Crop Plants as Models for Understanding Plant Adaptation and Diversification

Thumbnail Image
Date
2013-08-01
Authors
Olsen, Kenneth
Wendel, Jonathan
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Wendel, Jonathan
Distinguished Professor
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Department
Ecology, Evolution and Organismal Biology
Abstract

Since the time of Darwin, biologists have understood the promise of crop plants and their wild relatives for providing insight into the mechanisms of phenotypic evolution. The intense selection imposed by our ancestors during plant domestication and subsequent crop improvement has generated remarkable transformations of plant phenotypes. Unlike evolution in natural settings, descendent and antecedent conditions for crop plants are often both extant, providing opportunities for direct comparisons through crossing and other experimental approaches. Moreover, since domestication has repeatedly generated a suite of "domestication syndrome" traits that are shared among crops, opportunities exist for gaining insight into the genetic and developmental mechanisms that underlie parallel adaptive evolution. Advances in our understanding of the genetic architecture of domestication-related traits have emerged from combining powerful molecular technologies with advanced experimental designs, including nested association mapping, genome-wide association studies, population genetic screens for signatures of selection, and candidate gene approaches. These studies may be combined with high-throughput evaluations of the various "omics" involved in trait transformation, revealing a diversity of underlying causative mutations affecting phenotypes and their downstream propagation through biological networks. We summarize the state of our knowledge of the mutational spectrum that generates phenotypic novelty in domesticated plant species, and our current understanding of how domestication can reshape gene expression networks and emergent phenotypes. An exploration of traits that have been subject to similar selective pressures across crops (e.g., flowering time) suggests that a diversity of targeted genes and causative mutational changes can underlie parallel adaptation in the context of crop evolution.

Comments

This article is from Frontiers in Plant Sciences 4 (2013): 290, doi:10.3389/fpls.2013.00290. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Tue Jan 01 00:00:00 UTC 2013
Collections