows students to manipulate expressions.

On Computer:
- Briefly show the square procedure:

To Square
Repeat 4 [Fd 50 Rt 90]
End

Discuss that if we want a square of a different size, we need to go in and actually change the procedure or retype it with a slightly different name.

To Square :X
Repeat 4 [Fd :X Rt 90]
End

Show that this procedure is much more powerful and flexible.

* Mention that the name of variables can be anything but numbers. However, a letter with a number is acceptable.
Activity Sheet Lecture5/Group B1 (pass out sheet)
(Mention that students will receive an answer sheet later. They need to focus on a problem solving process rather than write down an answer on the transparency.)

Handout: • Ask students to try and write a procedure for a house of any size using variables.

Transparency1: • Place a transparency of the past house procedure on the screen in case students would like to look at it.

GIVE NO INITIAL DISCUSSION OF THE TRANSPARENCY, JUST ALLOW STUDENTS TO REFER TO IT SHOULD THEY DESIRE TO.

On Computer: • Show an example and discuss it.
(If running out of time, use the transparency answer.)

Activity Sheet Lecture5/Group B2 (pass out sheet)

Transparency2: • Ask students to try and write a procedure for a tree of any size using variables.

On Computer: • Show a student example and discuss it.

Transparency: • Debrief the prepared answer shown on the transparency.
• Emphasize the syntax format for variable procedures.

Mention Homework Assignment #3
• Mention that homework assignment #3 will be similar to the previous projects, but it needs to use variables.
• More details will be discussed in the next lecture and lab.

Distribute Mini-Quiz (if time allows)
Lecture Day 6
Group B - Lesson Outline

Announcements:
1) Remind students that they should be attending the split lecture and labs.
2) Others

Review Single Variable Procedures
On Computer:
• Show the single variable procedure for a Rectangle
 • Run the procedure with various inputs.
 To Rectangle :W
 Repeat 2 [Fd :W Rt 90 Fd 100 Rt 90]
 End

Introduce Two Variable Procedures
On Computer:
• Modify the rectangle procedure to use two inputs
 • Run the procedure with various inputs.
 To Rectangle :W :L
 Repeat 2 [Fd :W Rt 90 Fd :L Rt 90]
 End

Show the Fill Command
On Computer:
• Draw a rectangle of typical dimensions.
 • Fill in the rectangle with use of the following:
 (Type in the command center)

 | Colors |
 |--------|
 | Pu | 0 Black |
 | Rt 45 | 1 White |
 | Fd 10 | 2 Green |
 | Pd | 3 Violet|
 | SetC 2 | 4 Orange|
 | Fill | 5 Blue |

• Mention that Fill is a Logo command, so students can not use "fill" as a name for a procedure.

• Emphasize that the turtle needs to be inside closed graphics before filling them.

Activity Sheet Lecture6/Group B1 (pass out sheet)
(Mention that students will receive an answer sheet later. They need to focus on a problem solving process rather than write down an answer on the transparency.)
Transparency: • Ask students to write a procedure to draw a SquareTri of any dimension, and fill it with any color. (using two inputs)

On Computer: • Show a typical answer (student or prepared).
• Emphasize it might be useful to move back out of the square at the end of the procedure.

Review Homework Assignment #3
Transparency: • Show an example of "Flags" project using variables and explain the importance of using the cognitive monitoring strategies to finish a complex programming task.
• Mention that students can use the previous homework projects but need to develop them using variables.
• Mention that students should hand in a project on a disk, planning sheet, and criteria sheet.

Distribute Mini-Quiz (if time allows)
Announcements:
1) Remind students that the Lecture midterm will be Tuesday October 16.
2) Remind students that Lab Midterms will begin Tuesday October 16.
3) Remind students that Tuesday October 9 will be the last split lecture, but split labs will continue for a total of four LogoWriter lab meetings.
4) Others

Review Two Variable Procedures
On computer: *Briefly show the procedure of:
To Rectangle :W :L
Repeat 2 [Fd :W Rt 90 Fd :L Rt 90]
End

Introduce Recursion

*Rationale of learning recursion
1. A person's daily activities are carried out in a cycle.
 *Learning of looping process is extremely important to understanding daily life problems.
2. In mathematics, many geometric figures can be expressed as repetition of a single figure.
3. Recursion is a powerful tool for computer scientists.
 *It is powerful when they know what to do but don't know how many times to repeat.

On Computer: *Type the following, ask students to predict the output:
(explain that recursion is a procedure that calls itself, etc...)
To Square :X
repeat 4[Fd :X Rt 90]
End
To Boxes :X (Ask Students to predict the output)
Square :X
Boxes :X - 10
End
(run the program)

*Add a conditional statement to stop the recursion:
If :X < 0 [Stop] (Place after To Boxes :X - 10, ask students to predict the outcome)

Activity Sheet Lecture7/Group B1 (pass out sheet)
(Mention that students will receive an answer sheet later. They need to focus on a problem solving process rather than write down an answer on the transparency.)
Transparency 1: • Ask students to try and write a procedure for a recursive tower.
(leave the Tower program up on the computer screen)

On Computer: • Show a student example.
• Emphasize the move statement and modularity.

Activity Sheet Lecture 7/Group B2 (pass out sheet)
Transparency 2: • Ask students to write a procedure for recursive houses.

On Computer: • Show a typical example and discuss it.
• Emphasize the move statement and modularity.
• Emphasize the syntax format for recursion.

Handout: • Pass out the answer sheet for recursive tower and houses.

Discuss Homework Assignment #4
Transparency: • Show an example of Homework Assignment #4, and explain that students need to use recursion.
• Mention that students should hand in a project on a disk, planning sheet, and criteria sheet.

Distribute Mini-Quiz (if time allows)
• Students can use their notes.
Announcements:
1) Remind students that the Lecture midterm will be Tuesday October 16.
2) Remind students that Lab Midterms will begin Tuesday October 16.
3) Remind students that Today will be the last split lecture, but split labs will continue until Monday October 15. (total of four LogoWriter lab meetings)
4) Others

Review Recursion
On Computer: • Type the following, ask students to predict the output:
 To pentagon :X
 Repeat 5[Fd :X Rt 72]
 End

 • Show the picture of Mystery and ask students to write a procedure for the graphic using recursion:
 *** • Mystery will draw pentagons infinitely with each succeeding pentagon getting bigger!!

 *** To Mystery :X
 Pentagon :X
 Mystery :X + 10
 End

 • Ask students how we can stop the above program.

Activity Sheet Lecture8/Group B (pass out sheet)
Transparency1: • Ask students to try and write a procedure for a recursive TwinCircles.
On Computer: • Show a student example.

Administrate a General Planning Strategy Test (30 minutes)
APPENDIX F: TRANSPARENCIES FOR INTRODUCTION TO COGNITIVE MONITORING
Introduction: Logo programming

- Invented by Seymour Papert at MIT
- Both a programming language and a learning environment for math and other content areas
- Philosophy of Logo programming
 1. Self-guided learning environment
 2. Learning through making mistakes
 3. Student control of computer environment

• Development of powerful ideas

 Primitives Recursion

 Procedure Variables

• Development of thinking skills

 Deductive Reasoning Analytical Reasoning

 Inductive Reasoning Analogical Reasoning

 Cognitive Monitoring
Cognitive Monitoring

Ability to regulate and evaluate one's own cognitive processes.

Cognitive monitoring activities include analyzing a problem, planning, self-testing, checking, assessing one's progress, and modifying one's thinking errors.
Example

Problem: Three months ago, Tom came to me and asked me to lend him $50.00. He said that he was sick but didn't have money to go to a doctor. He promised to pay back the money at the end of that month. I felt so sorry for him. So, I lent $50.00. Since then, I have observed Tom buying round after round of drinks for his friends. However, he claims to be too poor to repay the $50.00 he owes me. How can I make him pay back the money?

1. Defining the problem & Decomposing Step:
 - Since he buys drinks for his friends, he has money.
 - Tom seems not to be sufficiently serious about repaying his debt.
 - I shouldn't hurt his feeling.

2. Planning the Solution:
 - I consider a polite telephone call or a note reminding Tom of his indebtedness, but I decide instead to ask three very large friends of mine to visit Tom.

3. Executing the Solution:
 - I call my friends, who then deliver my message to Tom.

4. Evaluating the Solution:
 - Since Tom paid up rapidly without major bloodshed, I regard the problem as satisfactorily solved.

5. Modifying stage:
 - I revise my rules for lending money to Tom and reflect on the value of having a few large friends.
Benefits from Developing Cognitive Monitoring Skills

Cognitive Monitoring Skills...

1. Enhance learning performance

2. Transsituational Strategies: Can be used for solving problems in an artificial setting and real-world, everyday life situations

3. Essence of efficient problem solving process

4. Enhance efficient thinking skills and intelligence

Cognitive Monitoring Skills...

1. Need to be taught directly and explicitly

2. Need to be practice through a structured instruction

3. Need to be applied to doamin specific subjects as well as general problem solving situation
5 Basic Components of Cognitive Monitoring

1. **Decompose**
 Break a complex problem into smaller, self-contained problems and solve each part correctly.

2. **Plan**
 Consciously organize and sequence the decomposed problems to devise the solution to the problem efficiently.

3. **Execute**
 Test planned hypotheses or solutions.

4. **Identify Problem**
 Evaluate the actual outcome, locate errors, and explain the problem.

5. **Debug**
 Correct the detected errors or misconceptions.
Example

Situation:
You are employed as a salesman in a microcomputer production company. Even though you have used some software, you barely know anything about the hardware. Today, your boss brought in computer system and asked you to test if it works.

Your boss does not know that you've never troubleshot the computer hardware. He seemed to trust your knowledge about the computer. You don't want to be fired since recently you borrowed a lot of money to buy a new car.

Of course, you do not want to let your boss know your problem with the hardware. You have to hide your anxiety and try to do your best in this situation. How will you handle it? What do cognitive monitoring activities have to do with this terrible problem situation? Utilizing cognitive monitoring strategies may help you solve this problem.

A desired goal: Test a new apple computer if it works.

1. Decomposing stage:
 1. Separate each part of the computer and understand its function.
 2. Parts of the computer are: Computer, Keyboard, disk drive, monitor, cables and software.
 3. Cables are used to connect each part of the computer.

2. Planning stage:
 1. Need to figure out which cables are to be connected to which parts of the computer.
 2. Should connect a disk drive, a monitor, and a keyboard to the computer.
 3. Need software to test if the computer works after connecting all the parts of computer.

3. Executing stage:
 1. Spread all the parts of the computer out on the desk.
 2. Actually connect disk drives, monitor, and keyboard to the computer.
 3. Insert a disk into the disk drive and close the disk drive door.
 4. Turn on the computer power switch.

Actual outcome:
The red light on the disk drive flashes on and off, but nothing appears on the screen.

4. Identifying problem stage:
 Since nothing appears on the screen, check the monitor first.
 1. Was the monitor properly connected to the computer?
 2. Was the monitor's switch turned on?
 3. How about the screen contrast?

5. Debugging stage:
 1. Connect the monitor cable to the computer tightly.
 2. Turn on the monitor switch.
 3. Adjust the screen contrast.
Cognitive Monitoring in Logo Programming

Program Problem
Draw the following graphic.

Decompose
Shapes needed to build a house:
SQUARE
TRIANGLE
RECTANGLE

Plan
1. Draw a SQUARE.
2. Move the position to the door.
3. Draw a RECTANGLE.
4. Move the position to the roof.
5. Draw a triangle.

Execute
...writing actual codes which the computer can understand.
E.g.:
TO SQUARE
REPEAT 4[FD 40
RT 90]
END

Actual Outcome

Identify Problem
.....locate syntax errors/semantic errors and understand what the problem is.
E.g.: Moving from door to the roof is not correct.

Debug
Correct the errors.
APPENDIX G: EXAMPLES OF GENERAL COGNITIVE MONITORING ACTIVITY SHEETS: EXPERIMENTAL GROUP
APPLICATION OF DECOMPOSING
IN A MATHEMATICAL WORD PROBLEM

Mary and Lisa are planning a dinner party for which Mary prepares 5 dishes and Lisa prepares 3 dishes. Joan agrees to join them if she can pay for an equal share of the meal. If $4.00 is an equal share and if each dish is of equal value, how should Mary and Lisa split the $4.00 so that they also contribute an equal share to the meal?

Decomposing steps:
1. Step1:

2. Step2:

3. Step3:

4. Step4:

5. Step5:

Solution:
APPLICATION OF PROBLEM IDENTIFICATION AND DEBUGGING IN A MATHEMATICAL WORD PROBLEM

Mark has ten boxes. Of the ten boxes, five contain pencils, three contain pens, and two contain both pencils and pens. Now he wants to figure out how many empty boxes he has for crayolas. His solution is as follows:

Step 1: Of 10 boxes........5 contain pencils.
3 contain pens.
2 contain both pens and pencils.

Step 2: 5 + 3 + 2 = 10 boxes.
Step 3: Therefore, there are no empty boxes.

Do you think this solution is correct?
A. YES () NO ()

If you marked NO, complete the following:

B. Circle the statement(s) in which Mark made a critical error.

C. Describe what is wrong in the circled statement(s).

D. What is the correct solution to the problem?
APPLICATION OF COGNITIVE MONITORING TO WRITING A TERM PAPER

A desired goal (problem): Write a term paper for history class.

• Collect all the information you need in order to write a term paper on Early American History.

1. Decomposing Step:

2. Planning Step:

3. Executing Step:

4. Identifying the problem Step:
 A. Syntax errors....

 B. Semantic errors....

5. Debugging Step:
APPLICATION OF DECOMPOSING TO A MONEY PROBLEM

PROBLEM: Jack paid $330 for a TV wholesale. He wants to set the retail price in such a way that he can offer a 10% discount on the retail price and still make a 20% profit on the wholesale price. What should the retail price be?

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Solution:
APPLICATION OF PROBLEM IDENTIFICATION TO A MONEY PROBLEM

John has 5 times as many quarters as dimes. The value of the quarters exceeds the value of the dimes by $2.30. How many dimes does he have? John's solution is as follows:

Step 1: John has dimes = D, and quarters = 5 x D.

Step 2: Since the value of quarters (5D) exceeds the value of the dimes (D) by $2.30, the equation will be 5D - D = $2.30.

Step 3: 4D = $2.30, D = $.58, therefore 50 cents.
 John has 5 dimes.

Do you think this solution is correct?
A. YES () NO ()

If you marked NO, answer the following questions.
B. Circle the statement(s) in which John made a critical error.

C. Describe what is wrong in the circled statement(s).

D. What is the correct solution to the problem?
APPLICATION OF COGNITIVE MONITORING TO BUILD A HOUSE

The Rittscher family is building a new house. Scott is an electrician and Pole is a plumber. Jill, Kerri, Pat, and Tom are good hard workers and good with their hands. So they are going to do most of the work themselves.

Here is a list of the tasks, the amount of time needed to complete each task, and the order in which the tasks must be completed.

<table>
<thead>
<tr>
<th>Task</th>
<th>Time</th>
<th>Preceding Steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Site preparation</td>
<td>4 days</td>
<td>none</td>
</tr>
<tr>
<td>B. Foundation</td>
<td>6 days</td>
<td>site preparation (A)</td>
</tr>
<tr>
<td>C. Drains & services</td>
<td>3 days</td>
<td>site preparation (A)</td>
</tr>
<tr>
<td>D. Framing</td>
<td>10 days</td>
<td>foundation (B)</td>
</tr>
<tr>
<td>E. Roof</td>
<td>5 days</td>
<td>framing (D)</td>
</tr>
<tr>
<td>F. Windows</td>
<td>2 days</td>
<td>roof (E)</td>
</tr>
<tr>
<td>G. Plumbing</td>
<td>4 days</td>
<td>drains & services (C), roof (E)</td>
</tr>
<tr>
<td>H. Electrical work</td>
<td>3 days</td>
<td>roof (E)</td>
</tr>
<tr>
<td>I. Insulation</td>
<td>2 days</td>
<td>plumbing (G), electrical work (H)</td>
</tr>
<tr>
<td>J. Shell</td>
<td>6 days</td>
<td>windows (F)</td>
</tr>
<tr>
<td>K. Cleanup and painting</td>
<td>6 days</td>
<td>insulation (I)</td>
</tr>
</tbody>
</table>

Question 1: On what day will Scott and Pole be needed?

Question 2: Jill and Kerri will only be able to help during cleanup and painting. Until then they will be with their grandparents. How long will their vacation be?
• Understanding the problem & Decomposing:

1. What jobs need to be completed before plumbing and electrical work.

2. What jobs need to be completed before cleanup and painting.

• Planning:

 1. Sequence & strategies

• Executing:

• Identifying problem & Debugging:
APPLICATION OF COGNITIVE MONITORING TO A LANGUAGE PROBLEM

PROBLEM:
Jessica knows French and German, Jill knows Swedish and Russian, Cindy knows Spanish and French, and Paula knows German and Swedish.

If French is easier than German, Russian is harder than Swedish, German is easier than Swedish, and Spanish is easier than French, which girl knows the most difficult language?

How would you apply the 5 steps of cognitive monitoring you learned so far?

Using those steps, solve the above problem.
• Decomposing step:

• Planning step:

• Executing step:

• Identifying problem & Debugging step:
APPLICATION OF COGNITIVE MONITORING TO MAKING A LIST

PROBLEM: Tom, Jane, Mike, and Kris decided to sit in the first four seats of a roller coaster. How many different seating orders are there?

Sample seating order

A B C D

1. Read the above problem carefully and understand what the question is.

2. Decompose the problem:

3. Plan:

4. Execute:

5. Identify the problem & Debug:
APPLICATION OF COGNITIVE MONITORING TO
A LOGIC PROBLEM

PROBLEM:
Of the four people playing cards two are men and two are women. After the
game, Ms. Jones says she does not want to be Bill's partner ever again because he
was too silly and didn't concentrate. Betty is good friends with Donna, although she
was Frank's partner. Frank sits to the right of Donna. Mr. Daniels sits between Ms.
Bloom and Mr. Johnson. What is each person's full names and where is each
person seated?

