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Figure 3. Experimental HDSN configuration: (a) monitored fiberglass substrate with labeled bolts along the leading edge;
(b) schematic with labeled SECs and RSGs; virtual sensors in the x and y directions are denoted by blue circles and green
diamonds, respectively; and (c) picture of the HDSN (RSGs A and D not shown, as they were added after the substrate
was installed on the model), interior surface view.

The experimental HDSN tested here consisted of 12 3 � 3 cm2 SECs and 8 unidirectional RSGs, TML model
# FCA-2, mounted on a 0.8 mm-thick fiberglass substrate (figure 3(a)) measuring approximately 270 x 220 mm2.
The fiberglass composite skin was attached to the second and third airfoil sections counted from the blade root.
The majority of the bending induced strain developed in the gap between the sections. The deployed HDSN
is presented in figure 3(b). Twenty-four bolts were used to fasten the substrate onto the model. Boundary
conditions for the bolts were assumed such that εx = 0 at each bolt location along the top and bottom of the
plate, and εy = 0 at each bolt location along the vertical edges of the plate (see figure 3(b)). Figure 3(c) is a
picture of the fiberglass panel that was attached to the blade model with 12 SECs and 4 of the 8 RSGs mounted.
The remaining 4 RSGs were installed after the substrate was attached to the model. The SEC data acquisition
consisted of three custom-built microcontrollers, Atmel P328, each with a 24 bit 4 channel capacitance to digital
(CDC) converter sampled at 22 Samples/second (S/s). RSG measurements were obtained using a National
Instruments 24-bit 350 Ω quarter-bridge modules (NI-9236) and sampled at 2000 S/s.

Damage was introduced in the form of changing boundary conditions through removing the bolts on the
leading edge (facing into the wind flow) of the blade. The removed bolts are annotated in figure 3(a) and their
order of removal for 8 different damage cases are listed in Table 1. Unidirectional strain mats are realized for each
damage case. Experimental data sets were acquired following the introduction of each damage case, therefore,
including the healthy case nine total data sets were acquired.

Table 1. Boundary conditions (bolts) removed for each damage case.

damage case (no.)
1 2 3 4 5 6 7 8

bolts removed 5 4,5 3,4,5 3,4,5,6 3,4,5,6,7 2,3,4,5,6 1,3,4,5,6,7 1,3,4,5,6,7,8

Damage detection and localization through the updating of assumed boundary conditions and monitoring
of the error is investigated using damage case 2. Damage case 2 consists of two missing bolts (bolts 4 and 5).
We leverage the concept of updating the assumed boundary conditions through taking various combinations of
two missing bolts for damage detection and localization. The five possible damage locations investigated are the
removal of boundary conditions (bolts) 2 & 3, 3 & 4, 4 & 5, 5 & 6 and 6 & 7. Assumptions containing bolts
1 and 8 were found to be unacceptable due to the complex interaction of plate’s edge effects and the assumed
shape function, and are therefore excluded from this introductory work. Damage case 2 was selected because it
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provided large enough damage to be trackable with the deployed HDSN, while still providing a relatively large
search space of five possible damage locations.

Signal interference between the SEC data acquisition system required that only one microcontroller be op-
erating at any given time. Therefore, experimental data for each test condition (healthy and 8 damage cases)
was obtained over 3 repeated test runs, each test recording 4 SECs and all eight RSGs. Final experimental data
were compiled using the RSG signal as a reference to align the SEC signals for each test case. To reduce sensor
noise in the SEC and provide a common time stamp for data analysis, the sensor signals were filtered as follows.
A low pass Weibull filter with a cutoff frequency of 5 Hz was applied to remove any high-frequency noise. Next,
a principal component analysis (PCA) decomposition was applied on the SEC signals, retaining the first four
eigenvalues. Lastly, the SEC and RSG signals were resampled to 100 Hz using a spline interpolation.

4. VALIDATION

Figure 4. SEC and RSG signals: frequency domain showing the first and second harmonic; (insert) time series data for
the SEC and RSG signals.

