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Calibration of Pavement ME Design and Mechanistic-Empirical
Pavement Design Guide Performance Prediction Models for Iowa
Pavement Systems

Abstract
The AASHTO Mechanistic-Empirical Pavement Design Guide (MEPDG) pavement performance models
and the associated AASHTOWare® Pavement ME Design software are nationally calibrated using design
inputs and distress data largely from the national Long-Term Pavement Performance (LTPP). Further
calibration and validation studies are necessary for local highway agencies’ implementation by taking into
account local materials, traffic information, and environmental conditions. This study aims to improve the
accuracy of MEPDG/Pavement ME Design pavement performance predictions for Iowa pavement systems
through local calibration of MEPDG prediction models. A total of 70 sites from Iowa representing both
jointed plain concrete pavements ( JPCPs) and Hot Mix Asphalt (HMA) pavements were selected. The
accuracy of the nationally calibrated MEPDG prediction models for Iowa conditions was evaluated. The local
calibration factors of MEPDG performance prediction models were identified using both linear and nonlinear
optimization approaches. Local calibration of the MEPDG performance prediction models seems to have
improved the accuracy of JPCP performance predictions and HMA rutting predictions. A comparison of
MEPDG predictions with those from Pavement ME Design was also performed to assess if the local
calibration coefficients determined from MEPDG version 1.1 software are acceptable with the use of
Pavement ME Design version 1.1 software, which has not been addressed before. Few differences are observed
between Pavement ME Design and MEPDG predictions with nationally and locally calibrated models for: (1)
faulting and transverse cracking predictions for JPCP, and (2) rutting, alligator cracking and smoothness
predictions for HMA. With the use of locally calibrated JPCP smoothness (IRI) prediction model for Iowa
conditions, the prediction differences between Pavement ME Design and MEPDG are reduced. Finally,
recommendations are presented on the use of identified local calibration coefficients with MEPDG/Pavement
ME Design for Iowa pavement systems.
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Calibration of Pavement ME Design and Mechanistic-

Empirical Pavement Design Guide Performance Prediction 

Models for Iowa Pavement Systems 

Sunghwan Kim, Halil Ceylan, Di Ma, and Kasthurirangan Gopalakrishnan 

Abstract: The AASHTO Mechanistic-Empirical Pavement Design Guide (MEPDG) pavement 
performance models and the associated AASHTOWare® Pavement ME Design software are 
nationally calibrated using design inputs and distress data largely from the national Long-Term 
Pavement Performance (LTPP). Further calibration and validation studies are necessary for local 
highway agencies’ implementation by taking into account local materials, traffic information, 
and environmental conditions. This study aims to improve the accuracy of MEPDG/Pavement 
ME Design pavement performance predictions for Iowa pavement systems through local 
calibration of MEPDG prediction models. A total of 70 sites from Iowa representing both jointed 
plain concrete pavements (JPCPs) and Hot Mix Asphalt (HMA) pavements were selected. The 
accuracy of the nationally calibrated MEPDG prediction models for Iowa conditions was 
evaluated. The local calibration factors of MEPDG performance prediction models were 
identified using both linear and nonlinear optimization approaches. Local calibration of the 
MEPDG performance prediction models seems to have improved the accuracy of JPCP 
performance predictions and HMA rutting predictions. A comparison of MEPDG predictions 
with those from Pavement ME Design was also performed to assess if the local calibration 
coefficients determined from MEPDG version 1.1 software are acceptable with the use of 
Pavement ME Design version 1.1 software, which has not been addressed before. Few 
differences are observed between Pavement ME Design and MEPDG predictions with nationally 
and locally calibrated models for: (1) faulting and transverse cracking predictions for JPCP, and 
(2) rutting, alligator cracking and smoothness predictions for HMA. With the use of locally 
calibrated JPCP smoothness (IRI) prediction model for Iowa conditions, the prediction 
differences between Pavement ME Design and MEPDG are reduced. Finally, recommendations 
are presented on the use of identified local calibration coefficients with MEPDG/Pavement ME 
Design for Iowa pavement systems.   
 