Decomposing step:

Planning step:

Executing step:
Full names are —

They are seated —

Identifying problem & Debugging:
APPENDIX H: INSTRUCTION OUTLINE FOR LABORATORY:
EXPERIMENTAL GROUP
Lab Day 1
Group A - Lesson Outline

Attendance, Record Keeping, Announcements
- Ask each student their name and place a check on the roster as they enter.
 (Please make sure students are in the right place!)
- Collect AppleWorks Assignment (Let students keep their data disk).
- Mention to students that part of the instruction will involve turning on and
 turning off the monitors so that everyone is doing the same thing.

Boot up LogoWriter
- Make sure all students have a LogoWriter disk. (If not, loan or trade disks.)
- Have students boot up LogoWriter, and start a new page.

Practice with the Primitives
On Computers: • Allow students to practice using the primitive commands.
 (about 5 minutes, primitives are on the chalkboard.)

FD ∞ RT ∞ PU HT HOME
BK ∞ LT ∞ PD ST CG

Practice with the Repeat Statement
On Computers: • Allow students to practice using the repeat commands.
 (Exploration for about 5 minutes, trying these examples.)
 (These should be on the chalkboard, too.)

Repeat 4 [Fd 50 Rt 90] (square)
Repeat 3 [Fd 50 Rt 120] (triangle)
Repeat 2 [Fd 50 Rt 90 Fd 100 Rt 90] (rectangle)

Review Procedures
Demonstration: • Show how to enter the "open-apple-F" editor.
 • Show again how to build these procedures:

To Square
Repeat 4 [Fd 50 Rt 90] To Triangle
End

On Computer: • Have students enter and test the Square and Triangle
 procedures.
• Have students enter and test the Rectangle procedure.
 (About 5 minutes.)
Cognitive Monitoring Activity Sheet #Lab1/A1 (pass out the sheets now.)

Transparency 1: • Work through the sheet of cognitive monitoring strategies step by step with student discussion.

(DECOMPOSE, PLAN, EXECUTE) Students not on computers

MONITORS ON

On Computer: • Execute the plan and show the result.

• IDENTIFY PROBLEM:
 1. Discuss what is the discrepancy.
 2. Discuss the location of code(s) that causes error.
 3. Discuss what the problem is in the code(s).

• DEBUG: Correct the code(s) and see the new result.

Review Procedures within Procedures

Demonstration: • Review how to use procedures within procedures with:

<table>
<thead>
<tr>
<th>To SimpleStack</th>
<th>To Rectangle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectangle</td>
<td>Repeat 2[Fd 25 Rt 90 Fd 50 Rt 90]</td>
</tr>
<tr>
<td>Move Rectangle</td>
<td>End</td>
</tr>
<tr>
<td>End</td>
<td>To Move</td>
</tr>
<tr>
<td></td>
<td>Fd 25 Rt 90 Fd 25 Lt 90</td>
</tr>
<tr>
<td></td>
<td>End</td>
</tr>
</tbody>
</table>

Cognitive Monitoring Activity Sheet #Lab1/A2 (pass out the sheets now.)

Transparency 2: • Work through the sheet of cognitive monitoring strategies step by step with student discussion.

(DECOMPOSE, PLAN, EXECUTE) Students not on computers

MONITORS ON

On Computers: • Have students try their program on the computer.

(Students keep a record on the activity sheet.)

• See the outcome and compare it to the planned graphic.

On the Sheets: • IDENTIFY PROBLEM:
 1. Discuss what is the discrepancy.
 2. Discuss the location of code(s) that causes error.
 3. Discuss what the problem is in the code(s).

On Computers: • DEBUG: Correct the code(s) and see the new result.
MONITORS OFF

Cognitive Monitoring Activity Sheet #Lab1/A3 (pass out the sheets now.)
(Students activity)

Transparency: Allow students to apply the steps of cognitive monitoring strategies for about 10 minutes.

DECOMPOSE, PLAN, EXECUTE

MONITORS ON

On Computers: Have students try their program on the computer.
On the Sheets:

IDENTIFY PROBLEM:
1. Discuss what is the discrepancy.
2. Discuss the location of code(s) that causes error.
3. Discuss what the problem is in the code(s).

On Computers: DEBUG: Correct the code(s) and see the new result.

INSTRUCTOR HELPS STUDENTS INDIVIDUALLY.
FEEL FREE TO TALK ABOUT THEIR PROJECTS AND ALLOW STUDENTS TO COOPERATE WITH EACH OTHER TO CORRECT ERRORS.

MONITORS OFF

Review Homework Assignment #1

Make sure that students have a homework planning sheet.
Insure that students have a homework grading sheet.
(Students will hand in disk, planning sheet, & grading sheet)
Discuss what will need to be handed in for a grade.

Transparency: Show an example of Homework Assignment #1 on transparency.

STUDENTS MUST SHOW A FAIRLY COMPLETE PLANNING SHEET TO THE LAB INSTRUCTOR BEFORE BEING ALLOWED TO TURN ON THEIR MONITOR AND WORK ON THE COMPUTER.

MONITORS ON

Allow students to work on Homework

For the rest of the time, students work on their own homework.
To save, use NP "lastname 1", and press <escape>.
Lab Day 2
Group A - Lesson Outline

Attendance, Record Keeping, Announcements
• Hand back any assignments that need to be returned to students.
• Have students turn in their LogoWriter projects by:
 1) Booting up their project so that it can appear on the screen.
 2) Making sure that the page holding their project is named with their
 "lastname 1", if not, they need to rename the page with this name.
 3) Inserting the instructor's master disk, and pressing <escape>.
 (This saves it on the instructor's disk.)
 4) Students must turn in their planning and criteria sheets but will
 keep their own LogoWriter disk.

Review Regular Polygon

Demonstration:
• Briefly show the total turtle trip theorem.
 Repeat ___[Fd ___ Rt ___] or ___[Fd ___ Lt ___] (Total turtle trip
 should be 360 degrees.)

• Have students figure out degrees and shapes.
 Repeat 6[Fd 40 Rt ___] (Hexagon)
 Repeat 5[Fd 40 Lt ___] (Pentagon)

• Briefly show the following procedure:
 To Stick To Line
 Fd 40 Bk 40 Repeat 2[Stick Rt 360/2]
 End End

MONITORS OFF

On Computers:
• Have students type the above procedure.
• Then, have students make CROSS, ASTERISK,
 SNOWFLAKE, etc.
 To Cross To Asterisk
 Repeat 4[Stick Rt 90] Repeat 6[Stick Rt 360/6]
 End End

 To Snowflake
 Repeat 8[Stick Rt 360/8]
 End

MONITORS OFF

Cognitive Monitoring Activity Sheet #Lab2A1 (pass out the sheets now.)

Transparency 1:
• Work through the sheet of cognitive monitoring
 strategies step by step with student discussion.
 (DECOMPOSE, PLAN, EXECUTE) Students not on computer
On Computer: • Execute the plan and show the result.

• IDENTIFY PROBLEM:
 1. Discuss what is the discrepancy.
 2. Discuss the location of code(s) that causes error.
 3. Discuss what the problem is in the code(s).

• DEBUG: Correct the code(s) and see the new result.

MONITORS OFF

Cognitive Monitoring Activity Sheet #Lab2/A2 (pass out the sheets now.)

Transparency 2: • Allow students to apply the steps of cognitive monitoring strategies for about 10 minutes.
(Student activity)
(DECOMPOSE, PLAN, EXECUTE)

MONITORS ON

On Computers: • Have students try their program on the computer.
On the Sheets: • IDENTIFY PROBLEM:
 1. Discuss what is the discrepancy.
 2. Discuss the location of code(s) that causes error.
 3. Discuss what the problem is in the code(s).

On Computers: • DEBUG: Correct the code(s) and see the new result.
• INSTRUCTOR HELPS STUDENTS INDIVIDUALLY.
FEEL FREE TO TALK ABOUT THEIR PROJECTS AND ALLOW STUDENTS TO COOPERATE WITH EACH OTHER TO CORRECT ERRORS.

Review Homework Assignment #2

• Distribute the homework planning sheets and criteria sheets.

Transparency:

• Discuss what is expected for Homework assignment #2 by going over the planning and criteria sheets.

STUDENTS MUST HAND IN A COMPLETED PLANNING SHEET WITH THE PROJECT NEXT WEEK.

Make sure students save at least once while in the lab

Allow students to work on Homework

• For the rest of the time, students work on their own homework.
• Students should leave lab with at least part of their project saved under a page named with "lastname2".
Lab Day 3
Group A - Lesson Outline

Attendance, Record Keeping, Announcements
• Hand back the LogoWriter Assignment #1 grading sheets.
• Have students turn in LogoWriter projects by:
 1) Booting up their project so that it can appear on the screen.
 2) Making sure that the page holding their project is named with their
 "lastname2", if not, they need to rename the page with this name.
 3) Inserting the instructor's master disk, and pressing <escape>.
 4) Students must turn in their planning and criteria sheets but will
 keep their own LogoWriter disk.

Review Variables

MONITORS OFF
Demonstration:
• Briefly show the variable square and triangle procedures:
 To Square :X
 To Triangle :X
 Repeat 4[Fd :X Rt 90] Repeat 3[Fd :X Rt 120]
 End End

 • Mention that to run these programs students must type
 Square 40, etc.

MONITORS ON
On Computers:
• Have students test square and triangle procedures using
 variables.

 • Discuss the Stack procedure using variables:
 (Type it in and ask students to predict output
 when Stack 10 is run.)

 To Stack :X
 Square :X (Square :X already in editor)
 Fd :X + 10
 Square :X + 10
 Fd :X + 20
 Square :X + 20
 End

MONITORS OFF

Cognitive Monitoring Activity Sheet #Lab3/A1 (pass out the sheets now.)
Transparency 1:
• Work through the sheet of cognitive monitoring
 strategies step by step with student discussion.
 (DECOMPOSE, PLAN, EXECUTE) Students not on computers
MONITORS ON

On Computer: • Execute the plan and show the result.

• **IDENTIFY PROBLEM:**
 1. Discuss what is the discrepancy.
 2. Discuss the location of code(s) that causes error.
 3. Discuss what the problem is in the code(s).

• **DEBUG:** Correct the code(s) and see the new result.

MONITORS OFF

Review Procedures with Two Variable Input

Demonstration: • Have students write the variable rectangle procedure.

(Allow them about 5 minutes.)

• Show the procedure and discuss using more than one variables.

To Rectangle :W :L
Repeat 2[Fd :W Rt 90 Fd :L Rt 90]
End

(Mention that they can use any letter or word as a variable name.)

MONITORS OFF

Cognitive Monitoring Activity Sheet #Lab3/A2 (pass out the sheets now.)

Transparency 2: • Work through sheet of cognitive monitoring strategies step by step with student discussion.

(DECOMPOSE, PLAN, EXECUTE)

Students not on computers

MONITORS ON

On Computer: • Execute the plan and show the result.

On the Sheets: • **IDENTIFY PROBLEM:**
 1. Discuss what is the discrepancy.
 2. Discuss the location of code(s) that causes error.
 3. Discuss what the problem is in the code(s).

On Computers: • **DEBUG:** Correct the code(s) and see the new result.

MONITORS OFF

Cognitive Monitoring Activity Sheet #Lab3/A3 (pass out the sheets now.)

Transparency 3: • Allow students to apply the steps of cognitive monitoring strategies for about 10 minutes.

(DECOMPOSE, PLAN, EXECUTE)

MONITORS ON

On Computers: • Have students try their program on the computer.

On the Sheets: • **IDENTIFY PROBLEM:**
 1. Discuss what is the discrepancy.
2. Discuss the location of code(s) that causes error.
3. Discuss what the problem is in the code(s).

On Computers:
• DEBUG: Correct the code(s) and see the new result.
• INSTRUCTOR HELPS STUDENTS INDIVIDUALLY.
FEEL FREE TO TALK ABOUT THEIR PROJECTS AND ALLOW STUDENTS TO COOPERATE WITH EACH OTHER TO CORRECT ERRORS.

Review Homework Assignment #3
• Distribute the homework planning sheets and criteria sheets.

Transparency:
• Discuss what is expected for Homework assignment #3 by going over the planning and criteria sheets.

STUDENTS MUST HAND IN A COMPLETED PLANNING SHEET WITH THE PROJECT NEXT WEEK.

Make sure students save at least once while in lab

Allow students to work on Homework
• For the rest of the time, students work on their own homework.
• Students should leave the lab with at least part of their project saved under a page named with "lastname3",
Lab Day 4
Group A - Lesson Outline

Attendance, Record Keeping, Announcements

• Hand back the LogoWriter Assignment#2 grading sheet.
• Have students turn in LogoWriter projects by:
 1) Booting up their project so that it can appear on the screen.
 2) Making sure that the page holding their project is named with their
 "lastname3", if not, they need to rename the page with this name.
 3) Inserting the instructor's master disk, and pressing <escape>.
 4) Students must turn in their planning and criteria sheets but will
 keep their own LogoWriter disk.

Review Recursion

Demonstration: • Briefly show the recursion procedure:
 (Ask for a prediction of what it does.)

To Boxes :X
Square :X
Boxes :X - 10
End
To Square :X
Repeat 4[Fd :X Rt 90]
End

• Ask students what is occurring.
 (Boxes is calling itself, infinite looping, etc.)

• Add a stop statement: If :X < 10 [Stop]

Demonstration: • Now show the following recursion example:
 (Ask students for the output, given a specific input)

To Coil :X
If :X<1 [Stop]
Circle
Move
Coil :X - 1
End
To Circle
Repeat 36[Fd 2 Rt 10]
End
Pu Fd 20 Pd
End

On Computers: • Have students try to type in and run the coil procedure.

MONITORS OFF

Cognitive Monitoring Activity Sheet #Lab4/A1 (pass out the sheets now.)

Transparency: • Work through the sheet of cognitive monitoring
 strategies step by step with student discussion.
 (DECOMPOSE, PLAN, EXECUTE) Students not on computers
260

MONITORS ON

On Computer: • Execute the plan and show the result.
(Students keep a record on the activity sheet.)

On the Sheets: • **IDENTIFY PROBLEM:**
1. Discuss what is the discrepancy.
2. Discuss the location of code(s) that causes error.
3. Discuss what the problem is in the code(s).

On Computers: • **DEBUG:** Correct the code(s) and see the new result.

MONITORS OFF

Cognitive Monitoring Activity Sheet #Lab4/A2 (pass out the sheets now.)

Transparency 2: • Allow students to apply the steps of cognitive monitoring strategies for about 10 minutes.
(DECOMPOSE, PLAN, EXECUTE)

MONITORS ON

On Computers: • Have students try their program on the computer.

On the Sheets: • **IDENTIFY PROBLEM:**
1. Discuss what is the discrepancy.
2. Discuss the location of code(s) that causes error.
3. Discuss what the problem is in the code(s).

On Computers: • **DEBUG:** Correct the code(s) and see the new result.

INSTRUCTOR HELPS STUDENTS INDIVIDUALLY.

FEEL FREE TO TALK ABOUT THEIR PROJECTS AND ALLOW STUDENTS TO COOPERATE WITH EACH OTHER TO CORRECT ERRORS.

Brief Discussion of Cognitive Monitoring

Discussion: • Ask students the following Questions:

1) What do you think about utilizing cognitive monitoring strategies in Logo programming?

2) What are the implications of cognitive monitoring strategies in education?

3) Are the implications important? Why? Why not?

4) In what other problem situations, can we use Cognitive Monitoring Strategies? (Writing papers—divide contents, plan how to organize the paper, revise it. Solving complex math problems, Grocery Shopping, etc.)

5) How do they feel about teaching Logo programming in schools? (What are students’ benefits after learning Logo programming? What kinds of thinking skills can be improved? etc.).
Review Homework Assignment #4

• Distribute the homework planning sheets and criteria sheets.

Transparency:

• Discuss what is expected for Homework assignment #4 by going over the planning and criteria sheets.

STUDENTS MUST HAND IN A COMPLETED PLANNING SHEET WITH THE PROJECT NEXT WEEK.

Make sure students save at least once while in lab

Allow students to work on Homework

• For the rest of the time, students work on their own homework.
• Students should leave the lab with at least part of their project saved under a page named with "lastname4".
APPENDIX I: INSTRUCTION OUTLINE FOR LABORATORY:
CONTROL GROUP
Attendance, Record Keeping, Announcements

- Ask students their names and place a check on the roster as they enter.
 (Please make sure students are in the right place!)
- Collect AppleWorks Assignment (Let students keep their data disk).
- Mention to students that part of the instruction will involve turning on and
 turning off the monitors so that everyone is doing the same thing.

Boot up LogoWriter

MONITORS ON

- Make sure all students have a LogoWriter disk. (If not, loan or trade disks.)
- Have students boot up LogoWriter and start a new page.

Practice with the Primitives

On Computers: • Allow students to practice using the primitive commands.
 (About 5 minutes, primitives are on chalkboard.)

 FD xx RT xx PU HT HOME
 BK xx LT xx PD ST CG

Practice with the Repeat Statement

On Computers: • Allow students to practice using the repeat commands.
 (Exploration for about 5 minutes trying these examples.)
 (These should be on the chalkboard, too.)

 Repeat 4 [Fd 50 Rt 90] (square)
 Repeat 3 [Fd 50 Rt 120] (triangle)
 Repeat 2 [Fd 50 Rt 90 Fd 100 Rt 90] (rectangle)

Review Procedures

MONITORS OFF

Demonstration: • Show how to enter the "open-apple-F" editor.
 • Show again how to build these procedures:

To Square
Repeat 4 [Fd 50 Rt 90]
End

To Triangle
Repeat 3 [Fd 50 Rt 120]
End

MONITORS ON

On Computer: • Have students enter and test the Square and Triangle
 procedures.
 • Have students enter and test the Rectangle procedure.
 (About 5 minutes.)
MONITORS STILL ON

Class Activity Sheet Lab 1/B1 (pass out the sheets now)

On Computers: • Have students try to develop a program for the shape of the figure on the activity sheet. They should be encouraged to work immediately on the computer.