The capability of the SEC to track the buffeting-induced strain in the wind turbine blade is shown in figure 4.
It can be observed that The SEC captures the blade’s fundamental frequency at 3.1 Hz and tracks an additional
harmonic at 6.2 Hz. Data presented was extracted from SEC #5 and RSG B. A difference of 0.05 Hz is present
between the second harmonic detected by the SEC and that of the RSG. A third harmonic is present in the
RSG data at 9.25 Hz, but this peak is hardly distinguishable from the SEC’s level noise. Given the currents
DAQ’s low sampling rate of 22Hz, no data past 11Hz is available in the frequency range. Time series data for
the SEC and the validating RSG is presented in figure 4(insert). An approximatively sinusoidal shape can be
seen in the RSG and SEC data, albeit the SEC was hampered by a much slower sampling rate. Individual SEC
strain samples are shown as black dots, and thea filtered SEC signal is presented as the solid blue line. Overall,
the SEC exhibit an excellent capability for tracking the blade’s response and frequency domain signals while
operating in the relatively noisy environment of a wind tunnel.
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Figure 5. Reconstructed strain maps: (a) healthy condition εx; (b) εy; (c) damage case 4 εx; (d) εy; (e) damage case 8
εx; (f) εy.
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The performance of the HDSN as a sensing skin capable of developing full field strain maps in addition to
detecting and localizing damage is experimentally validated. Figure 5 shows the decomposed strain maps εx and
εy for the healthy and damage cases 4 and 8. Strain maps are computed from data taken when εy at RSG B
was at the maximum compressive strain (i.e. when the tip of the model is at its maximum displacement). The
reconstructed strain maps for the undamaged test case are presented in figure 5(a-b). The enforced boundary
conditions ensure that εy = 0 along the leading and trailing edges of the plate. As expected, when bolts are
removed for damage cases 4 and 8 and the boundary conditions are updated to reflect the damage, a compressive
strain energy moves into the leading edge of the plate. For damage case 8, all leading edge bolts removed, and
the majority of the strain energy is present in the middle and along the leading edge of the fiberglass skin that
connects the two separate airfoil sections. Additionally, results demonstrates that the HDSN can reconstruct
relatively complex strain fields, such as that caused by the torsional motion of the blade model, represented by
the different parts of the skin being under tension and compression. The blades torsion detected by the strain
maps was corroborated through accelerometers, force transducers, and video captured during testing.

Figure 6. Improvement in strain map reconstruction obtained through the updated of boundary conditions to match the
monitored substrate’s condition.

Results from updating the enforced boundary conditions to match the damage state of the system is presented
in figure 6. Here the error between the estimated strain maps and the experimental RSG data is measured as
a mean fitting error across all 8 RSGs for the two orthogonal strain map reconstruction cases. The mean
error is obtained by averaging the error throughout six full vibration cycles of the blade model. A comparison
in the measured error between uncorrected strain maps that maintain a consistent set of boundary conditions
throughout all the damage cases and the corrected strain maps that used an update on the boundary conditions to
match each damage case is presented in figure 6. Results demonstrate that updating the boundary conditions to
match the damage state provides a consistently better fit than that obtained through the use of static boundary
conditions. In the case of damage case 8, a 44.5 % improvement in the measured error is obtained through
updating the boundary conditions to match the damage cases. As expected, results demonstrate that updating
the boundary conditions to match the damage case results in higher accuracy strain maps.

Experimental data from damage case 2 is used to validate damage detection and localization through lever-
aging the assumptions on the plate’s boundary conditions. Results presented in figure 7 exhibits the fitting error
as a function of the boundary conditions that are removed. Boundary conditions were removed in pairs to match
the known damage size in damage case 2 (bolts 4 and 5 removed). The fitting error for the removal of bolts 4
and 5 results in a lower fitting error, therefore identifying damage case 2 correctly.

5. CONCLUSION

This paper presented the experimental validation for a novel hybrid dense sensor network (HDSN) for monitoring
strain on a wind turbine blade. The HDSN was tested on a scale model of a wind turbine blade in a wind tunnel
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Figure 7. Damage case 2: damage localized through updating the assumed boundary conditions of the plate.

to simulate an operational environment. The HDSN consisted of a large area electronic sensor based on a 
soft elastomeric capacitor (SEC) combined with resistive strain gauges (RSGs). An extended least squares 
estimator (LSE)-based algorithm was used to fuse the SEC’s additive strain measurements, the RSG’s linear 
strain measurements, and the assumed boundary conditions into unidirectional strain maps. The algorithm 
assumed a shape function, enforced boundary conditions with the RSG measurements, and used virtual sensors. 
The regression coefficients were computed using an LSE and used for reconstructing unidirectional strain maps.

Experimental results demonstrated the ability to the HDSN to detect changes in strain maps (i.e. damage) 
resulting from damage introduced as a change in the monitored substrates boundary conditions. Damage local-
ization is achieved through the updating of the assumed boundary conditions and monitoring the error between 
reconstructed strain maps and RSG signals. Results showed the promise of the HDSN technology for damage 
detection along the edge of a monitored area. The HDSN technology and associated damage detection tech-
niques could be used to monitor very large structural components including wind turbine blades. Also, given 
the demonstrated ability of the HDSN at measuring strain maps, the technology offers potential for updating 
computational models in real-time. These high fidelity models could then be used for the effective structural 
health monitoring of structural components or research and development activities. Future work will require an 
in-depth investigation of the proposed method, including the use of larger HDSN and various types of assumed 
boundary conditions.
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