CE Database subject headings: Pavement analysis and design; Mechanistic-Empirical 
Pavement Design; Concrete; Hot Mix Asphalt; AASHTO; Calibration  
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Introduction 

The Mechanistic Empirical Pavement Design Guide (MEPDG) was developed under the 
National Cooperative Highway Research Program (NCHRP) Project 1-37A (NCHRP 2004) to 
overcome the deficiencies and limitations of the empirical design procedures in the 1993 
AASHTO Guide for Design of Pavement Structures. The MEPDG is now deployed as the 
AASHTO MEPDG Manual of Practice (AASHTO 2008) and the associated AASHTOWare® 
Pavement ME Design software (AASHTO 2012).  
 The mechanistic-empirical procedure in the MEPDG uses the principles of engineering 
mechanics to mechanistically calculate pavement responses (stresses, strains, and deflection) as 
well as the empirical distress transfer functions for predicting pavement performance. The 
empirical distress transfer functions used in the MEPDG are nationally calibrated using design 
inputs and distress data largely from the national Long-Term Pavement Performance (LTPP) 
database. Although this effort was comprehensive, further calibration and validation studies to 
suit local conditions are highly recommended by the NCHRP Project 1-37A as a prudent step in 
implementing a new design procedure that is so different from the previous procedures. In 
addition to this, a previously completed research study (Kim et al. 2010) in pursuit of the 
MEPDG implementation initiatives in Iowa indicated the need for local calibration of MEPDG 
performance prediction models for Iowa conditions. Thus, it is necessary to calibrate the 
MEPDG/Pavement ME Design performance models for implementation in Iowa Department of 
Transportation (DOT) by taking into account local materials, traffic information, and 
environmental conditions. 
 Several national-level research studies (AASHTO 2010: FWHA 2010a, b) supported by 
the NCHRP and Federal Highway Administration (FHWA) have been conducted to demonstrate 
the MEPDG local calibration procedure after the release of the original research version of the 
MEPDG software.  
 Parallel to national-level research projects, many state/local agencies have conducted or 
plan to undertake local calibration studies for their own pavement conditions. Flexible pavement 
calibration studies include the work by Galal and Chehab (2005) in Indiana; Von Quintus and 
Moulthrop (2007) in Montana; Kang et al.(2007) mainly in Wisconsin; Schram and 
Abdelrahman (2006) in Nebraska; Muthadi and Kim (2008), Corley-Lay et al. (2010), and 
Jadoun (2011) in North Carolina; Li et al. (2009) and Li et al.(2010) in Washington; Banerjee et 
al.(2009, 2010, 2011) in Texas; Glover and Mallela (2009) in Ohio; Darter et al (2009) in Utah; 
Souliman et al.(2010), Mamlouk and Zapata (2010), Darter et al. (2012) in Arizona; Kim et al. 
(2010) in Iowa; Khazanovich et al. (2008), Velasquez et al (2009) and Hoegh et al. (2010) in 
Minnesota; and Hall et al (2011) in Arkansas.  
 Limited studies on rigid pavement performance prediction model calibration, primarily 
focusing on jointed plain concrete pavement (JPCP) include the work by Li et al. (2006) in 
Washington; Schram and Abdelrahman (2006) in Nebraska; Darter et al. (2009) in Utah; 
Velasquez et al. (2009) in Minnesota; Kim et al. (2010) in Iowa; Bustos et al. (2009) in 
Argentina; and Delgadillo et al. (2011) in Chile. Ceylan et al. (2012) summarized the procedures 
and findings of all these studies related to both flexible and rigid pavements.  
 Some significant findings derived from previous studies which are also relevant to the 
present study include: (1) all JPCP performance predictions (faulting, transverse cracking and 
roughness) could be improved by local calibration, (2) rutting, alligator (bottom-up) cracking, 
and roughness predictions for flexible pavement could be improved through local calibration, (3) 
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no consistent trend in the longitudinal (top-down) cracking predictions of flexible pavement 
could be identified to reduce the bias and standard error, and improve the accuracy of this 
prediction model, and (4) few or no thermal (transverse) cracking is predicted by MEPDG when 
using a properly selected PG binder for local conditions but transverse cracking is in fact 
observed in actual HMA pavement. However, not all previous studies utilized the latest version 
of MEPDG software (version 1.1) which forms the main framework of Pavement ME Design 
released in April 2011. More importantly, very few studies try to assess if the local calibration 
coefficients determined from the research grade MEPDG software are acceptable in Pavement 
ME Design.  
 The primary objective of this research study is to improve the accuracy of MEPDG/ 
Pavement ME Design projected pavement performance predictions for Iowa pavement systems 
through local calibration of MEPDG version 1.1 performance prediction models. A total of 70 
representative JPCP and HMA pavements in Iowa were selected.  The required data for the local 
calibration procedure were extracted from a variety of sources. The accuracy of the nationally 
calibrated MEPDG prediction models for Iowa conditions was evaluated. The procedure and 
results of local calibration are presented in this paper along with other significant findings and 
recommendations for using the MEPDG/ Pavement ME Design in the analysis of Iowa pavement 
systems.   
 