• Encourage students to keep a record of output attempts and any other notes on the activity sheet.

MONITORS OFF

Discussion: • Show the transparency of a typical answer.
• Review the procedure and respond to questions.

Review Procedures within Procedures

Demonstration: • Review how to use procedures within procedures with:

```
To SimpleStack
Rectangle
Move
Rectangle
End

To Rectangle
Repeat 2[Fd 25 Rt 90 Fd 50 Rt 90] End

Rectangle

To Move
Fd 25 Rt 90 Fd 25 Lt 90 End
```

MONITORS ON

Class Activity Sheet Lab 1/B2 (pass out the sheets now)

On Computers: • Have students try to develop a program for the shape of the figure on the activity sheet. They should be encouraged to work immediately on the computer.

• Encourage students to keep a record of output attempts and any other notes on the activity sheet.

MONITORS OFF

Discussion: • Show the transparency of a typical answer.
• Review the procedure and respond to questions.

MONITORS ON

Class Activity Sheet Lab 1/B3 (pass out sheet now)

On Computers: • Have students try to develop a program for the shape of the figure on the activity sheet. They should be encouraged to work immediately on the computer.
• Encourage students to keep a record of output attempts and any other notes on the activity sheet.

MONITORS OFF

Discussion:
• Show the transparency of a typical answer.
• Review the procedure and respond to questions.

MONITORS STILL OFF

Review Homework Assignment #1
• Make sure that students have a homework planning sheet.
• Make sure that students have a homework grading sheet.
 (They will hand in disk, planning sheet, & grading sheet)
• Discuss what needs to be handed in for a grade.

Transparency:
• Show an example of Homework Assignment #1 on transparency.

MONITORS ON

• Encourage students to start their assignment by working on the computer immediately. They can write out their planning sheets at any time; however, must be completed as part of the overall assignment.

• For the rest of the time, students work on their own homework.
• To save, use NP "lastname 1 , and press <escape>.
Lab Day 2
Group B - Lesson Outline

Attendance, Record Keeping, Announcements
- Hand back any assignments that need to be returned to students.
- Have students turn in their LogoWriter projects by:
 1) Booting up their project so that it appears on the screen.
 2) Making sure that the page holding their project is named with their "lastname1", if not, they need to rename the page with this name.
 3) Inserting the instructor's master disk, and pressing <escape>.
 (This saves it on the instructor's disk.)
 4) Students must turn in their planning and criteria sheets but will keep their own LogoWriter disk.

Review Regular Polygon MONITORS OFF
Demonstration:
- Briefly show the total turtle trip theorem.
 Repeat [Fd _ _ Rt _] or (Total turtle trip
 Repeat [Fd _ _ Lt _] should be 360 degrees)
- Have students figure out degrees and shapes.
 Repeat 6[Fd 40 Rt _] (Hexagon)
 Repeat 5[Fd 40 Lt _] (Pentagon)
- Briefly show the following procedure
 To Stick
 Fd 40 Bk 40 Repeat 2[Stick Rt 360/2]
 End

MONITORS ON
On Computers:
- Have students type the above procedure.
- Then, have students make CROSS, ASTERISK, SNOWFLAKE, etc.

To Cross
Repeat 4[Stick Rt 90] Repeat 6[Stick Rt 360/6]
End
End

To Snowflake
Repeat 8[Stick Rt 360/8]
End

MONITORS STILL ON

Class Activity Sheet Lab 2/B1 (pass out the sheets now)
On Computers:
- Have students try to develop a program for the shape of the figure on the activity sheet. They should be encouraged to work immediately on the computer.
• Encourage students to keep a record of output attempts and any other notes on the activity sheet.

MONITORS OFF

Discussion:
- Show the transparency of a typical answer.
- Review the procedure and respond to questions.

MONITORS ON

Class Activity Sheet Lab 2/B2 (pass out the sheets now)

On Computers:
- Have students try to develop a program for the shape of the figure on the activity sheet. They should be encouraged to work immediately on the computer.

- Encourage students to keep a record of output attempts and any other notes on the activity sheet.

MONITORS OFF

Discussion:
- Show the transparency of a typical answer.
- Review the procedure and respond to questions.

MONITORS STILL OFF

Review Homework Assignment #2

Transparency:
- Show an example of Homework Assignment #2 on transparency.
- Mention that students may want to plan a desired graphic first on a sheet. *(Refer to the handout given in the lecture, extras available.)*
- To save, use NP "lastname2 command, and press <escape>.

MONITORS ON

Make sure students save at least once while in the lab

Allow students to work on their Homework
- Encourage students to start their assignment by working on the computer immediately. They can write out their planning sheet at any time; however, must be completed as part of an overall assignment.

- For the rest of the time, students work on their own homework.

- Students should leave lab with at least part of their project saved under a page named "lastname2."
Lab Day 3
Group B - Lesson Outline

Attendance, Record Keeping, Announcements
• Hand back LogoWriter Assignment #1 grading sheets.
• Have students turn in LogoWriter projects by:
 1) Booting up their project so that it appears on the screen.
 2) Making sure that the page holding their project is named with their
 "lastname2", if not, they need to rename the page with this name.
 3) Inserting the instructor's master disk, and pressing <escape>.
 4) Students must turn in their planning and criteria sheets but will
 keep their own LogoWriter disk.

Review Variables

Demonstration: • Briefly show the variable square and triangle procedures:

To Square :X
Repeat 4[Fd :X Rt 90]
End

To Triangle :X
Repeat 3[Fd :X Rt 120]
End

MONITORS OFF

• Mention that to run these programs, students must type
 Square 40, etc.

MONITORS ON

On Computers: • Have students test square and triangle procedures using
 variables.

• Discuss the Stack procedure using variables:
 (Type it in and ask students to predict the output
 when Stack 10 is run.)

To Stack :X
Square :X (Square :X already in editor)
Fd :X + 10
Square :X + 10
Fd :X + 20
Square :X + 20
End

MONITORS STILL ON

Class Activity Sheet Lab 3/B1 (pass out the sheets now)

On Computers: • Have students try to develop a program for the shape of the
 figure on the activity sheet. They may either work directly on
 the computer or write it out first.
• Encourage students to keep a record of output attempts and any other notes on the activity sheet.

MONITORS OFF

Discussion:
• Show the transparency of a typical answer.
• Review the procedure and respond to questions.

Review Procedures with Two Variable Input

Demonstration:
• Have students write the variable rectangle procedure.

 (Allow them about 5 minutes.)
• Show the procedure and discuss using more than one variable.

To Rectangle :W :L
Repeat 2[Fd :W Rt 90 Fd :L Rt 90]
End

(Mention that they can use any letter or word as a variable name.)

MONITORS ON

Class Activity Sheet Lab 3/B2 (pass out the sheets now)

On Computers:
• Have students try to develop a program for the shape of the figure on the activity sheet. They should be encouraged to work immediately on the computer.

• Encourage students to keep a record of output attempts and any other notes on the activity sheet.

MONITORS OFF

Discussion:
• Show the transparency of a typical answer.
• Review the procedure and respond to questions.

MONITORS ON

Class Activity Sheet Lab 3/B3 (pass out the sheets now)

On Computers:
• Have students try to develop a program for the shape of the figure on the activity sheet. They should be encouraged to work immediately on the computer.

• Encourage students to keep a record of output attempts and any other notes on the activity sheet.

MONITORS OFF

Discussion:
• Show the transparency of a typical answer.
• Review the procedure and respond to questions.
Review Homework Assignment #3

• Distribute the homework planning sheets and criteria sheets.

Transparency:
• Show an example of Homework Assignment #3 on transparency.
• Mention that students may want to plan a desired graphic first on a sheet. (Refer to the handout given in lecture, extras available)
• To save use NP "lastname3 command, and press <escape>.

Make sure students save at least once while in the lab

Allow students to work on Homework

• Students may either work immediately on the computer or use the planning sheet first. However, the planning sheet must be completed when it is handed in.

• For the rest of the time, students work on their own homework.
Lab Day 4
Group B - Lesson Outline

Attendance, Record Keeping, Announcements
• Hand back LogoWriter Assignment #2 grading sheets.
• Have students turn in LogoWriter projects by:
 1) Booting up their project so that it appears on the screen.
 2) Making sure that the page holding their project is named with their "lastname3", if not, they need to rename the page with this name.
 3) Inserting the instructor's master disk, and pressing <escape>.
 4) Students must turn in their planning and criteria sheets but will keep their own LogoWriter disk.

Review Recursion
Demonstration: *Briefly show the recursion procedure:
(Ask for a prediction of what it does.)

To Boxes :X
Square :X
Boxes :X - 10
End
To Square :X
Repeat 4 [Fd :X Rt 90]
End

• Ask students what is occurring.
 (Boxes is calling itself, infinite looping, etc.)

• Add a stop statement: If :X < 10 [Stop]

Demonstration: *Now show the following recursion example:
(Ask students for the output, given a specific input)

To Coil :X
If :X<1 [Stop]
Circle
Move
Coil :X - 1
End
To Circle
Repeat 36 [Fd 2 Rt 10]
End
Pu Fd 20 Pd
(Use Coil 5, Coil 4, etc.)

On Computers: *Have students try to type in and run the coil procedure.

MONITORS STILL ON

Class Activity Sheet Lab 4/B1 (pass out the sheets now)

On Computers: *Have students try to develop a program for the shape of the figure on the activity sheet. They may either work directly on the computer or write it out first.
• Encourage students to keep a record of output attempts and any other notes on the activity sheet.

MONITORS OFF

Discussion:
• Show the transparency of a typical answer.
• Review the procedure and respond to questions.

MONITORS ON

Class Activity Sheet Lab 4/B2 (pass out the sheets now)

On Computers:
• Have students try to develop a program for the shape of the figure on the activity sheet. They may either work directly on the computer or write it out first.

• Encourage students to keep a record of output attempts and any other notes on the activity sheet.

MONITORS OFF

Discussion:
• Show the transparency of a typical answer.
• Review the procedure and respond to questions.

Brief Discussion of Logo

Discussion:
• Ask students the following Questions:
 1) What do you think about a self-discovery learning approach in Logo programming?
 2) What are the implications of a self-discovery learning approach in education?
 3) Are the implications important? Why? Why not?
 4) How could you use LogoWriter in the classroom?
 (contests, projects, etc.)
 5) Does using LogoWriter in pairs help or hurt students?
 6) How old should students be to begin Logo programming?
 (actually any age, etc.)

Review Homework Assignment #4

Transparency:
• Distribute the homework planning sheets and criteria sheets.
• Show an example of Homework Assignment #4 on transparency.
• Mention that students may want to plan a desired graphic first on a sheet. (*Refer to the handout given in lecture, extras available.*)
• To save, use NP "lastname4" command, and press <escape>.

Make sure students save at least once while in lab
Allow students to work on Homework

• Students may either work immediately on the computer or use the planning sheet first. However, the planning sheet must be completed when it is handed in.
• For the rest of the time, students work on their own homework.
APPENDIX J: STUDENT ACTIVITY SHEETS FOR LECTURE:
EXPERIMENTAL GROUP
Cognitive Monitoring Sheet

Graphic
(Teacher-Student Cooperative Activity)

Decompose:

Plan:

Execute:

Identify error:

Debug:

Directions:

- Apply the steps of cognitive monitoring strategies. (solution process)

1. Decompose: Break a large graphical output into manageable units.
2. Plan: Organize and sequence each component of the decomposed output in order to devise an efficient solution. (e.g., label each line, turn, move, repeat, or procedure)
3. Execute: Code each sequence into Logo commands.
4. Identify error:
 A. Describe discrepancy between the given graphic and the actual outcome.
 B. Locate syntax errors. (e.g., To-end, use of the same procedure name more than once, space between primitives and input, misspelling, etc.)
 C. Locate semantic errors. (e.g., subprocedures are called in wrong order, too many/few repeat processes, turn, move, etc.)
 D. Explain the cause(s) of the detected errors.
5. Debug: Revise detected errors.

*Evaluation of cognitive monitoring strategies:

Decompose: Right size to handle________ Too small_________ Too large_________
Plan: Appropriate_________ Not appropriate_______ Not quite appropriate_______
Debug: What seems wrong? (Describe in words.)
Cognitive Monitoring Sheet

(Graphic)

(Student Activity)

Decompose:

Plan:

Execute:

Identify error:

Debug:

Directions:

- Apply the steps of cognitive monitoring strategies. *(solution process)*

1. **Decompose:** Break a large graphical output into manageable units.
2. **Plan:** Organize and sequence each component of the decomposed output in order to devise an efficient solution. *(e.g., label each line, turn, move, repeat, or procedure)*
3. **Execute:** Code each sequence into Logo commands.
4. **Identify error:**
 - A. Describe discrepancy between the given graphic and the actual outcome.
 - B. Locate syntax errors. *(e.g., To-end, use of the same procedure name more than once, space between primitives and input, misspelling, etc.)*
 - C. Locate semantic errors. *(e.g., subprocedures are called in wrong order, too many/few repeat processes, turn, move, etc.)*
 - D. Explain the cause(s) of the detected errors.
5. **Debug:** Revise detected errors.

Evaluation of cognitive monitoring strategies:

Decompose: Right size to handle ________ Too small ________ Too large ________

Plan: Appropriate ________ Not appropriate ________ Not quite appropriate ________

Debug: What seems wrong? *(Describe in words.)*
Cognitive Monitoring Sheet

(Graphic)

(Teacher-Student Cooperative Activity)

Decompose:

Plan:

Execute:

Identify error:

Debug:

Directions:
- Apply the steps of cognitive monitoring strategies. (solution process)

1. Decompose: Break a large graphical output into manageable units.
2. Plan: Organize and sequence each component of the decomposed output in order to devise an efficient solution. (e.g., label each line, turn, move, repeat, or procedure)
3. Execute: Code each sequence into Logo commands.
4. Identify error:
 A. Describe discrepancy between the given graphic and the actual outcome.
 B. Locate syntax errors. (e.g., To-end, use of the same procedure name more than once, space between primitives and input, misspelling, etc.)
 C. Locate semantic errors. (e.g., subprocedures are called in wrong order, too many/few repeat processes, turn, move, etc.)
 D. Explain the cause(s) of the detected errors.
5. Debug:
 Revise detected errors.

* Evaluation of cognitive monitoring strategies:
Decompose: Right size to handle________ Too small_________ Too large_________
Plan: Appropriate__________ Not appropriate_______ Not quite appropriate_______
Debug: What seems wrong? (Describe in words.)
Cognitive Monitoring Sheet

Graphic
(Student Activity)

Decompose:

Plan:

Execute:

Identify error:

Debug:

Directions:
- Apply the steps of cognitive monitoring strategies. (solution process)

1. **Decompose**: Break a large graphical output into manageable units.
2. **Plan**: Organize and sequence each component of the decomposed output in order to devise an efficient solution. (e.g., label each line, turn, move, repeat, or procedure)
3. **Execute**: Code each sequence into Logo commands.
4. **Identify error**:
 A. Describe discrepancy between the given graphic and the actual outcome.
 B. Locate syntax errors. (e.g., To-end, use of the same procedure name more than once, space between primitives and input, misspelling, etc.)
 C. Locate semantic errors. (e.g., subprocedures are called in wrong order, too many/few repeat processes, turn, move, etc.)
 D. Explain the cause(s) of the detected errors.
5. **Debug**: Revise detected errors.

*Evaluation of cognitive monitoring strategies:

Decompose: Right size to handle__________ Too small__________ Too large__________
Plan: Appropriate__________ Not appropriate______ Not quite appropriate________
Debug: What seems wrong? (Describe in words.)
Cognitive Monitoring Sheet

(Graphic
(Teacher-Student Cooperative Activity)

Decompose:

Plan:

Execute:

Identify error:

Debug:

Directions: * Apply the steps of cognitive monitoring strategies. (solution process)

1. Decompose: Break a large graphical output into manageable units.
2. Plan: Organize and sequence each component of the decomposed output in order to devise an efficient solution. (e.g., label each line, turn, move, repeat, or procedure)
3. Execute: Code each sequence into Logo commands.
4. Identify error:
 A. Describe discrepancy between the given graphic and the actual outcome.
 B. Locate syntax errors. (e.g., To-end, use of the same procedure name more than once, space between primitives and input, misspelling, etc.)
 C. Locate semantic errors. (e.g., subprocedures are called in wrong order, too many/few repeat processes, turn, move, etc.)
 D. Explain the cause(s) of the detected errors.
5. Debug: Revise detected errors.

* Evaluation of cognitive monitoring strategies:
Decompose: Right size to handle ________ Too small ________ Too large ________
Plan: Appropriate ________ Not appropriate ________ Not quite appropriate ________
Debug: What seems wrong? (Describe in words.)
Cognitive Monitoring Sheet

Graphic
(Teacher-Student Cooperative Activity)

Decompose:

Plan:

Execute:

(any size desired)

Identify error:

Debug:

Directions:
• Apply the steps of cognitive monitoring strategies. (solution process)

1. Decompose: Break a large graphical output into manageable units.
2. Plan: Organize and sequence each component of the decomposed output in order to devise an efficient solution. (e.g., label each line, turn, move, repeat, or procedure)
3. Execute: Code each sequence into Logo commands.
4. Identify error:
 A. Describe discrepancy between the given graphic and the actual outcome.
 B. Locate syntax errors. (e.g., To-end, use of the same procedure name more than once, space between primitives and input, misspelling, etc.)
 C. Locate semantic errors. (e.g., subprocedures are called in wrong order, too many/few repeat processes, turn, move, etc.)
 D. Explain the cause(s) of the detected errors.
5. Debug: Revise detected errors.

