Neighborhood-Based Verification of Precipitation Forecasts from Convection-Allowing NCAR WRF Model Simulations and the Operational NAM

Thumbnail Image
Date
2010-10-01
Authors
Clark, Adam
Gallus, William
Weisman, Morris
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Gallus, William
Professor
Research Projects
Organizational Units
Organizational Unit
Geological and Atmospheric Sciences

The Department of Geological and Atmospheric Sciences offers majors in three areas: Geology (traditional, environmental, or hydrogeology, for work as a surveyor or in mineral exploration), Meteorology (studies in global atmosphere, weather technology, and modeling for work as a meteorologist), and Earth Sciences (interdisciplinary mixture of geology, meteorology, and other natural sciences, with option of teacher-licensure).

History
The Department of Geology and Mining was founded in 1898. In 1902 its name changed to the Department of Geology. In 1965 its name changed to the Department of Earth Science. In 1977 its name changed to the Department of Earth Sciences. In 1989 its name changed to the Department of Geological and Atmospheric Sciences.

Dates of Existence
1898-present

Historical Names

  • Department of Geology and Mining (1898-1902)
  • Department of Geology (1902-1965)
  • Department of Earth Science (1965-1977)
  • Department of Earth Sciences (1977-1989)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Geological and Atmospheric Sciences
Abstract

Since 2003 the National Center for Atmospheric Research (NCAR) has been running various experimental convection-allowing configurations of the Weather Research and Forecasting Model (WRF) for domains covering a large portion of the central United States during the warm season (April–July). In this study, the skill of 3-hourly accumulated precipitation forecasts from a large sample of these convection-allowing simulations conducted during 2004–05 and 2007–08 is compared to that from operational North American Mesoscale (NAM) model forecasts using a neighborhood-based equitable threat score (ETS). Separate analyses were conducted for simulations run before and after the implementation in 2007 of positive-definite (PD) moisture transport for the NCAR-WRF simulations. The neighborhood-based ETS (denoted hETSir) relaxes the criteria for ‘‘hits’’ (i.e., correct forecasts) by considering grid points within a specified radius r. It is shown that hETSir is more useful than the traditional ETS because hETSir can be used to diagnose differences in precipitation forecast skill between different models as a function of spatial scale, whereas the traditional ETS only considers the spatial scale of the verification grid. It was found that differences in hETSir between NCAR-WRF and NAM generally increased with increasing r, with NCAR-WRF having higher scores. Examining time series of hETSir for r 5 100 and r 5 0 km (which simply reduces to the ‘‘traditional’’ ETS), statistically significant differences between NCAR-WRF and NAM were found at many forecast lead times for hETSi100 but only a few times for hETSi0. Larger and more statistically significant differences occurred with the 2007–08 cases relative to the 2004–05 cases. Because of differences in model configurations and dominant large-scale weather regimes, a more controlled experiment would have been needed to diagnose the reason for the larger differences that occurred with the 2007–08 cases. Finally, a compositing technique was used to diagnose the differences in the spatial distribution of the forecasts. This technique implied westward displacement errors for NAM model forecasts in both sets of cases and in NCAR-WRF model forecasts for the 2007–08 cases. Generally, the results are encouraging because they imply that advantages in convectionallowing relative to convection-parameterizing simulations noted in recent studies are reflected in an objective neighborhood-based metric.

Comments

This article is from Weather and Forecasting 25 (2010): 1495, doi: 10.1175/2010WAF2222404.1. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Fri Jan 01 00:00:00 UTC 2010
Collections