Local Calibration Methodology  

Based on the AASHTO guide for the local calibration of the MEPDG (AASHTO 2010), a 
procedure was formulated in consultation with the Iowa DOT engineers for the local calibration 
of the MEPDG performance predictions. The procedure is detailed into the following steps: 
 
Steps1. Select typical pavement sections around the State. 
Steps2.sIdentify available sources to gather input data and determine the desired level for 

obtaining each input data. 
Steps3. Prepare MEPDG input database from available sources including Iowa DOT Pavement 

Management Information System (PMIS), material testing records, design database, and 
research project reports relevant to MEPDG implementation in Iowa.  

Step 4. Prepare a database of performance data for the selected Iowa pavement sections from 
Iowa DOT PMIS. 

Step 5. Assessment of local bias from national calibration factors.  
Step 6.  Identification of local calibration factors (sensitivity analysis and optimization of 

calibration factors).  
Step 7. Determination of adequacy of local calibration factors.  
 
Site Selection  
 
To develop the database for conducting MEPDG local calibration, representative pavement sites 
across Iowa were selected in consultation with Iowa DOT engineers considering geographical 
locations and traffic levels. A total of 35 JPCP sections (rigid pavements) and 35 HMA sections 
(flexible pavements) were selected from a list of potential roadway segments. Among the 
selected sites, twenty-five sections were utilized for calibration and 10 sections were utilized for 
verification of identified calibration coefficients. In this way, the calibration data sets have 248 
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and 237 of each JPCP and HMA performance measure, respectively. The verification data sets 
have 101 and 90 of each JPCP and HMA performance measure, respectively.  
 Fig. 1 presents the average annual daily truck traffic (AADTT) distributions for each 
Iowa pavement type.  As seen in this figure, HMA pavements are typically used with lower 
AADTT while the use of JPCPs has a wider spread with respect to AADTT. To comprise all 
traffic conditions found in Iowa, three categories of traffic levels were utilized in selecting sites 
for calibration. AADTT fewer than 500 is categorized as low traffic volume; anywhere between 
500 and 1,000 is categorized as medium traffic volume, and AADTT higher than 1,000 is 
categorized as high traffic volume. A detailed description of the selected sites can be found in 
Ceylan et al. (2012). 
 

 
(a)                                                                (b)  

Fig. 1. Iowa pavements by AADTT distribution (as of 2011): (a) JPCP; (b) HMA pavement 
 
MEPDG Calibration Database 

The MEPDG inputs required for the selected sections were primarily obtained from the Iowa 
DOT PMIS and material testing records. Other major sources of the data include online project 
reports relevant to MEPDG implementation in Iowa (http://www.iowadot.gov/operationsresearch 
/reports.aspx and http://www.ctre.iastate.edu/research/reports.cfm).  
 If a specific input data was not available, the default value or its best estimate was 
inputted considering its level of sensitivity with respect to MEPDG predicted performance. The 
NCHRP 1-47 project final report, “Sensitivity Evaluation of MEPDG Performance Prediction”, 
was referred to assess the level of MEPDG design input sensitivity. The NCHRP 1-47 project 
report documents most of the MEPDG sensitivity studies conducted up to date using the initial 
version to the latest version of the MEPDG software. It also presents results of comprehensive 
MEPDG (local and global) sensitivity analyses carried out through the NCHRP 1-47 project 
under five climatic conditions and three traffic levels in the U.S. (Schwartz et al. 2011). 
 A database of historical performance data for the selected sections was prepared from 
Iowa DOT PMIS. Most of the MEPDG performance predictions are recorded in Iowa DOT 
PMIS. However, some differences between PMIS distress measures and MEPDG performance 
predictions were identified. For calibration of the MEPDG performance prediction models, the 
identified differences were resolved by taking the following into account: 
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1. MEPDG provides rutting predictions for individual pavement layers while Iowa DOT 
PMIS provides only accumulated (total) rutting observed in HMA surface. Rutting 
measurements for individual layers were computed by applying average percentages of 
total rutting for different pavement layers and subgrade as recommended in the NCHRP 
1-37A report (NCHRP 2004).   