*Evaluation of cognitive monitoring strategies:
Decompose: Right size to handle_____________ Too small ____________ Too large ____________
Plan: Appropriate ______ Not appropriate ______ Not quite appropriate ______
Debug: What seems wrong? (Describe in words.)
Cognitive Monitoring Sheet

Graphic
(Student Activity)

Decompose:

Plan:

Execute:

(any size desired, but stem should be twice longer than any size)

Identify error:

Debug:

Directions:

* Apply the steps of cognitive monitoring strategies. (solution process)

1. **Decompose:** Break a large graphical output into manageable units.
2. **Plan:** Organize and sequence each component of the decomposed output in order to devise an efficient solution. (e.g., label each line, turn, move, repeat, or procedure)
3. **Execute:** Code each sequence into Logo commands.
4. **Identify error:**
 A. Describe discrepancy between the given graphic and the actual outcome.
 B. Locate syntax errors. (e.g., To-end, use of the same procedure name more than once, space between primitives and input, misspelling, etc.)
 C. Locate semantic errors. (e.g., subprocedures are called in wrong order, too many/few repeat processes, turn, move, etc.)
 D. Explain the cause(s) of the detected errors.
5. **Debug:** Revise detected errors.

*Evaluation of cognitive monitoring strategies:

Decompose: Right size to handle ______ Too small ________ Too large ____________
Plan: Appropriate ________ Not appropriate ________ Not quite appropriate ________
Debug: What seems wrong? (Describe in words.)
Cognitive Monitoring Sheet

Graphic
(Teacher-Student Cooperative Activity)

Decompose:

Plan:

Execute:

(any size, and any color desired)

Identify error:

Debug:

Directions:

• Apply the steps of cognitive monitoring strategies. (solution process)

1. **Decompose**: Break a large graphical output into manageable units.
2. **Plan**: Organize and sequence each component of the decomposed output in order to devise an efficient solution. (e.g., label each line, turn, move, repeat, or procedure)
3. **Execute**: Code each sequence into Logo commands.
4. **Identify error**:
 A. Describe discrepancy between the given graphic and the actual outcome.
 B. Locate syntax errors. (e.g., To-end, use of the same procedure name more than once, space between primitives and input, misspelling, etc.)
 C. Locate semantic errors. (e.g., subprocedures are called in wrong order, too many/few repeat processes, turn, move, etc.)
 D. Explain the cause(s) of the detected errors.
5. **Debug**: Revise detected errors.

*Evaluation of cognitive monitoring strategies:

Decompose: Right size to handle __________ Too small __________ Too large __________

Plan: Appropriate_________ Not appropriate ______ Not quite appropriate ______

Debug: What seems wrong? (Describe in words.)
Cognitive Monitoring Sheet

Graphic
(Teacher-Student Cooperative Activity)

Decompose:

Plan:

Execute:

(using recursion)

Identify error:

Debug:

Directions:
- Apply the steps of cognitive monitoring strategies. (solution process)

1. Decompose: Break a large graphical output into manageable units.
2. Plan: Organize and sequence each component of the decomposed output in order to devise an efficient solution. (e.g., label each line, turn, move, repeat, or procedure)
3. Execute: Code each sequence into Logo commands.
4. Identify error:
 A. Describe discrepancy between the given graphic and the actual outcome.
 B. Locate syntax errors. (e.g., To-end, use of the same procedure name more than once, space between primitives and input, misspelling, etc.)
 C. Locate semantic errors. (e.g., subprocedures are called in wrong order, too many/few repeat processes, turn, move, etc.)
 D. Explain the cause(s) of the detected errors.
5. Debug: Revise detected errors.

*Evaluation of cognitive monitoring strategies:
Decompose: Right size to handle ________ Too small ________ Too large ________
Plan: Appropriate ________ Not appropriate ________ Not quite appropriate ________
Debug: What seems wrong? (Describe in words.)
Cognitive Monitoring Sheet

Graphic
(Student Activity)

Decompose:

Plan:

Execute:

(use recursion that draws progressively smaller houses)

Identify error:

Debug:

Directions:

• Apply the steps of cognitive monitoring strategies. (solution process)

1. **Decompose**: Break a large graphical output into manageable units.
2. **Plan**: Organize and sequence each component of the decomposed output in order to devise an efficient solution. (e.g., label each line, turn, move, repeat, or procedure)
3. **Execute**: Code each sequence into Logo commands.
4. **Identify error**:
 A. Describe discrepancy between the given graphic and the actual outcome.
 B. Locate syntax errors. (e.g., To-end, use of the same procedure name more than once, space between primitives and input, misspelling, etc.)
 C. Locate semantic errors. (e.g., subprocedures are called in wrong order, too many/few repeat processes, turn, move, etc.)
 D. Explain the cause(s) of the detected errors.
5. **Debug**: Revise detected errors.

• Evaluation of cognitive monitoring strategies:
 Decompose: Right size to handle Too small Too large
 Plan: Appropriate Not appropriate Not quite appropriate
 Debug: What seems wrong? (Describe in words.)
Cognitive Monitoring Sheet

Graphic
(Teacher-Student Cooperative Activity)

Decompose:

Plan:

Execute:

(using recursion)

Identify error:

Debug:

Directions:
- Apply the steps of cognitive monitoring strategies. (solution process)

1. **Decompose**: Break a large graphical output into manageable units.
2. **Plan**: Organize and sequence each component of the decomposed output in order to devise an efficient solution. (e.g., label each line, turn, move, repeat, or procedure)
3. **Execute**: Code each sequence into Logo commands.
4. **Identify error**:
 A. Describe discrepancy between the given graphic and the actual outcome.
 B. Locate syntax errors. (e.g., To-end, use of the same procedure name more than once, space between primitives and input, misspelling, etc.)
 C. Locate semantic errors. (e.g., subprocedures are called in wrong order, too many/few repeat processes, turn, move, etc.)
 D. Explain the cause(s) of the detected errors.
5. **Debug**: Revise detected errors.

Evaluation of cognitive monitoring strategies:

<table>
<thead>
<tr>
<th>Decompose</th>
<th>Right size to handle</th>
<th>Too small</th>
<th>Too large</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan</td>
<td>Appropriate</td>
<td>Not appropriate</td>
<td>Not quite appropriate</td>
</tr>
<tr>
<td>Debug</td>
<td>What seems wrong?</td>
<td>(Describe in words.)</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX K: STUDENT ACTIVITY SHEETS FOR LECTURE: CONTROL GROUP
Class Activity Sheet

Graphic
(Student Activity)

Execution
(Write code to draw a graphic output)

Guidance:

1) Sketch the graphical output desired. (Defining the problem)

2) Think about what you need to do in order to have the turtle draw the desired graphic shown above. It may be useful to look at some past problems from your notes. (Searching for useful strategies)

3) Now build a program to have the turtle draw the desired graphic. You may want to either write codes on the paper first or start programming directly on the computer. (Carrying out the desired output)

4) How did the program work? Briefly describe below: (Looking back)

<table>
<thead>
<tr>
<th>Desired Output?</th>
<th>Part(s) to Modify?</th>
<th>Other Ways to Solve the Problem?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Close</td>
<td>Describe in words</td>
</tr>
<tr>
<td>Close</td>
<td>No</td>
<td>Describe in words</td>
</tr>
</tbody>
</table>
Class Activity Sheet

Graphic
(Student Activity)

Execution
(Write code to draw a graphic output)

Guidance:

1) Sketch the graphical output desired. (Defining the problem)

2) Think about what you need to do in order to have the turtle draw the desired graphic shown above. It may be useful to look at some past problems from your notes. (Searching for useful strategies)

3) Now build a program to have the turtle draw the desired graphic. You may want to either write codes on the paper first or start programming directly on the computer. (Carrying out the desired output)

4) How did the program work? Briefly describe below: (Looking back)

<table>
<thead>
<tr>
<th>Desired Output?</th>
<th>Part(s) to Modify?</th>
<th>Other Ways to Solve the Problem?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Describe in words</td>
<td>Describe in words</td>
</tr>
<tr>
<td>Close</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1) Sketch the graphical output desired. (*Defining the problem*)

2) Think about what you need to do in order to have the turtle draw the desired graphic shown above. It may be useful to look at some past problems from your notes. (*Searching for useful strategies*)

3) Now build a program to have the turtle draw the desired graphic. You may want to either write codes on the paper first or start programming directly on the computer. (*Carrying out the desired output*)

4) How did the program work? Briefly describe below: (*Looking back*)

<table>
<thead>
<tr>
<th>Desired Output?</th>
<th>Part(s) to Modify?</th>
<th>Other Ways to Solve the Problem?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Close</td>
<td>No</td>
</tr>
</tbody>
</table>
Class Activity Sheet

Graphic
(Student Activity)

Execution
(Write code to draw a graphic output)

Guidance:

1) Sketch the graphical output desired. (Defining the problem)

2) Think about what you need to do in order to have the turtle draw the desired graphic shown above. It may be useful to look at some past problems from your notes. (Searching for useful strategies)

3) Now build a program to have the turtle draw the desired graphic. You may want to either write codes on the paper first or start programming directly on the computer. (Carrying out the desired output)

4) How did the program work? Briefly describe below: (Looking back)

<table>
<thead>
<tr>
<th>Desired Output?</th>
<th>Part(s) to Modify?</th>
<th>Other Ways to Solve the Problem?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Close</td>
<td>No</td>
</tr>
</tbody>
</table>
Class Activity Sheet

Graphic
(Student Activity)

Execution
(Write code to draw a graphic output)

Guidance:

1) Sketch the graphical output desired. (Defining the problem)

2) Think about what you need to do in order to have the turtle draw the desired graphic shown above. It may be useful to look at some past problems from your notes. (Searching for useful strategies)

3) Now build a program to have the turtle draw the desired graphic. You may want to either write codes on the paper first or start programming directly on the computer. (Carrying out the desired output)

4) How did the program work? Briefly describe below: (Looking back)

<table>
<thead>
<tr>
<th>Desired Output?</th>
<th>Part(s) to Modify?</th>
<th>Other Ways to Solve the Problem?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes Close No</td>
<td>Describe in words</td>
<td>Describe in words</td>
</tr>
</tbody>
</table>
Class Activity Sheet

Graphic
(Student Activity)

Execution
(Write code to draw a graphic output)

![Graphic Output](any size desired)

Guidance:

1) Sketch the graphical output desired. *(Defining the problem)*

2) Think about what you need to do in order to have the turtle draw the desired graphic shown above. It may be useful to look at some past problems from your notes. *(Searching for useful strategies)*

3) Now build a program to have the turtle draw the desired graphic. You may want to either write codes on the paper first or start programming directly on the computer. *(Carrying out the desired output)*

4) How did the program work? Briefly describe below: *(Looking back)*

<table>
<thead>
<tr>
<th>Desired Output?</th>
<th>Part(s) to Modify?</th>
<th>Other Ways to Solve the Problem?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Close</td>
<td>Describe in words</td>
</tr>
<tr>
<td>No</td>
<td></td>
<td>Describe in words</td>
</tr>
</tbody>
</table>
1) Sketch the graphical output desired. (*Defining the problem*)

2) Think about what you need to do in order to have the turtle draw the desired graphic shown above. It may be useful to look at some past problems from your notes. (*Searching for useful strategies*)

3) Now build a program to have the turtle draw the desired graphic. You may want to either write codes on the paper first or start programming directly on the computer. (*Carrying out the desired output*)

4) How did the program work? Briefly describe below: (*Looking back*)

<table>
<thead>
<tr>
<th>Desired Output?</th>
<th>Part(s) to Modify?</th>
<th>Other Ways to Solve the Problem?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Close</td>
<td>Describe in words</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Describe in words</td>
<td>Describe in words</td>
</tr>
</tbody>
</table>
Guidance:

1) Sketch the graphical output desired. *(Defining the problem)*

2) Think about what you need to do in order to have the turtle draw the desired graphic shown above. It may be useful to look at some past problems from your notes. *(Searching for useful strategies)*

3) Now build a program to have the turtle draw the desired graphic. You may want to either write codes on the paper first or start programming directly on the computer. *(Carrying out the desired output)*

4) How did the program work? Briefly describe below: *(Looking back)*

<table>
<thead>
<tr>
<th>Desired Output?</th>
<th>Part(s) to Modify?</th>
<th>Other Ways to Solve the Problem?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes Close No</td>
<td>Describe in words</td>
<td>Describe in words</td>
</tr>
</tbody>
</table>
Class Activity Sheet

Graphic
(Student Activity)

Execution
(Write code to draw a graphic output)

(Using recursion)

Guidance:

1) Sketch the graphical output desired. (Defining the problem)

2) Think about what you need to do in order to have the turtle draw the desired graphic shown above. It may be useful to look at some past problems from your notes. (Searching for useful strategies)

3) Now build a program to have the turtle draw the desired graphic. You may want to either write codes on the paper first or start programming directly on the computer. (Carrying out the desired output)

4) How did the program work? Briefly describe below: (Looking back)

<table>
<thead>
<tr>
<th>Desired Output?</th>
<th>Part(s) to Modify?</th>
<th>Other Ways to Solve the Problem?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes Close No</td>
<td>Describe in words</td>
<td>Describe in words</td>
</tr>
</tbody>
</table>
Guidance:

1) Sketch the graphical output desired. (Defining the problem)

2) Think about what you need to do in order to have the turtle draw the desired graphic shown above. It may be useful to look at some past problems from your notes. (Searching for useful strategies)

3) Now build a program to have the turtle draw the desired graphic. You may want to either write codes on the paper first or start programming directly on the computer. (Carrying out the desired output)

4) How did the program work? Briefly describe below: (Looking back)

<table>
<thead>
<tr>
<th>Desired Output?</th>
<th>Part(s) to Modify?</th>
<th>Other Ways to Solve the Problem?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Describe in words</td>
<td>Describe in words</td>
</tr>
<tr>
<td>Close</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Guidance:

1) Sketch the graphical output desired. *(Defining the problem)*

2) Think about what you need to do in order to have the turtle draw the desired graphic shown above. It may be useful to look at some past problems from your notes. *(Searching for useful strategies)*

3) Now build a program to have the turtle draw the desired graphic. You may want to either write codes on the paper first or start programming directly on the computer. *(Carrying out the desired output)*

4) How did the program work? Briefly describe below: *(Looking back)*

<table>
<thead>
<tr>
<th>Desired Output?</th>
<th>Part(s) to Modify?</th>
<th>Other Ways to Solve the Problem?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes / Close / No</td>
<td>Describe in words</td>
<td>Describe in words</td>
</tr>
</tbody>
</table>
Cognitive Monitoring Sheet

Graphic
(Teacher-Student Cooperative Activity)

Decompose:

Plan:

Execute:

Identify error:

Debug:

Directions:
* Apply the steps of cognitive monitoring strategies. *(solution process)*

1. **Decompose:** Break a large graphical output into manageable units.
2. **Plan:** Organize and sequence each component of the decomposed output in order to devise an efficient solution. *(e.g., label each line, turn, move, repeat, or procedure)*
3. **Execute:** Code each sequence into Logo commands.
4. **Identify error:**
 A. Describe discrepancy between the given graphic and the actual outcome.
 B. Locate syntax errors. *(e.g., To-end, use of the same procedure name more than once, space between primitives and input, misspelling, etc.)*
 C. Locate semantic errors. *(e.g., subprocedures are called in wrong order, too many/few repeat processes, turn, move, etc.)*
 D. Explain the cause(s) of the detected errors.
5. **Debug:** Revise detected errors.

Evaluation of cognitive monitoring strategies:
Decompose: Right size to handle__________ Too small__________ Too large__________
Plan: Appropriate__________ Not appropriate__________ Not quite appropriate__________
Debug: What seems wrong? *(Describe in words.)*
Teacher-Student Cooperative Activity

Graphic

Decompose:

Plan:

Execute:

Identify error:

Debug:

Directions:

* Apply the steps of cognitive monitoring strategies. (solution process)

1. **Decompose:** Break a large graphical output into manageable units.
2. **Plan:** Organize and sequence each component of the decomposed output in order to devise an efficient solution. (e.g., label each line, turn, move, repeat, or procedure)
3. **Execute:** Code each sequence into Logo commands.
4. **Identify error:**
 A. Describe discrepancy between the given graphic and the actual outcome.
 B. Locate syntax errors. (e.g., To-end, use of the same procedure name more than once, space between primitives and input, misspelling, etc.)
 C. Locate semantic errors. (e.g., subprocedures are called in wrong order, too many/few repeat processes, turn, move, etc.)
 D. Explain the cause(s) of the detected errors.
5. **Debug:** Revise detected errors.

*Evaluation of cognitive monitoring strategies:

Decompose: Right size to handle_________ Too small_________ Too large_________
Plan: Appropriate_________ Not appropriate_________ Not quite appropriate_________
Debug: What seems wrong? (Describe in words.)
Cognitive Monitoring Sheet

Graphic
(Student Activity)

Decompose:

Plan:

Execute:

Identify error:

Debug:

Directions:
• Apply the steps of cognitive monitoring strategies. (solution process)

1. **Decompose**: Break a large graphical output into manageable units.
2. **Plan**: Organize and sequence each component of the decomposed output in order to devise an efficient solution. (e.g., label each line, turn, move, repeat, or procedure)
3. **Execute**: Code each sequence into Logo commands.
4. **Identify error**:
 A. Describe discrepancy between the given graphic and the actual outcome.
 B. Locate syntax errors. (e.g., `To-end`, use of the same procedure name more than once, space between primitives and input, misspelling, etc.)
 C. Locate semantic errors. (e.g., subprocedures are called in wrong order, too many/few repeat processes, turn, move, etc.)
 D. Explain the cause(s) of the detected errors.

5. **Debug**: Revise detected errors.

*Evaluation of cognitive monitoring strategies:
Decompose: Right size to handle______ Too small________ Too large________
Plan: Appropriate_______ Not appropriate_______ Not quite appropriate______
Debug: What seems wrong? (Describe in words.)
Cognitive Monitoring Sheet

Graphic
(Teacher-Student Cooperative Activity)

Decompose:
Plan:

Execute:

Identify error:

Debug:

Directions:
• Apply the steps of cognitive monitoring strategies. (solution process)

1. Decompose: Break a large graphical output into manageable units.
2. Plan: Organize and sequence each component of the decomposed output in order to devise an efficient solution. (e.g., label each line, turn, move, repeat, or procedure)
3. Execute: Code each sequence into Logo commands.
4. Identify error:
 A. Describe discrepancy between the given graphic and the actual outcome.
 B. Locate syntax errors. (e.g., To-end, use of the same procedure name more than once, space between primitives and input, misspelling, etc.)
 C. Locate semantic errors. (e.g., subprocedures are called in wrong order, too many/few repeat processes, turn, move, etc.)
 D. Explain the cause(s) of the detected errors.
5. Debug: Revise detected errors.

-Evaluation of cognitive monitoring strategies:
Decompose: Right size to handle________ Too small_________ Too large_________
Plan: Appropriate________ Not appropriate_______ Not quite appropriate_______
Debug: What seems wrong? (Describe in words.)
Cognitive Monitoring Sheet

Graphic
(Student Activity)

Decompose:

Plan:

Execute:

Identify error:

Debug:

Directions:
- Apply the steps of cognitive monitoring strategies. (solution process)

1. **Decompose**: Break a large graphical output into manageable units.
2. **Plan**: Organize and sequence each component of the decomposed output in order to devise an efficient solution. (e.g., label each line, turn, move, repeat, or procedure)
3. **Execute**: Code each sequence into Logo commands.
4. **Identify error**:
 A. Describe discrepancy between the given graphic and the actual outcome.
 B. Locate syntax errors. (e.g., To-end, use of the same procedure name more than once, space between primitives and input, misspelling, etc.)
 C. Locate semantic errors. (e.g., subprocedures are called in wrong order, too many/few repeat processes, turn, move, etc.)
 D. Explain the cause(s) of the detected errors.
5. **Debug**: Revise detected errors.

*Evaluation of cognitive monitoring strategies:
Decompose: Right size to handle__________ Too small__________ Too large__________
Plan: Appropriate__________ Not appropriate__________ Not quite appropriate__________
Debug: What seems wrong? (Describe in words.)
Cognitive Monitoring Sheet

(Teacher-Student Cooperative Activity)

Graphic

Decompose:

Plan:

Execute:

(any size desired, but stick should be three times longer than any size)

Identify error:

Debug:

Directions:

- Apply the steps of cognitive monitoring strategies. *(solution process)*

1. **Decompose:** Break a large graphical output into manageable units.
2. **Plan:** Organize and sequence each component of the decomposed output in order to devise an efficient solution. *(e.g., label each line, turn, move, repeat, or procedure)*
3. **Execute:** Code each sequence into Logo commands.
4. **Identify error:**
 A. Describe discrepancy between the given graphic and the actual outcome.
 B. Locate syntax errors. *(e.g., To-end, use of the same procedure name more than once, space between primitives and input, misspelling, etc.)*
 C. Locate semantic errors. *(e.g., subprocedures are called in wrong order, too many/few repeat processes, turn, move, etc.)*
 D. Explain the cause(s) of the detected errors.
5. **Debug:** Revise detected errors.

*Evaluation of cognitive monitoring strategies:

Decompose:	Right size to handle	Too small	Too large
Plan: | Appropriate | Not appropriate | Not quite appropriate |
Debug: | What seems wrong? *(Describe in words.)*
Cognitive Monitoring Sheet

(Graphic
(Teacher-Student Cooperative Activity)

Decompose:

Plan:

Execute:

Identify error:

Debug:

Directions:

- Apply the steps of cognitive monitoring strategies. (solution process)

1. Decompose: Break a large graphical output into manageable units.
2. Plan: Organize and sequence each component of the decomposed output in order to devise an efficient solution. (e.g., label each line, turn, move, repeat, or procedure)
3. Execute: Code each sequence into Logo commands.
4. Identify error:
 A. Describe discrepancy between the given graphic and the actual outcome.
 B. Locate syntax errors. (e.g., To-end, use of the same procedure name more than once, space between primitives and input, misspelling, etc.)
 C. Locate semantic errors. (e.g., subprocedures are called in wrong order, too many/few repeat processes, turn, move, etc.)
 D. Explain the cause(s) of the detected errors.
5. Debug: Revise detected errors.

*Evaluation of cognitive monitoring strategies:

Decompose: Right size to handle__________ Too small__________ Too large__________
Plan: Appropriate__________ Not appropriate__________ Not quite appropriate__________
Debug: What seems wrong? (Describe in words.)
Cognitive Monitoring Sheet

Graphic

(Student Activity)

Decompose:

Plan:

Execute:

(draw any size desired.)

Identify error:

Debug:

Directions:

- Apply the steps of cognitive monitoring strategies. *(solution process)*

1. **Decompose:** Break a large graphical output into manageable units.
2. **Plan:** Organize and sequence each component of the decomposed output in order to devise an efficient solution. *(e.g., label each line, turn, move, repeat, or procedure)*
3. **Execute:** Code each sequence into Logo commands.
4. **Identify error:**
 - A. Describe discrepancy between the given graphic and the actual outcome.
 - B. Locate syntax errors. *(e.g., To-end, use of the same procedure name more than once, space between primitives and input, misspelling, etc.)*
 - C. Locate semantic errors. *(e.g., subprocedures are called in wrong order, too many/few repeat processes, turn, move, etc.)*
 - D. Explain the cause(s) of the detected errors.
5. **Debug:** Revise detected errors.

Evaluation of cognitive monitoring strategies:

<table>
<thead>
<tr>
<th>Decompose:</th>
<th>Right size to handle</th>
<th>Too small</th>
<th>Too large</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan:</td>
<td>Appropriate</td>
<td>Not appropriate</td>
<td>Not quite appropriate</td>
</tr>
<tr>
<td>Debug:</td>
<td>What seems wrong?</td>
<td>(Describe in words.)</td>
<td></td>
</tr>
</tbody>
</table>

Cognitive Monitoring Sheet

Graphic
(Teacher-Student Cooperative Activity)

Decompose:

Plan:

Execute:

(using recursion)

Identify error:

Debug:

Directions:

1. **Decompose**: Break a large graphical output into manageable units.
2. **Plan**: Organize and sequence each component of the decomposed output in order to devise an efficient solution. (e.g., label each line, turn, move, repeat, or procedure)
3. **Execute**: Code each sequence into Logo commands.
4. **Identify error**:
 - A. Describe discrepancy between the given graphic and the actual outcome.
 - B. Locate syntax errors. (e.g., To-end, use of the same procedure name more than once, space between primitives and input, misspelling, etc.)
 - C. Locate semantic errors. (e.g., subprocedures are called in wrong order, too many/few repeat processes, turn, move, etc.)
 - D. Explain the cause(s) of the detected errors.
5. **Debug**: Revise detected errors.

Evaluation of cognitive monitoring strategies:

- Decompose: Right size to handle _______ Too small _______ Too large _______
- Plan: Appropriate _______ Not appropriate _______ Not quite appropriate _______
- Debug: What seems wrong? (Describe in words.)
Cognitive Monitoring Sheet

Graphic
(Student Activity)

Decompose:
Plan:

Execute:

Identify error:

Debug:

Directions:
* Apply the steps of cognitive monitoring strategies. (solution process)

1. **Decompose:** Break a large graphical output into manageable units.
2. **Plan:** Organize and sequence each component of the decomposed output in order to devise an efficient solution. (e.g., label each line, turn, move, repeat, or procedure)
3. **Execute:** Code each sequence into Logo commands.
4. **Identify error:**
 A. Describe discrepancy between the given graphic and the actual outcome.
 B. Locate syntax errors. (e.g., To-end, use of the same procedure name more than once, space between primitives and input, misspelling, etc.)
 C. Locate semantic errors. (e.g., subprocedures are called in wrong order, too many/few repeat processes, turn, move, etc.)
 D. Explain the cause(s) of the detected errors.
5. **Debug:** Revise detected errors.

*Evaluation of cognitive monitoring strategies:
Decompose: Right size to handle ______ Too small ________ Too large ________
Plan: Appropriate ________ Not appropriate ________ Not quite appropriate ________
Debug: What seems wrong? (Describe in words.)
APPENDIX M: STUDENT ACTIVITY SHEETS FOR LABORATORY:
CONTROL GROUP
310

Class Activity Sheet

Graphic
(Student Activity)

Need to think about Turtle's turning.
Turtle is traveling 360 degrees and
coming back to the same place.

Guidance:

1) Sketch the graphical output desired. (Defining the problem)

2) Think about what you need to do in order to have the turtle draw the desired graphic
shown above. It may be useful to look at some past problems from your notes.
(Searching for useful strategies)

3) Now build a program to have the turtle draw the desired graphic. You may want to
either write codes on the paper first or start programming directly on the computer.
(Carrying out the desired output)

4) How did the program work? Briefly describe below: (Looking back)

<table>
<thead>
<tr>
<th>Desired Output?</th>
<th>Part(s) to Modify?</th>
<th>Other Ways to Solve the Problem?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Close</td>
<td>Describe in words</td>
</tr>
<tr>
<td>No</td>
<td></td>
<td>Describe in words</td>
</tr>
</tbody>
</table>
Class Activity Sheet

Graphic
(Student Activity)

Execution

1) Sketch the graphical output desired. (Defining the problem)

2) Think about what you need to do in order to have the turtle draw the desired graphic shown above. It may be useful to look at some past problems from your notes. (Searching for useful strategies)

3) Now build a program to have the turtle draw the desired graphic. You may want to either write codes on the paper first or start programming directly on the computer. (Carrying out the desired output)

4) How did the program work? Briefly describe below: (Looking back)

<table>
<thead>
<tr>
<th>Desired Output?</th>
<th>Part(s) to Modify?</th>
<th>Other Ways to Solve the Problem?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Close</td>
<td>No</td>
</tr>
</tbody>
</table>
1) Sketch the graphical output desired. (*Defining the problem*)

2) Think about what you need to do in order to have the turtle draw the desired graphic shown above. It may be useful to look at some past problems from your notes. (*Searching for useful strategies*)

3) Now build a program to have the turtle draw the desired graphic. You may want to either write codes on the paper first or start programming directly on the computer. (*Carrying out the desired output*)

4) How did the program work? Briefly describe below: (*Looking back*)

<table>
<thead>
<tr>
<th>Desired Output?</th>
<th>Part(s) to Modify?</th>
<th>Other Ways to Solve the Problem?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes/Close/No</td>
<td>Describe in words</td>
<td>Describe in words</td>
</tr>
</tbody>
</table>
Class Activity Sheet

Graphic

(Student Activity)

Execution

1) Sketch the graphical output desired. *(Defining the problem)*

2) Think about what you need to do in order to have the turtle draw the desired graphic shown above. It may be useful to look at some past problems from your notes. *(Searching for useful strategies)*

3) Now build a program to have the turtle draw the desired graphic. You may want to either write codes on the paper first or start programming directly on the computer. *(Carrying out the desired output)*

4) How did the program work? Briefly describe below: *(Looking back)*

<table>
<thead>
<tr>
<th>Desired Output?</th>
<th>Part(s) to Modify?</th>
<th>Other Ways to Solve the Problem?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Close No</td>
<td>Describe in words</td>
</tr>
</tbody>
</table>
Talk about Total Turtle Trip Theorem.

Guidance:

1) Sketch the graphical output desired. (*Defining the problem*)

2) Think about what you need to do in order to have the turtle draw the desired graphic shown above. It may be useful to look at some past problems from your notes. (*Searching for useful strategies*)

3) Now build a program to have the turtle draw the desired graphic. You may want to either write codes on the paper first or start programming directly on the computer. (*Carrying out the desired output*)

4) How did the program work? Briefly describe below: (*Looking back*)

<table>
<thead>
<tr>
<th>Desired Output?</th>
<th>Part(s) to Modify?</th>
<th>Other Ways to Solve the Problem?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Close</td>
<td>Describe in words</td>
</tr>
<tr>
<td>Close</td>
<td>Yes</td>
<td>Describe in words</td>
</tr>
<tr>
<td>No</td>
<td>Describe in words</td>
<td>Describe in words</td>
</tr>
</tbody>
</table>
Graphic
(Student Activity)

Execution

(any size desired, but stick should be three times longer than any size)

Guidance:

1) Sketch the graphical output desired. (Defining the problem)

2) Think about what you need to do in order to have the turtle draw the desired graphic shown above. It may be useful to look at some past problems from your notes. (Searching for useful strategies)

3) Now build a program to have the turtle draw the desired graphic. You may want to either write codes on the paper first or start programming directly on the computer. (Carrying out the desired output)

4) How did the program work? Briefly describe below: (Looking back)

<table>
<thead>
<tr>
<th>Desired Output?</th>
<th>Part(s) to Modify?</th>
<th>Other Ways to Solve the Problem?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Close</td>
<td>Describe in words</td>
</tr>
<tr>
<td>Close</td>
<td>No</td>
<td>Describe in words</td>
</tr>
</tbody>
</table>
Class Activity Sheet

Graphic

(Student Activity)

1) Sketch the graphical output desired. *(Defining the problem)*

2) Think about what you need to do in order to have the turtle draw the desired graphic shown above. It may be useful to look at some past problems from your notes. *(Searching for useful strategies)*

3) Now build a program to have the turtle draw the desired graphic. You may want to either write codes on the paper first or start programming directly on the computer. *(Carrying out the desired output)*

4) How did the program work? Briefly describe below: *(Looking back)*

<table>
<thead>
<tr>
<th>Desired Output?</th>
<th>Part(s) to Modify?</th>
<th>Other Ways to Solve the Problem?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes/Close/No</td>
<td>Describe in words</td>
<td>Describe in words</td>
</tr>
</tbody>
</table>
Class Activity Sheet

Graphic
(Student Activity)

Execution

1) Sketch the graphical output desired. (Defining the problem)

2) Think about what you need to do in order to have the turtle draw the desired graphic shown above. It may be useful to look at some past problems from your notes. (Searching for useful strategies)

3) Now build a program to have the turtle draw the desired graphic. You may want to either write codes on the paper first or start programming directly on the computer. (Carrying out the desired output)

4) How did the program work? Briefly describe below: (Looking back)

<table>
<thead>
<tr>
<th>Desired Output?</th>
<th>Part(s) to Modify?</th>
<th>Other Ways to Solve the Problem?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Close</td>
<td>No</td>
</tr>
</tbody>
</table>

Describe in words

Describe in words
Class Activity Sheet

Graphic
(Student Activity)

Execution

(using recursion)

Guidance:

1) Sketch the graphical output desired. (Defining the problem)

2) Think about what you need to do in order to have the turtle draw the desired graphic shown above. It may be useful to look at some past problems from your notes. (Searching for useful strategies)

3) Now build a program to have the turtle draw the desired graphic. You may want to either write codes on the paper first or start programming directly on the computer. (Carrying out the desired output)

4) How did the program work? Briefly describe below: (Looking back)

<table>
<thead>
<tr>
<th>Desired Output?</th>
<th>Part(s) to Modify?</th>
<th>Other Ways to Solve the Problem?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Close</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Describe in words</td>
<td>Describe in words</td>
</tr>
</tbody>
</table>
1) Sketch the graphical output desired. *(Defining the problem)*

2) Think about what you need to do in order to have the turtle draw the desired graphic shown above. It may be useful to look at some past problems from your notes. *(Searching for useful strategies)*

3) Now build a program to have the turtle draw the desired graphic. You may want to either write codes on the paper first or start programming directly on the computer. *(Carrying out the desired output)*

4) How did the program work? Briefly describe below: *(Looking back)*

<table>
<thead>
<tr>
<th>Desired Output?</th>
<th>Part(s) to Modify?</th>
<th>Other Ways to Solve the Problem?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Close</td>
<td>No</td>
</tr>
</tbody>
</table>
APPENDIX N: TRANSPARENCIES FOR EXAMPLES OF HOMEWORK ASSIGNMENT: EXPERIMENTAL GROUP
Cognitive Monitoring Homework Planning Sheet

<table>
<thead>
<tr>
<th>Decompose</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan</td>
<td>(An efficient Turtle Trip)</td>
</tr>
<tr>
<td>First Execute</td>
<td>(Calling procedure)</td>
</tr>
<tr>
<td>Draw First Outcome that is on your screen</td>
<td></td>
</tr>
</tbody>
</table>

Identify Problem

1. Describe discrepancy between your planned graphic and the actual outcome.
2. Locate the codes that caused errors.
3. Describe the problem in the codes.
Homework #1 Project Cognitive Monitoring Sheet

Planned Graphic

<table>
<thead>
<tr>
<th>Decompose</th>
<th>Body, Cab, Wheel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan</td>
<td>For Truck (calling procedure), draw cab - draw body - turn turtle - draw wheel - move turtle to the left, at the end of body - draw wheel</td>
</tr>
<tr>
<td>(Calling procedure)</td>
<td>To Cab</td>
</tr>
<tr>
<td>To Truck</td>
<td>Repeat 4[Fd 20 Rt 90]</td>
</tr>
<tr>
<td>Cab</td>
<td>End</td>
</tr>
<tr>
<td>Body</td>
<td>Move</td>
</tr>
<tr>
<td>Move</td>
<td>Wheel</td>
</tr>
<tr>
<td>Wheel</td>
<td>End</td>
</tr>
<tr>
<td>Move</td>
<td></td>
</tr>
<tr>
<td>Wheel</td>
<td>Repeat 36[Fd 2 Rt 10]</td>
</tr>
<tr>
<td>Move</td>
<td>Fd 50</td>
</tr>
<tr>
<td>End</td>
<td>End</td>
</tr>
</tbody>
</table>

Draw First Outcome that is on your screen

1. Describe discrepancy between your planned graphic and actual outcome.

 Position of wheels should be down.