2. MEPDG transverse cracking predictions for HMA are considered as thermal cracking.  
3. The units reported in PMIS for JPCP transverse cracking and HMA alligator and thermal 

(transverse) cracking are different from those used in MEPDG. These distress measures 
in PMIS were converted into same units as those of MEPDG predictions in accordance 
with the AASHTO local calibration guide (AASHTO 2010). 
 

Identification of Local Calibration Factors 
 
Fig. 2 depicts the procedure used in the study to identify local calibration factors (coefficients) of 
MEPDG performance prediction models. As a first step, sensitivity analyses of calibration 
coefficients on MEPDG predictions were performed.  Two optimization approaches were 
utilized depending on the constitution (form) of MEPDG performance prediction models. The 
constitution (form) of every MEPDG performance prediction model with descriptions is 
available in AASHTO (2008, 2010) and distress model calibration setting menu in MEPDG/ 
Pavement ME Design software.   
 
SA of MEPDG Performance Prediction Model Calibration Coefficients  
 
SA is the apportionment of output variability from a model to its various inputs. Sensitivity of 
MEPDG performance predictions to calibration coefficients was analyzed to: (1) to derive a 
better understanding of how the values of calibration coefficients affect performance predictions, 
and (2) to reduce the search space for subsequent calibration coefficient optimization by 
identifying the changes in performance predictions to changes in calibration coefficients. A 
coefficient sensitivity index (Sijk) and a coefficient-normalized sensitivity index (Sn

ijk) were 
adapted to quantify the sensitivity of each calibration coefficient and to compare the sensitivity 
level among all calibration coefficients, respectively. The coefficient sensitivity index Sijk is 
defined as: 
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Transverse cracking 
 
Fig. 4 compares measured and predicted JPCP transverse cracking predictions before and after 
local calibration using the calibration and validation sets. The highly overestimated transverse 
cracking predictions using the nationally calibrated model coefficients moved more close to the 
line of equality when using the locally calibrated model coefficients. The lower values of bias 
and standard error also indicate that the transverse cracking prediction model was improved by 
modification of calibration coefficients for Iowa conditions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.4. Overall summary of comparisons between measured and predicted JPCP transverse 
cracking 

 
IRI 
 
The local calibration of IRI model for JPCP involved the calibration of distress models (faulting 
and transverse cracking) as IRI model inputs and the calibration of associated coefficients to 
each distress input in the IRI model. Fig. 5 compares the measured and predicted JPCP IRI 
predictions before and after local calibration using the calibration and validation sets. The 
nationally calibrated IRI model predictions overestimated the measured values while the locally 
calibrated IRI model predictions were placed on the line of equality. The lower values of bias 
and standard error also indicate that the locally calibrated IRI model provide better estimation of 
the measured values.  
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Fig.5. Overall summary of comparisons between measured and predicted JPCP IRI 
 
HMA Pavement 
 
The MEPDG HMA pavement performance predictions include rutting, longitudinal (top down) 
cracking, alligator cracking (bottom up) cracking, thermal (transverse) cracking and IRI. Rutting 
predictions consist of HMA layer rutting, granular base rutting, subgrade rutting and total surface 
rutting. Similar to JPCP, the HMA fatigue models were utilized to estimate fatigue damage 
which were inputted into the transfer function models of longitudinal cracking and alligator 
cracking and converted to equivalent cracking measurements.         
 Table 4 summarizes the nationally and locally calibrated model coefficients for HMA 
pavement performance predictions. The accuracy of each performance models with the 
nationally and locally calibrated model coefficients are evaluated and discussed in the following 
subsection.  
 
Rutting 
 
The comparison between measured and predicted rutting before and after local calibration for all 
sections utilized were conducted. Fig. 6 presents the comparisons for accumulated (total) rutting. 
Note that the comparisons for each pavement layer are provided in Ceylan et al. (2012). The 
lower values of bias and stander error indicate that the locally calibrated HMA rutting prediction 
model could improve the accuracy of accumulated rutting predictions for Iowa HMA pavements.  
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National 0.62 0.78 
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Table 4. Summary of Calibration Coefficients for HMA Performance Predictions 

 Distress Factors National Local 

HMA Rut 
B1 1 1 
B2 1 1.15 
B3 1 1 

GB Rut B1_Granular 1 0.001 
SG Rut B1_Fine-grain 1 0.001 

Fatigue  for ACrack 
and LCrack 

B1 1 1 
B2 1 1 
B3 1 1 

LCrack 
C1_Top 7 0.82 
C2_Top 3.5 1.18 
C4_Top 1,000 1,000 

ACrack 
C1_Bottom 1 1 
C2_Bottom 1 1 
C4_Bottom 6,000 6,000 

TCrack K_Level 3 1.5 1.5 

IRI 

C1 40 40 
C2 0.4 0.4 
C3 0.008 0.008 
C4 0.015 0.015 

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.6. Overall summary of comparisons between measured and predicted total rutting for HMA 

pavements 
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Stad. 
Error, 
mm 

National 1.34 1.98 

Local 0.68 1.76 

 
Bias, 
mm 
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Error, 
mm 

National 1.11 1.88 

Local 0.53 1.77 
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Longitudinal (Top-down) cracking 
 
Fig. 7 demonstrates  that the locally calibrated longitudinal cracking model gives better 
predictions with lower bias and standard errors while the nationally calibrated model severely 
under-predicts the extent of longitudinal cracking. Improved HMA longitudinal cracking 
prediction models are currently being developed under NCHRP projects (Roque et al. 2010, 
NCHRP 2013).    
 
 
 
 
 
 
 
 
 
 
 
    
 
 
 
 
 
 
 
 
 
 
 
 
Fig.7. Overall summary of comparisons between measured and predicted longitudinal cracking 

for HMA pavements 
 
Alligator (Bottom-up) cracking 
 
Fig. 8 compares the HMA alligator cracking measurements to corresponding predictions 
obtained using the nationally calibrated alligator cracking prediction model. The predictions 
provide good estimation to the measurements with lower bias and standard error. Only a few data 
points among a total of 327 data sets show underestimated predictions but are still placed within 
the design limit of 25%. The alligator (bottom-up) cracking measurements for these data points 
correspond to higher four alligator cracking measurements associated with two sections among 
35 HMA sections that have more than 8 years of HMA pavement service life (See Fig.9). Before 
reaching 8 years of HMA pavement service life, these two sections have much lower alligator 
cracking measurements similar to the alligator cracking measurements from other HMA sections 
and alligator cracking predictions from MEPDG.  This observation indicates that the higher 
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magnitudes of the four alligator (bottom-up) cracking records are not typical for Iowa HMA 
pavements.  Thus, the nationally calibrated alligator cracking model did not require local 
calibration for Iowa conditions at this stage.    
 

 Bias, % Stad. Error, % 

National -0.14 1.22 

 
 

Fig.8. Overall summary of comparisons between measured and predicted alligator cracking for 
HMA pavements 

 

 
Fig.9. Measured alligator cracking history for HMA pavements 

  
Thermal (Transverse) cracking 
 
Previous studies reported that little or no thermal cracking was predicted when using the proper 
binder grade for local climate conditions (Hall et al. 2011, Schwartz. et al. 2011). As seen in Fig. 
10, minimal predictions from nationally calibrated thermal cracking model are observed while 

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9 10 11 12

AC
ra

ck
, %

Age, years

Site in US 149
Site in US 6
Other Sites

 



Reference to this paper should be made as follows: Kim, S., Ceylan, H., Ma, D., and Gopalakrishnan, K. (2014). 
“Calibration of Pavement ME Design and Mechanistic-Empirical Pavement Design Guide Performance Prediction 
Models for Iowa Pavement Systems,” ASCE Journal of Transportation Engineering, Vol. 21, Issue 10. 
 
significant thermal cracking measurements are actually observed in the field. In addition, the 
modification of calibration coefficients in the MEPDG thermal cracking model could not provide 
many changes in predictions. Therefore, the HMA thermal cracking model was not considered 
for local calibration in this study.  Improved thermal cracking models are currently being 
developed under the FHWA pooled fund studies (TPF 2012).    
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Fig.10. Overall summary of comparisons between measured and predicted transverse cracking 

for HMA pavements 

 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 

 
 