2. Locate the codes that caused the errors.

 To Wheel
 Repeat 36[Fd 2 Rt 10]
 End

3. Describe what seemed wrong in the codes.

 Turtle needs to turn to the left, instead of to the right.

Debug

Correct errors on the computer.
Homework #2 Project Cognitive Monitoring Sheet

Planned Graphic

<table>
<thead>
<tr>
<th>Decompose</th>
<th>Triangle, Stem</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>For flower (calling procedure), turn turtle to the right - draw a leaf - turn turtle to the left - draw a leaf - turn the turtle - draw stem - draw a leaf 8 times using total turtle trip theorem.</td>
</tr>
</tbody>
</table>

Plan
(An efficient Turtle Trip)

First Execute
(Calling Procedure)

<table>
<thead>
<tr>
<th>To Flower</th>
<th>To Leaves</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaves</td>
<td>Rt 45 Leaf Lt 90 Leaf</td>
</tr>
<tr>
<td>Stem</td>
<td>End</td>
</tr>
<tr>
<td>Repeat 8[Leaf Rt 45]</td>
<td></td>
</tr>
<tr>
<td>End</td>
<td>To Stem</td>
</tr>
<tr>
<td></td>
<td>Seth 0 Fd 70</td>
</tr>
<tr>
<td></td>
<td>End</td>
</tr>
</tbody>
</table>

To Leaf
Repeat 3[Triangle Fd 10] Bk 30 End

To Triangle
Repeat 3[Fd 15 Rt 120] End

Draw First Outcome that is on your screen
1. Describe discrepancy between your planned graphic and actual outcome.

 Actual graphic is wrapped around the screen.

2. Locate the codes that cause the errors.

 There are no errors, but better positioning is needed.

3. Describe the problem in the codes.

 I need to make a startcorner procedure which allows the turtle to begin drawing at the bottom of the screen.

4. Correct errors on the computer.
Homework #3 Project Cognitive Monitoring Sheet

Planned graphic

Decompose

Plan (An efficient Turtle Trip)

For Flags (calling procedure), draw pole - draw square - move the turtle to the next Flag position - repeat 3 times using variables.

First Execute

(Calling Procedure)

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Action 1</th>
<th>Action 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Flags</td>
<td>Fd :X*2</td>
<td>Repeat 4[Fd :X Rt 90]</td>
</tr>
<tr>
<td>Flag 40</td>
<td>End</td>
<td>End</td>
</tr>
<tr>
<td>Move 40</td>
<td>To Flag :X</td>
<td>To Move :X</td>
</tr>
<tr>
<td>Flag 30</td>
<td>Bk :X*2</td>
<td></td>
</tr>
<tr>
<td>Move 30</td>
<td>Pole :X</td>
<td></td>
</tr>
<tr>
<td>Flag 20</td>
<td>Square :X</td>
<td>Rt 90 Fd :X + 10 Lt 90</td>
</tr>
<tr>
<td>Move 20</td>
<td>End</td>
<td>End</td>
</tr>
<tr>
<td>Flag 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>End</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Identify error

1. Describe discrepancy between your planned graphic and the actual outcome.

 A picture is wrapped around the screen.

2. Locate the codes that cause errors.

 To Move :X
 *Bk :X*2*
 Rt 90 Fd :X + 10 Lt 90
 End

 Need the Start corner procedure where the Turtle begins drawing the graphic.

3. Describe the problem in the codes.
Cognitive Monitoring Homework #4 Project Planning Sheet

Planned Graphic

<table>
<thead>
<tr>
<th>Decompose</th>
<th>Onwave, Body of boat, Mast of boat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan</td>
<td>For Seasview (calling procedure), draw onewave - make recursion for waves - move turtle home - move up the turtle - draw body - move the turtle middle - draw mast - draw triangle - move to the left - draw the smaller boat - move turtle middle - draw mast - draw triangle - move to the left - draw body - move turtle to middle - draw mast - draw triangle.</td>
</tr>
</tbody>
</table>
| **First Execute** | (Calling procedure) To Waves :C If :C < 0 [Stop] Onewave Repeat 180[Fd .1 Rt 1] End To Body :X Repeat 2[Fd :X/2 Rt 90 Fd :X Rt 90] End To Ocean Waves :C-1 End To Onewave Moveleft Boat 40 To Onease Move 40 Repeat 180[Fd .1 Rt 1] End Boat 30 Move 30 End Move 30 Move 30 End Boat 20 To Boat :X Body :X Mast :X End To Triangle :X Repeat 3[Fd :X Rt 120] End To Move :X Pu Blk :X Rt 90 Fd :X Lt 90 Pd End Draw First Outcome that is on your screen Identify error 1. Describe discrepancy between your planned graphic and actual outcome. 2. Locate the codes that cause errors. 3. Describe the problem in the codes.
APPENDIX O: TRANSPARENCIES FOR EXAMPLES OF HOMEWORK
ASSIGNMENT: CONTROL GROUP
Homework Project Planning Sheet

Planned Graphic

(Calling procedure)
An Example of Homework #1 Project Planning Sheet

(Calling procedure)

To Truck
 Cab
 Body
 Move
 Wheel
 Move1
 Wheel
 End

To Cab
 Repeat 4[Fd 20 Rt 90]
 End

To Body
 Repeat 2[Fd 30 Lt 90 Fd 60 Lt 90]
 End

To Move
 Lt 90
 End

To Wheel
 Repeat 36[Fd 2 LT 10]
 End

To Move1
 Fd 50
 End
An Example of Homework #2 Project Planning Sheet

(Calling Procedure)

To Flower
Startcorner
Leaves
Stem
Repeat 8[Leaf Rt 45]
End

To Leaves
Rt 45 Leaf Lt 90 Leaf
End

To Stem
Seth 0 Fd 70
End

To Startcorner
Pu Bk 70 Fd
End

To Leaf
Repeat 3[Triangle Fd 10]
Bk 30
End

To Triangle
Repeat 3[Fd 15 Rt 120]
End
An Example of Homework #3 Project Planning Sheet

Planned graphic

(Calling Procedure)

To Flags
Start Up
Flag 40
Move 40
Flag 30
Move 30
Flag 20
Move 20
Flag 10
End

To Startup
Pu Bk 70 Lt 90 Fd 70 Rt 90 Pd
End

To Flag :X
Pole :X
Square :X
End

To Pole :X
Fd :X*2
End

To Square :X
Repeat 4[Fd :X Rt 90]
End

To Move :X
Pu
Bk :X*2
Rt 90 Fd :X + 10 Lt 90
Pd
End
An Example of Homework #4 Project Planning Sheet

(Calling procedure)

To Ocean
Waves 10
Moveleft
Boat 40
Move 40
Boat 30
Move 30
Boat 20
End

To Waves :C
If :C < 0 [Stop]
Onewave
Waves :C-1
End

To Onewave
Repeat 180[Fd .1 Rt 1]
End

To Moveleft
Pu Home Fd 10 Pd
End

To Boat :X
Body :X
Mast :X
End

To Move :X
Pu Bk :X Rt 90 Fd :X Lt 90 Pd
End

To Body :X
Repeat 2[Fd :X/2 Rt 90 Fd :X Rt 90]
End

To Mast :X
Fd :X/2
Rt 90
Fd :X/2
Lt 90
Fd :X/2
End

To Triangle :X
Repeat 3[Fd :X Rt 120]
End
APPENDIX P: HOMEWORK ASSIGNMENT CRITERIA SHEETS: EXPERIMENTAL GROUP
LogoWriter Lab Assignment #1

The first LogoWriter assignment is to create a program which draws a simple graphic picture, similar to the truck example distributed in the class. You must write what you are going to do and how you are going to perform it according to the cognitive monitoring sheet. The program should use at least 6 separate procedures and be executed by typing the name of a single calling procedure. It should be stored on your LogoWriter disk within a page called Lastname1, (for example, Smith1).

CRITERIA

<table>
<thead>
<tr>
<th>Completed homework project cognitive monitoring sheet turned in........</th>
<th>2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Appropriate Decomposition .. 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thoughtful Turtle Trip Plan .. 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appropriate Execution Code .. 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appropriate Debugging Process .. 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

At least 6 separate procedures used in the program................................. 2
Project runs without errors... 2
Project has a theme... 1
Project executes by typing a single procedure name........................... 1
Project is saved correctly, (see below.)... 1

Total.................. 14

Project saved under a page named:__________________________(Lastname1)
To run the project, type:__________________________ (name of the calling procedure)
LogoWriter Lab Assignment #2

The second LogoWriter assignment is to create a program which draws a simple graphic picture with the use of total turtle trip theorem, similar to the flower example distributed in the class. You must write what you are going to do and how you are going to perform it according to the cognitive monitoring sheet. The program should use at least 6 separate procedures and be executed by typing the name of a single calling procedure. It should be stored on your LogoWriter disk within a page called Lastname2, (for example, Smith2).

CRITERIA

<table>
<thead>
<tr>
<th>Completed homework project cognitive monitoring sheet turned in...</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appropriate Decomposition</td>
<td>2</td>
</tr>
<tr>
<td>Thoughtful Turtle Trip Plan</td>
<td>2</td>
</tr>
<tr>
<td>Appropriate Execution Code</td>
<td>1</td>
</tr>
<tr>
<td>Appropriate Debugging Process</td>
<td>2</td>
</tr>
</tbody>
</table>

At least 6 separate procedures used in the program..................2
Project runs without errors..2
Project has a theme...1
Project executes by typing a single procedure name..................1
Project is saved correctly, (see below.)................................1

Total...14

Project saved under a page named: __________________________(Lastname2)
To run the project, type: __________________________(name of the calling procedure)
LogoWriter Lab Assignment #3

The third LogoWriter assignment is to create a program using variables which draws a simple graphic picture, similar to the flags example distributed in the class. You must write what you are going to do and how you are going to perform it according to the cognitive monitoring sheet. The program should use at least 7 separate procedures and be executed by typing the name of a single calling procedure. The project should also use variables somewhere in the program. It should be stored on your LogoWriter disk within a page called Lastname3, (for example, Smith3).

CRITERIA

Completed homework project cognitive monitoring sheet turned in.....

<table>
<thead>
<tr>
<th>CRITERIA</th>
<th>POINTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed homework project cognitive monitoring</td>
<td>2</td>
</tr>
<tr>
<td>sheet turned in</td>
<td></td>
</tr>
<tr>
<td>Appropriate Decomposition</td>
<td>2</td>
</tr>
<tr>
<td>Thoughtful Turtle Trip Plan</td>
<td>2</td>
</tr>
<tr>
<td>Appropriate Execution Code</td>
<td>1</td>
</tr>
<tr>
<td>Appropriate Debugging Process</td>
<td>2</td>
</tr>
<tr>
<td>At least 7 separate procedures used in the program</td>
<td>2</td>
</tr>
<tr>
<td>Project runs without errors</td>
<td>2</td>
</tr>
<tr>
<td>Project uses variables</td>
<td>3</td>
</tr>
<tr>
<td>Project has a theme</td>
<td>1</td>
</tr>
<tr>
<td>Project executes by typing a single procedure name</td>
<td>1</td>
</tr>
<tr>
<td>Project is saved correctly, (see below.)</td>
<td>1</td>
</tr>
</tbody>
</table>

Total.............17

Project saved under a page named: ______________(Lastname3)
To run the project, type: ______________(name of the calling procedure)
LogoWriter Lab Assignment #4

The fourth LogoWriter assignment is to create a program which draws a simple graphic picture using recursion, similar to the Ocean example distributed in the class. You must write what you are going to do and how you are going to perform it according to the cognitive monitoring sheet. The program should use at least 7 separate procedures and be executed by typing the name of a single calling procedure. The project should also use variables somewhere in the program. It should be stored on your LogoWriter disk within a page called Lastname4, (for example, Smith4).

CRITERIA

Completed homework project cognitive monitoring sheet turned in.....

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appropriate Decomposition</td>
<td>2</td>
</tr>
<tr>
<td>Thoughtful Turtle Trip Plan</td>
<td>2</td>
</tr>
<tr>
<td>Appropriate Execution Code</td>
<td>1</td>
</tr>
<tr>
<td>Appropriate Debugging Process</td>
<td>2</td>
</tr>
<tr>
<td>At least 7 separate procedures used in the program</td>
<td>2</td>
</tr>
<tr>
<td>Project runs without errors</td>
<td>2</td>
</tr>
<tr>
<td>Project uses recursion</td>
<td>3</td>
</tr>
<tr>
<td>Project has a theme</td>
<td>1</td>
</tr>
<tr>
<td>Project executes by typing a single procedure name</td>
<td>1</td>
</tr>
<tr>
<td>Project is saved correctly, (see below.)</td>
<td>1</td>
</tr>
</tbody>
</table>

Total.............17

Project saved under a page named:________________(Lastname4)
To run the project, type:______________(name of the calling procedure)
APPENDIX Q: HOMEWORK ASSIGNMENT CRITERIA SHEETS:
CONTROL GROUP
LogoWriter Lab Assignment #1

The first LogoWriter assignment is to create a program which draws a simple graphic picture, similar to the truck example distributed in the class. The program should use at least 6 separate procedures and be executed by typing the name of a single calling procedure. You must hand in the completed planning sheet along with your project. Your project should be stored on your LogoWriter disk on a page called Lastname1, (for example, Smith1).

CRITERIA

Completed homework project Planning sheet turned in........ 1 ____
Graphic output desired is completed............................ 1 ____
Calling procedure is completed..................................... 1 ____
At least 6 separate procedures used in the program............. 4 ____
Project runs without errors... 3 ____
Project has a theme... 2 ____
Project executes by typing a single procedure name.......... 2 ____
Project is saved correctly, (see below.).......................... 1 ____

Total...........14 ____

Project saved under a page named:_____________________(Lastname1)
To run the project, type:_____________________(name of the calling procedure)
LogoWriter Lab Assignment #2

The second LogoWriter assignment is to create a program which draws a simple graphic picture with the use of the total turtle trip theorem, similar to the flower example distributed in the class. You must hand in the completed planning sheet along with your project. The program should use at least 6 separate procedures and be executed by typing the name of a single calling procedure. The project should be stored on your LogoWriter disk on a page called Lastname2, (for example, Smith2).

CRITERIA

Completed homework project Planning sheet turned in........ 1
 Graphic output desired is completed............................. 1
 Calling procedure is completed.................................... 1
 At least 6 separate procedures used in the program............. 3
 Project uses total turtle trip theorem............................ 3
 Project runs without errors....................................... 2
 Project has a theme.. 1
 Project executes by typing a single procedure name........... 2
 Project is saved correctly, (see below.).......................... 1

Total.............14

Project saved under a page named:______________ (Lastname2)
To run the project, type:_________________________(name of the calling procedure)
LogoWriter Lab Assignment #3

The third LogoWriter assignment is to create a program using variables which draws a simple graphic picture, similar to the flags example distributed in the class. You must hand in the completed planning sheet along with your project. The program should use at least 7 separate procedures and be executed by typing the name of a single calling procedure. The project should also use variables somewhere in the program. It should be stored on your LogoWriter disk on a page called Lastname3, (for example, Smith3).

CRITERIA

Completed homework project Planning sheet turned in........ 1
 Graphic output desired is completed.............................. 1
 Calling procedure is completed....................................... 1
At least 7 separate procedures used in the program.............. 3
 Project runs without errors... 3
 Project uses variables.. 4
 Project has a theme... 2
Project executes by typing a single procedure name........... 2
 Project is saved correctly, (see below.)........................... 1

Total..................17

Project saved under a page named:____________________(Lastname3)
To run the project, type:____________________(name of the calling procedure)
LogoWriter Lab Assignment #4

The fourth LogoWriter assignment is to create a program using recursion which draws a simple graphic picture, similar to the Ocean example distributed in the class. You must hand in the completed planning sheet along with your project. The program should use at least 7 separate procedures and be executed by typing the name of a single calling procedure. The project should also use variables somewhere in the program. It should be stored on your LogoWriter disk on a page called Lastname4, (for example, Smith4).

CRITERIA

Completed homework project Planning sheet turned in........ 1 ___
Graphic output desired is completed....................... 1 ___
Calling procedure is completed............................. 1 ___
At least 7 separate procedures used in the program........... 3 ___
Project runs without errors.................................. 3 ___
Project uses recursion.. 4 ___
Project has a theme.. 2 ___
Project executes by typing a single procedure name........ 2 ___
Project is saved correctly, (see below.)...................... 1 ___

Total.............17 ___

Project saved under a page named: _____________(Lastname4)
To run the project, type: _____________(name of the calling procedure)
APPENDIX R: LOGO DECOMPOSING AND PLANNING TEST
Logo Test for Decomposing and Planning Skills

The purpose of this test is to evaluate students' ability to break a complex problem into smaller units and to plan a solution to the problem. Students will be given a complex graphic and asked to identify the subprocedures that should be used to construct the graphic.

• Using the least number of subprocedures to draw a given graphic is considered to be the best decomposition.

• For the planning, students should consider modularity and the most compact and efficient turtle trip.

Directions:

Break each graphic into smaller parts of elemental shapes and list names of the subprocedures. Then, write a plan that tells how you would draw the given graphics on the screen. Finally, write code(s) to draw the graphic.

Example:

A. Break the shown graphic into smaller parts and list the names of subprocedures you would use to draw the graphic.

 A square with a variable

B. Write a plan of how you will put the subprocedures together to draw the graphic most efficiently. You should use the names of subprocedures you listed above in your plan.

 1. Draw a square using a variable.
 2. Draw 4 squares. Each time reduce the size.
 3. Use recursion in order to accomplish "step 2".

C. Write codes (procedures) to draw the above graphic.

 To Square :X
 Repeat 4 [Fd :X Rt 90]
 End

 To Squares :X
 If :X < 20 [Stop]
 Square :X
 Squares :X - 20
 End

 Type Squares 80
PROBLEM 1.

A. Break the shown graphic into smaller parts and list names of subprocedures you would use to draw the graphic.

B. Write a plan of how you will put the subprocedures together to draw the graphic in the most efficient manner possible. You should use the names of subprocedures you listed above in your plan.

C. Write codes (procedures) to draw the above graphic.
PROBLEM 2.

A. Break the shown graphic into smaller parts and list names of subprocedures you would use to draw the graphic.

B. Write a plan of how you will put the subprocedures together to draw the graphic in the most efficient manner possible. You should use the names of subprocedures you listed above in your plan.

C. Write codes (procedures) to draw the above graphic.
A. Break the shown graphic into smaller parts and list names of subprocedures you would use to draw the graphic.

B. Write a plan of how you will put the subprocedures together to draw the graphic in the most efficient manner possible. You should use the names of subprocedures you listed above in your plan.

C. Write codes (procedures) to draw the above graphic.
PROBLEM 4.

(Any size desired)

A. Break the shown graphic into smaller parts and list names of subprocedures you would use to draw the graphic.

__

__

__

__

B. Write a plan of how you will put the subprocedures together to draw the graphic in the most efficient manner possible. You should use the names of subprocedures you listed above in your plan.

__

__

__

__

__

C. Write codes (procedures) to draw the above graphic.

__

__

__

__

__
A. Break the shown graphic into smaller parts and list names of subprocedures you would use to draw the graphic.

B. Write a plan of how you will put the subprocedures together to draw the graphic in the most efficient manner possible. You should use the names of subprocedures you listed above in your plan.

C. Write codes (procedures) to draw the above graphic.
APPENDIX S: LOGO ERROR IDENTIFICATION TEST
Logo Test for Error Identification and Correction Skills

The purpose of this test is to evaluate students' problem identification skills and debugging skills in Logo. You will be given sample planned graphics, the actual graphics that appeared on the screen, and the Logo procedures that produced the graphics.

Your task is to identify the misconceptions and thinking errors in the program and correct the errors.

Directions:

Compare the planned graphic with the actual outcome in the given problems. Describe specifically what the difference is between the planned graphic and the actual outcome. Then, indicate the procedure(s) that caused the error(s). Describe specifically what the problem is with the procedure(s). Finally, correct the code(s) in order to draw the planned graphic.

I will be very nice to you.

Don't sweat, just try!!!
Problem 1.

Planned Graphic

Actual Outcome

(Starting Point) (Starting Point)

Procedure for Actual Outcome

To Design
Repeat 3 [Square Triangle Move]
End

To Triangle
Repeat 3 [Fd 30 Rt 120]
End

To Square
Repeat 4 [Fd 30 Rt 90]
End

To Move
Rt 90
Fd 30
Lt 90
End

A. From looking at just the pictures, describe the discrepancy between the planned graphic and the actual outcome.

B. Circle the specific statement(s) that caused the critical error.

C. Describe what is wrong with the statement(s) you circled.

D. Write the correct code(s).
Problem 2.

Planned Graphic

Actual Outcome

(Starting Point)

(Starting Point)

Procedure for Actual Outcome

<table>
<thead>
<tr>
<th>To Flower</th>
<th>To Planter</th>
<th>To Move</th>
<th>To Leaves</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planter</td>
<td>Rt 90</td>
<td>Pu</td>
<td>Fd 70</td>
</tr>
<tr>
<td>Move</td>
<td>Fd 15</td>
<td>Fd 10</td>
<td>Repeat 10(Rt 20 Leaf)</td>
</tr>
<tr>
<td>Leaves</td>
<td>Lt 60</td>
<td>Lt 120</td>
<td>End</td>
</tr>
<tr>
<td>End</td>
<td>Fd 10</td>
<td>Fd 40</td>
<td>End</td>
</tr>
<tr>
<td></td>
<td>Lt 120</td>
<td>Lt 120</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fd 10</td>
<td>Fd 15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lt 60</td>
<td>Lt 90</td>
<td></td>
</tr>
<tr>
<td></td>
<td>End</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A. From looking at just the pictures, describe the discrepancy between the planned graphic and the actual outcome.

B. Circle the specific statement(s) that caused the critical error.

C. Describe what is wrong with the statement(s) you circled.

D. Write the correct code(s).
Problem 3.

Procedure for Actual Outcome

To Nest :X
If :X < 10 [Stop]
Square :X
Move :X
Nest :X/2
End

To Square :X
Repeat 4[Fd :X Rt 90]
End

To Move :X
Pu
Fd :X/2
Rt 90
Fd :X/2
Lt 90
Pd
End

A. From looking at just the pictures, describe the discrepancy between the planned graphic and the actual outcome.

B. Circle the specific statement(s) that caused the critical error.

C. Describe what is wrong with the statement(s) you circled.

D. Write the correct code(s).
Problem 4.

(Input Triple.tri 3)

Planned Graphic

- Start
- Move
- Triangle
- Fill
- Move
- Triple.tri :X + 1

Actual Outcome

- Start
- Move
- Triangle
- Fill
- Move
- Triple.tri :X + 1

A. From looking at just the pictures, describe the discrepancy between the planned graphic and the actual outcome.

B. Circle the specific statement(s) that caused the critical error.

C. Describe what is wrong with the statement(s) you circled.

D. Write the correct code(s).
Problem 5.

A. From looking at just the pictures, describe the discrepancy between the planned graphic and the actual outcome.

B. Circle the specific statement(s) that caused the critical error.

C. Describe what is wrong with the statement(s) you circled.

D. Write the correct code(s).
Problem 6.

planned Graphic

Actual Outcome

Procedure for Actual Outcome

<table>
<thead>
<tr>
<th>To Butterfly</th>
<th>To Wing :X</th>
<th>To Rightant</th>
<th>To Triangle :X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rt 30</td>
<td>If :X < 10 [Stop]</td>
<td>Rt 30</td>
<td>Repeat 3 [Fd :X Rt 120]</td>
</tr>
<tr>
<td>Wing 80</td>
<td>Triangle :X</td>
<td>Fd 40</td>
<td>End</td>
</tr>
<tr>
<td>Lt 180</td>
<td>Wing :X-20</td>
<td>Bk 40</td>
<td>End</td>
</tr>
<tr>
<td>Wing 80</td>
<td>End</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seth 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rightant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seth 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leftant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>End</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A. From looking at just the pictures, describe the discrepancy between the planned graphic and the actual outcome.

B. Circle the specific statement(s) that caused the critical error.

C. Describe what is wrong with the statement(s) you circled.

D. Write the correct code(s).
APPENDIX T: GENERAL DECOMPOSING TEST
Decomposing Test

The purpose of this test is to evaluate your ability to break a complex problem into manageable parts and correctly construct the solution using these parts.

Directions:
Break each problem into parts and show how to solve each part. Specifically write each decomposed step and then circle the final correct answer.

Study the example before starting.

Example:
Annie went to the bookstore on Tuesday. She bought 3 notebooks that cost $1.50 each, 5 pencils that cost $.25 each, and a book that cost $13.75. How much did she spend altogether?

Decomposing Answer:

STEP 1: notebooks : 3 X $1.50 = $4.50
STEP 2: pencils : 5 X $.25 = $1.25
STEP 3: Total : $4.50 + $1.25 + $13.75 = $19.50

No Sweat!!
I will try to do my best.
1. Tom, a teacher, has thirty students in his classroom. They have sworn that they can each keep a secret for one full day. On Monday at 9:00 a.m. Tom tells a secret to two students. They must keep the secret until Tuesday at 9:00 a.m., when they may each tell two other students and no more than that. Those students must keep the secret until 9:00 A.M. the next day, when they can each tell two more students, and so on. If all the students keep the secret for exactly one day, on what day will the entire class know the secret? (Students who have been told the secret are marked with a red pin so they will not be told again.)

STEP 1:

STEP 2:

STEP 3:

STEP 4:

STEP 5:

STEP 6:

STEP 7:

STEP 8:

STEP 9:

2. In an African language lev klula buj means “buy green peppers”. Ajm buj gyst means “big green cars” and ikuka lev ajm means “quickly buy cars”.

How would you say big peppers in this African language?

STEP 1:

STEP 2:

STEP 3:

STEP 4:

STEP 5:

STEP 6:

STEP 7:

STEP 8:

STEP 9:
3. Paul sold 160 sandwiches for $2.00 each. Each sandwich consisted of 4 oz
of ham, 2 slices of bread, and mustard. Paul paid $3.00 a pound for the
ham, $.60 a loaf for the bread (20 slices per loaf) and used 8 jars of mustard
at $.50 each. How much profit did he make?

4. Five families are going to car-pool to and from school next year. From
looking at the calendar, each of the five days in the week are equally
represented over the 185 days of school. For various reasons (which you
can supply), some days are good and some are bad for each family. But
each family wants to have the same day all year long (so they won’t get
confused or forget). The Thompsons can not drive on Monday,
Wednesday, or Friday. The Browns can drive Wednesday or Thursday.
Monday or Tuesday are possible for the Randalls. Mr. Gross can drive on
either Tuesday or Friday. Wednesday or Friday is fine with the Lee family.
Figure out the schedule.
5. A hat contains slips of paper with the numbers 1-10. Judy and Cathy take turns blindly drawing the numbers from the hat. On the first round, Judy draws a 9 and Cathy, a 2. On the second round, Judy draws a 7, and Cathy, a 5. If they continue until all the numbers are drawn, what is the largest possible amount by which Cathy's total could exceed Judy's total?

STEP 1:

STEP 2:

STEP 3:

STEP 4:

STEP 5:

STEP 6:

STEP 7:

STEP 8:

STEP 9:

6. Three fathers — Joe, Peter, and Neal — have between them a total of 15 children of which 9 are boys. Joe has 3 girls and Peter has the same number of boys. Peter has 1 more child than Joe, who has 4 children. Neal has 4 more boys than girls and the same number of girls as Joe has boys. How many boys each do Neal and Joe have?

STEP 1:

STEP 2:

STEP 3:

STEP 4:

STEP 5:

STEP 6:

STEP 7:

STEP 8:

STEP 9:
APPENDIX U: GENERAL PLANNING TEST
Planning Strategy Test

The purpose of this test is to evaluate students' ability to organize given information, to order the sequence of actions to be performed, and think logically in order to achieve the goal most efficiently.

Directions:

Read the given problem carefully, and specifically describe your solution processes to the problem.

Try to seek cues or hints in a given problem.

I know I can do it.....
Problem 1.

Tom's parents are coming to visit him in his new apartment. He wants to plan a special meal and have *everything done at the same time*. Here is a list of the items he will be preparing and the amount of time it will take for each of those items to be completed. Help Tom out by telling when he should start each task.

<table>
<thead>
<tr>
<th></th>
<th>Time Tom would start</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bake potatoes</td>
<td>1 1/2 hours</td>
</tr>
<tr>
<td>Cook the roast (in a crock pot)</td>
<td>6 hours</td>
</tr>
<tr>
<td>Make a salad</td>
<td>10 minutes</td>
</tr>
<tr>
<td>Set the table</td>
<td>5 minutes</td>
</tr>
<tr>
<td>Prepare dinner rolls</td>
<td>1 minutes</td>
</tr>
<tr>
<td>Cook dinner rolls</td>
<td>18 minutes</td>
</tr>
</tbody>
</table>

Some things can be done at any time. But he wants to wait *as late as possible* to do each of them. Dinner is going to be served at 6:30pm.

Your plan to help him prepare dinner is:
Problem 2.

It's now 9:30 a.m. and you will be finished with your haircut appointment in 10 minutes. Now, you are planning today's errands and have to do as many things on your list as possible, before being at the Washington Avenue parking lot by 12:00 noon (refer to the attached map).

You are traveling by foot and it takes 25 minutes to cross town in either direction. Here's your list of errands. You are free to do them in any order you like.

<table>
<thead>
<tr>
<th>Errand List</th>
<th>Shop #</th>
<th>Expected Spending Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buy CD's at musicland</td>
<td>13</td>
<td>15 minutes</td>
</tr>
<tr>
<td>Buy shoes at one of the shoe stores</td>
<td>2, 9</td>
<td>15 minutes</td>
</tr>
<tr>
<td>Fill prescription at one of the drug stores</td>
<td>4, 14</td>
<td>15 minutes</td>
</tr>
<tr>
<td>Sign papers at lawyer's office (due today)</td>
<td>6</td>
<td>20 minutes</td>
</tr>
<tr>
<td>Look at furniture at furniture store</td>
<td>10</td>
<td>15 minutes</td>
</tr>
<tr>
<td>Buy required books for tonight's art history class at one of the book stores</td>
<td>11, 5</td>
<td>15 minutes</td>
</tr>
<tr>
<td>Buy fresh vegetables and ice cream at one of the grocery stores (will use these tomorrow morning)</td>
<td>1, 8</td>
<td>15 minutes</td>
</tr>
<tr>
<td>Buy tennis racket at sports equipment store for this afternoon's class</td>
<td>3</td>
<td>20 minutes</td>
</tr>
<tr>
<td>Buy a sweatshirt at department store</td>
<td>15</td>
<td>20 minutes</td>
</tr>
</tbody>
</table>

Write down your plan to do errands. You can sketch time and distance on the back of this paper or on the map before fill out the following categories.

<table>
<thead>
<tr>
<th>Name of Errands</th>
<th>Shop #</th>
<th>Time you will do</th>
<th>Time you will spend</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Being at the Washington Street Parking lot by 12:00 noon.
Error Identification and Correction Test

The purpose of this test is to evaluate students' ability to detect what is wrong with a given problem, find errors in a given solution process, explain the problem in the errors, and correct the indicated errors.

Directions:

Read the problem carefully. Examine the given problem statement or solution. Find the errors in the solution or in the problem statement if there are any, and describe what is wrong. Finally, write the correct solution to the problem.

Please be patient!!
I will get there soon........
1. Climbing the giant beanstalk, Sue discovered that the giant had a counting system all his own. When the giant counted the golden eggs, Sue heard him count "fee, fie, foe, fum, fot, feefot, fiefot, foefot, fumfot, foefot, feefotfot,". What word would the giant use to count the twentieth egg? Sue's solution is as follows:

Step 1: ninth egg was funfot.
Step 2: eleventh egg was feefotfot.
Step 3: ninth egg + eleventh egg = twentieth egg.
Step 4: Therefore, funfot (ninth) + feefotfot (eleventh) = funfotfeefotfot.
Step 5: The twentieth egg is funfotfeefotfot.

Do you think Sue's solution is correct?
A. YES () NO ()

If you marked NO, complete the following:
B. Circle the specific statement(s) that caused the critical error.
C. Describe what is wrong with the statement(s) you circled.
D. What is the correct answer?

2. Connie is training to run in a marathon race. Her goal is to build up her running distance to 16 miles. She puts herself on a schedule that follows a set mathematical pattern of daily increase. The first day she will run 8 miles, the second day she will increase her distance by 4 miles, the third day she will increase it by 2 miles, and so on, always increasing in the same mathematical pattern. How many days will it take her to reach the goal? Connie's solution is as follows:

Step 1: First day's run--------- 8 miles
Step 2: Second day increased--- 4 miles
Step 3: Third day increased----- 2 miles
Step 4: Fourth day increased---- 1 miles
Step 5: Fifth day increased------ 1 miles
Step 6: 8 + 4 + 2 + 1 + 1 = 16.
Therefore, on the fifth day Connie will reach the goal of 16 miles.

Do you think Connie's solution is correct?
A. YES () NO ()

If you marked NO, complete the following:
B. Circle the specific statement(s) that caused the critical error.
C. Describe what is wrong with the statement(s) you circled.
D. What is the correct answer?
3. Two men did one-fourth of a job in 8 days. Then, because of an emergency, it became necessary to complete the job in the next 4 days. How many additional men were added to the crew of 2 to accomplish this?

Step 1: 2 men \(\times \) 8 days = 16 man-days.
Step 2: It requires 16 man-days to do 1/4 of the job.
Step 3: Three quarters of the job remains to be done.
Therefore, \(16 \times \frac{3}{4} = 12 \) man-days.
Step 4: The job must be completed in 4 days, so \(\frac{12}{4} = 3 \).
Step 5: Therefore, 3 - 2 = 1. Just one additional man is needed.

Do you think this solution is correct?
A. \(\text{YES} \) () \(\text{NO} \) ()

If you marked \(\text{NO} \), complete the following:
B. Circle the specific statement(s) that caused the critical error.
C. Describe what is wrong with the statement(s) you circled.

D. What is the correct answer?

4. On a certain day Jack ate lunch at Long John Silvers, checked out 3 books from the library (\(\text{O' Pioneer} \) by Willa Cather, \(\text{For Whom the Bell Tolls} \) by Ernest Hemingway, and \(\text{Gone with the Wind} \) by Margaret Mitchell), visited the museum, and had a cavity filled. Long John Silvers is closed on Wednesday, the library is closed on weekends, and the museum is opened on Monday, Wednesday, and Friday. Jack's Dentist has office hours Tuesday, Friday, and Saturday. Now, Jack is trying to figure out on which day of the week he can do all these things. His solution is as follows.

Step 1. Long John Silvers is closed on Wednesday, so....

\[\begin{array}{ccccccc}
S & M & T & W & TH & F & SAT \\
\end{array} \]

Step 2. the library is closed on weekends....

\[\begin{array}{ccccccc}
S & M & T & W & TH & F & SAT \\
\end{array} \]

Step 3. the museum is only open Monday, Wednesday, and Friday....

\[\begin{array}{ccccccc}
S & M & T & W & TH & F & SAT \\
\end{array} \]

Step 4.and dentist has office hours Tuesday, Friday, and Saturday....

\[\begin{array}{ccccccc}
S & M & T & W & TH & F & SAT \\
\end{array} \]

Therefore, the answer is \textbf{Thursday}. Jack can do all of the listed things on Thursday.

Do you think Jack's solution is correct?
A. \(\text{YES} \) () \(\text{NO} \) ()

If you marked \(\text{NO} \), complete the following:
B. Circle the specific statement(s) that caused the critical error.
C. Describe what is wrong with the statement(s) you circled.

D. What is the correct answer?
5. Mary has a set of 10 cubes. One cube has 1 cm edges, one cube has 2 cm edges, one cube has 3 cm edges and so on until the largest cube which has 10 cm edges. Can she build two towers of the same height using all the cubes? (with only one cube at each level)

Mary's solution is as follows:

Step 1: Mary put 9 cm and 1 cm cubes for an A tower, and had a 10 cm cube for a B tower so that it can be the same height of 10 cm for each tower.

Step 2: Then, she put 2 cm and 6 cm cubes for the A tower, and a 8 cm cube for the B tower so that now each tower height becomes 18 cm.

Step 3: With this pattern, she can build 2 towers with the same height.

Do you think Mary's solution is correct?

A. **YES** () **NO** ()

If you marked **NO**, complete the following:

B. Circle the specific statement(s) that caused the critical error.

C. Describe what is wrong with the statement(s) you circled.

D. What is the correct answer?

6. A pet store is going out of business and sells its 17 cats to three local pet stores. Store A wants to buy 1/2 of the cats. Store B will buy 1/3 of the cats, and store C will buy 1/9 of the cats. The owner of the cats decides that math is too difficult with 17 cats, so he developed a new and easier way to work with fractions.

His solution is as follows:

Step 1: He included his puppy with the cats, giving him a total of 18.

Step 2: Then, he sold 1/2 of 18 (9 cats) to store A.

Step 3: 1/3 of 18 (6 cats) to store B.

Step 4: and 1/9 of 18 (2 cats) to store C.

Step 5: Thus he has sold 17 cats (9 + 6 + 2) and kept the puppy.

Do you think the owner's solution is easier and correct?

A. **YES** () **NO** ()

If you marked **NO**, complete the following:

B. Circle the specific statement(s) that caused the critical error.

C. Describe what is wrong with the statement(s) you circled.

D. What is the correct answer?
APPENDIX W: BASIC LOGO COMPREHENSION TEST
Introductory LogoWriter Basic Comprehension Test
(Turtle Graphics)

The following is a list of general objectives tested by this test. The test is designed to examine the basic knowledge and understanding of some fundamental Logo commands and concepts. This test is targeted at the Bloom Taxonomy levels of Knowledge and Comprehension only, and does not attempt to measure higher levels of learning. Higher order programming concepts such as modularity, and top-down design, are utilized in the test questions, but are not targeted specifically for evaluation.

Basic Objectives:

1. **Basic Turtle Commands (Primitives)**
 1.1) The student is able to identify the function of primitive commands.
 1.2) The student is able to differentiate between pre-defined primitive commands, and user defined procedures, within the Logo language.
 1.3) The student is able to predict changes in the turtle's state, (heading and position), implemented by sequences of primitive commands.
 1.4) The student is able to predict the graphical output produced by sequences of primitive commands.

2. **Repeat Commands**
 2.1) The student is able to identify the proper syntax of the repeat command.
 2.2) The student is able to select an equivalent repeat statement for a repeated sequence of primitive commands.
 2.3) The student is able to recognize that the repeat statement is a more efficient and simplified structure for repeated sequences of primitives or procedures.
 2.4) The student is able to predict the output effect of the repeat command used with primitives and defined procedures.

3. **Basic Procedures**
 3.1) The student is able to identify the proper syntax for defining a procedure.
 3.2) The student is able to recognize that a procedure is basically a set of command steps defined to perform some task.
 3.3) The student is able to predict the output effects of procedures using sequenced primitive commands and the repeat command.
 3.4) The student is able to predict the output effects of procedures when used in combination with primitive and repeat commands.
 3.5) The student is able to identify operational features of the LogoWriter Editor.
4. **Super-Procedures and Sub-Procedures**

4.1) The student is able to differentiate between the main calling procedure and its subprocedures in a program.

4.2) The student is able to identify that the restructuring of a larger procedure into a calling procedure and subprocedures promotes effective programming by problem analysis, task division, and procedure reusability.

4.3) The student is able to predict the graphic effects of the execution of a calling procedure with its included subprocedures.

4.4) The student is able to select a clear, concise, calling procedure that calls appropriate subprocedures.

5. **Variable Use**

5.1) The student is able to recognize the proper syntax for procedures using single variable and dual variable inputs.

5.2) The student is able to recognize that variables are placeholders for changeable values that permit flexibility and generality in procedures.

5.3) The student is able to predict the graphic effects of the execution of procedures using variables with specific input values.

5.4) The student is able to predict the graphic effects of the execution of procedures using variables, with internal modification of variables, given specific input to the procedures.

5.5) The student is able to select an appropriate procedure for a programming problem requiring the use of more than one variable.

6. **Recursive Procedures and Conditional Statements**

6.1) The student is able to identify the proper syntax and format of a procedure using recursion.

6.2) The student is able to recognize that a recursive procedure is a procedure which calls itself as a subprocedure permitting modifiable repetition.

6.3) The student will be able to predict the graphic effects of the execution of basic procedures using recursion.

6.4) The student will be able to predict the graphic effects of the execution of procedures using recursion and conditional statements.

6.5) The student is able to select an appropriate stop procedure for a recursion.
Name________________________

Directions: Please read the following questions carefully and select the best answer for each question. In questions involving graphics, or sequences of specific commands, always assume that the turtle starts in the home position unless the question states otherwise.

1. Examine the following primitive command descriptions; which of the descriptions are incorrect?

Fd - moves the turtle forward a certain distance
Rt - turns the turtle to the right a certain number of degrees
Home - clears the screen and moves the turtle to the screen's center facing up.
Fill - fills a graphic shape with a specific color
Pu - picks up the drawing pen of the turtle so that no line is drawn as the turtle moves

a. all of the descriptions are correct.
b. one of the descriptions is incorrect.
c. two of the descriptions are incorrect.
d. three descriptions are incorrect.
e. the descriptions are all basically correct, but the primitive commands must be typed in all capital letters for them to work.

2. In the LOGO programming Language, which of the following is not a primitive?

a. Cg
b. Fd
c. Seth
d. Fillit
e. Home

3. In Logo, the "primitive" commands are:

a. Useful procedures invented and defined by the user to perform some task, like moving the turtle forward or drawing a triangle.
b. Useful procedures that are already defined in the Logo language when it starts up.
c. The basic movement commands of FD, BK, RT, and LT, which are the only commands that actually move the turtle on the screen, and thus the only "primitive" commands.
d. The commands of PU, PD, PE, Home, HT, ST, and CG, which are the only commands that require no input numbers, thus they are the only "primitive" commands.
e. None of the above statements is correct.
4. Given the following sequence of primitive commands, and the information that the turtle is facing directly to the right of the screen, (before the commands are executed, which way does the turtle face after the commands are executed?)

Fd 50
Rt 90
Fd 100
Rt 180
Bk 40
Lt 90

a. The turtle now faces to the bottom of the screen.
b. The turtle now faces to the left of the screen.
c. The turtle now faces to the top of the screen.
d. The turtle still faces to the right of the screen.
e. It is impossible to tell without specific coordinates.

5. Which of the following sets of commands will position the turtle the greatest distance away from the home position? (assume that the turtle starts in the home position)

a. Fd 100 b. Fd 200 c. Bk 100 d. Fd 100 e. It is impossible to tell without typing these commands into the computer.

56 b. Ft 200 d. Fd 100 e. It is impossible to tell without typing these commands into the computer.

6. What will the following sequence of commands draw? (assume that the turtle starts in the home position)

Fd 50
Rt 60
Fd 50
Rt 60
Fd 50
Rt 60

a.

b.

c.

d.

e.
7. What will be drawn by the following sequence of commands? (assume that the turtle starts in the home position)

Fd 50
Rt 90
Fd 50
Home
Fd 50

a.

b.

c.

d.

e. None of These

8. Which of the following Repeat commands will not produce an error message when it is executed?

a. Repeat [Fd 50 Bk 50 Rt 60]
b. Repeat Fd 50 [Rt 90]
c. Repeat 3 [Fd 50 Bk 50]
d. Repeat 4 [Pu Rt 90 Fd 50 Pd Bk 50]
e. All of the above statements will produce error messages.

9. Which of the choices below is the most efficient replacement for this set of commands to the right?

a. Setc 3
Repeat 3 [Fd 50 Rt 70]
Fd 50
Rt 90

b. Setc 3
Repeat 4 [Fd 50 Rt 70]
Fd 50
Rt 90

d. Repeat 3 [Setc 3 Fd 50 Rt 70]
Fd 50
Rt 90

e. Repeat 3 [Setc 3 Fd 50 Rt 70]

10. In Logo, the Repeat command:
 a. will make the turtle do something exactly twice. (For instance: Repeat Square
draws two squares exactly the same).
 b. provides the capability to simplify repeated sequences of commands
into a single more efficient command.
 c. must be used when drawing a square, triangle, rectangle, or circle.
 d. will make the turtle do something over and over forever, until the programmer
presses the "open-apple" and "S" keys.
 e. none of the above are correct.

11. What shape would the following repeat command draw?
 (Assume that the turtle starts in the home position)

 Repeat 5 [Ft 50 Bk 50 Rt 45]

 a.
 b.
 c.
 d.
 e.

 None of These

12. Which of the following procedures will not produce an error message
 when the procedure is executed?

 a.
 b.
 c.
 d.
 e.

 All of these

13. In LogoWriter, the term "Procedure" basically stands for:
 a. the technique for drawing step by step pictures with a computer
 b. a set of defined command steps to perform some task
 c. the important problem solving steps of defining the problem, choosing a plan,
carrying out the plan, and looking back at the solution.
 d. all the important commands for using the editor, such as "open-apple-f"
 e. none of the above
14. Which of the following procedures would correctly draw the figure shown below? (assume that the turtle starts in the home position)

- a. To Peak
 - RT 45
 - Fd 50
 - End
- b. To Peak
 - RT 90
 - Fd 50
 - End
- c. To Peak
 - RT 45
 - Fd 50
 - End
- d. To Peak
 - Rt 90
 - Fd 50
 - End
- e. None of These

15. Given the Square procedure, what would be the graphical result of the following sequence of commands? (assume that the turtle starts in the home position)

Command Sequence:
- CG
- Repeat 4 [Square Rt 90]
- Fd 50
- Square

To Square
- Repeat 4 [Fd 50 Rt 90]
- End

- a.
- b.
- c.
- d.
- e. None of These

16. When using the LogoWriter editor, it is important to:

- a. press "open-apple-f" when entering the editor and "escape" when exiting the editor.
- b. begin every student defined procedure with the word "To" and end every student defined procedure with the word "End".
- c. begin a brand new page for each new procedure.
- d. none of the above are correct.
- e. all of the above are correct.
17. The following is an example of a program in LogoWriter:

```
To Blossom
Repeat 10 [Square Rt 36]
End

To Stem
Home
Fd 100
End

To Flower
Stem
Blossom
End

To Square
Repeat 4 [Fd 50 Rt 90]
End
```

Which of the following statements is true?

a. Blossom is the main calling procedure for this program.
b. Square is the main calling procedure for this program.
c. Flower is the main calling procedure for this program.
d. Stem and Blossom are both main calling procedures for this program.
e. There is no main calling procedure for this program.

18. What is one of the reasons that a programmer might want to divide up a procedure into a calling procedure and various sub-procedures?

a. Because the LogoWriter editor only works with small procedures of no more than one screen long.
b. Because it is easier to analyze a problem, and program its solution, in parts.
c. Because sub-procedures like Square, Triangle, and Circle are already built into the Logo language, and these won’t have to be created by the programmer.
d. Because in Logo there is no immediate mode, and the turtle can not execute a command unless it is written into a sub-procedure stored in the editor.
e. None of the above are true.

19. Given the following procedures in the workspace, what would be the graphic output when running the procedure “House”?
(assume that the turtle starts from the home position)

```
To House
Square
Roof
End

To Roof
Repeat 3[Fd 50 Rt 120]
End

To Square
Repeat 4[Fd 50 Rt 90]
End
```

a.

b.

c.

d.

e. None of these
20. Using the procedures of Frame, Wheel, & Handlebars, and assuming that each of these procedures draw only a specific shape, what is the super-procedure most likely needed for drawing a bicycle?

a. To Bicycle
 Frame
 Move 1
 Repeat 2 [Wheel]
 Move 2
 Handlebars
 End

b. To Bicycle
 Frame
 Wheel
 Move
 Handlebars
 End

c. To Bicycle
 Frame
 Wheel
 Move
 Wheel
 Move
 Handlebars
 End

d. To Bicycle
 Frame
 Move
 Wheel
 Move
 Wheel
 Move
 Handlebars
 End

e. None of These

21. Looking at the following procedures, which of the statements below would be considered true?

```
To Mystery :X
Fd :X
Rt :X + 90
Repeat 100 [Fd :X Rt :X]
End
```
```
To Something :X :Y
Fd :X
RT :Y
Repeat 100 [Fd :X Rt :Y]
End
```

a. Both the Mystery procedure and the Something procedure use two variables.
b. The :X in the line "To Mystery :X", is unnecessary for input and could be removed.
c. The Mystery procedure could be executed by typing Mystery 47.
d. The Something procedure could be executed by typing Something 17.
e. More than one of these statements is true.

22. One of the reasons programmers may want to use variables in their procedures is because:

a. variables are needed in procedures to use the LogoWriter editor.
b. variable procedures are what make the graphics in LogoWriter colorful.
c. variables are needed for graphics, especially in drawing curved lines.
d. procedures using variables are more easily reused in other applications.
e. none of the above
23. Using the following procedures, predict what happens when Train 20 50 is executed. (assume the turtle starts in the home position)

To Train :Width :Length
Rectangle :Width :Length
RT 90
FD :Length
LT 90
Rectangle :Width :Length
End

To Rectangle :Width :Length
Repeat 2(FD :Width RT 90 FD :Length RT 90)
End

a.

b.

c.

d.

e. None of These

24. Which of the figures shown below will result from the execution of Stack 50?

To Stack :X
Rectangle :X
Rectangle :X-20
Rectangle :X-30
End

To Stack :X
Rectangle :X
Repeat 2(FD :X RT 90 FD :X * 2 RT 90)
End

a.

b.

c.

d.

e. None of These

25. A student would like to design a LogoWriter program which will draw a triangle placed directly above a square, as in the picture on the right. She would like to have the side of the square and the side of the triangle to be different inputs. Which procedure below, would best fit her desire? (Square and Triangle are already in the workspace)

a. To Fig :X :Y
 Square :X
 FD :X
 Triangle :Y

b. To Fig :X :Y
 Square :X
 FD :X
 Triangle :Y

C. To Fig :X :Y
 Square :X
 FD :Y
 Triangle :Y

D. To Fig :X :Y
 Square :X
 FD :Y
 Triangle :Y

E. None of these would be appropriate
26. Which of the following is an example of a procedure using recursion and a conditional statement to terminate it?

a. To Thing :L
 Fd :L
 Rt 5
 Thing :L - 1
 IF :L < 0 [Stop]
 End

b. To Thing :L
 Repeat 4 [Fd :L Rt 5]
 Fd :L
 If :L < 0 [Stop]
 End

27. A "recursive" procedure in LogoWriter is a procedure that:

a. uses repeated curves within the graphical output.
b. is basically the same as a repeat statement but uses less commands.
c. calls itself as a sub-procedure.
d. calls more than two different sub-procedures.
e. all of the above are correct.

28. Looking at the following procedure, which of the statements listed below best describes the execution of the program?

To Lots
Repeat 2 [Fd 20 Rt 90 Fd 50 Rt 90]
Pu
Fd 20
Fd
Lots
End

a. The procedure draws the same rectangle, in the same place, continually, until someone stops the program.
b. The procedure draws two rectangles, one above the other one.
c. The procedure draws one rectangle, moves forward, and then gives an error message.
d. The procedure continues to draw rectangles stacked above each other until the memory of the computer is filled up.
e. None of the statements above describe the execution.
29. Given the procedures shown below, what figure would be drawn by Mystery 30? (assume that the turtle starts in the home position)

To Mystery :S
IF :S = 0 [Stop]
IF :S = 30 [Rsquare :S]
IF :S < 20 [Lsquare :S]
Mystery :S - 10
End

To Rsquare :S
Repeat 4[FD :S RT 90]
End

To Lsquare :S
Repeat 4[FD :S LT 90]
End

<table>
<thead>
<tr>
<th>a.</th>
<th>b.</th>
<th>c.</th>
<th>d.</th>
<th>e.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

30. In the following recursive procedure Blocks, what is the correct conditional statement to stop the procedure so that the output looks like the figure below when Blocks 3 is executed?

<table>
<thead>
<tr>
<th>Blocks Recursive Procedure</th>
<th>Desired Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>(line 1) To Blocks x</td>
<td></td>
</tr>
<tr>
<td>(line 2) Repeat 4 [Fd 50 Rt 90]</td>
<td></td>
</tr>
<tr>
<td>(line 3) Fd 50</td>
<td></td>
</tr>
<tr>
<td>(line 4) Blocks x-1</td>
<td></td>
</tr>
<tr>
<td>(line 5) End</td>
<td></td>
</tr>
</tbody>
</table>

a. Place the statement: "If x < 0 [stop]" between lines 1 and 2.
b. Place the statement: "If x = 0 [stop]" between lines 1 and 2.
c. Place the statement: "If x = 0 [stop]" between lines 3 and 4.
d. Place the statement: "If x = 0 [stop]" between lines 4 and 5.
e. None of the above