Fig.11. Overall summary of comparisons between measured and predicted IRI for HMA 
pavements 
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IRI 
 
Fig. 11 compare the measured IRI values with predictions from (1) IRI model containing 
nationally calibrated distress model inputs with nationally calibrated model coefficients and (2) 
IRI model containing locally calibrated distress model inputs with nationally calibrated model 
coefficients. Both IRI models provide good estimation to field measurements. Further 
modification to nationally calibrated IRI model coefficients was not considered because (1) good 
estimation of IRI measurements could be obtained without modification of calibration 
coefficients and (2) the examination and improvement of HMA longitudinal cracking and 
thermal cracking models are being carried out through national studies.     
 
Discussion: Comparison between MEPDG and Pavement ME Design Predictions  
 
The Pavement ME Design released in April 2011 builds upon the latest version of research grade 
MEPDG software (version 1.1). Key features and enhancements in Pavement ME Design over 
the MEPDG are found in Pavement ME Design help manual (AASHTO 2011). The comparison 
of MEPDG (version 1.1) predictions with Pavement ME Design (version 1.1) for JPCP and 
HMA pavement was conducted to ensure that the local calibration coefficients determined from 
MEPDG are acceptable in Pavement ME Design.  
 The modeled JPCP section consisted of 203.2-mm (8-in) thick PCC slab with 6.1-m (20-
ft) transverse joint spacing over a 152.4-mm (6-in) cement treated base (CTB), a 152.4-mm (6-in) 
crush granular subbase, and an A-7-6 compacted embankment subgrade. The modeled HMA 
pavement section consisted of 203.2-mm (8-in) thick HMA (PG 58-28 binder grade) surface over 
a 101.6-mm (4-in) HMA (PG 58-28 binder grade) base, and an A-6 compacted embankment 
subgrade. A 30-year design life for JPCP and a 20-year design life for HMA with 50% and 90% 
reliability were utilized. Two traffic levels of AADTT utilized are 1,000 and 5,000. The climate 
site location is Des Moines, Iowa.  
 Pavement ME Design allows user to use climate data in XML format generated in 
Pavement ME Design and ICM format climate data file generated in MEPDG.  However, 
Pavement ME Design requires more hourly climate data points rather than MEPDG.  The error 
or a warning message was listed in the error list pane area of the program when ICM format 
climate data file generated from MEPDG for Des Moines in Iowa was imported into Pavement 
ME Design. Thus, it was not able to use same format of climate file in both Pavement ME 
Design and MEPDG. In this comparison, Pavement ME Design utilized XML climate file format 
and MEPDG utilized ICM climate data format for same climate site location (Des Moines, Iowa). 
Except climate file format, the all design input values required for both Pavement ME Design 
and MEPDG were identical. 
 Table 5 summarizes design life performance prediction comparison results between 
MEPDG and Pavement ME Design with nationally and locally calibrated performance prediction 
models. JPCP faulting and transverse cracking predictions from MEPDG and Pavement ME 
Design do not show significant difference. However, the national IRI predictions from MEPDG 
and Pavement ME Design have difference. The IRI model in both MEPDG and Pavement ME 
Design is an empirical relation consisting of transverse cracking, the joint faulting and site 
specifics. Since transverse cracking and the joint faulting predictions in both MEPDG and 
Pavement ME Design are similar, the national IRI prediction differences between MEPDG and 
Pavement ME Design might come from site specifics having climate related variables (freezing 
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index and number of freezing cycles). Note that the XML climate file in Pavement ME Design 
has more hourly climate data points than ICM climate data format in MEPDG.  However, the 
difference in IRI predictions is reduced using the locally calibrated IRI model since the 
coefficient associated with the site factor reduces from 25.24 (national coefficient) to 1.17 (local 
coefficient) (see Table 3).  
 
Table 5. Prediction comparison between MEPDG and Pavement ME Design 

Type AADTT Reliability 
(%) Distress 

National Local 

MEPDG 
1.1 

Pavement 
ME Design 

1.1 
MEPDG 

1.1 
Pavement 

ME 
Design 1.1 

JPCP 

1,000 50 
IRI (m/km) 1.48 1.06 1.03 1.01 

TCracking (% slabs) 0.0 0.0 0.0 0.0 
Faulting (mm) 0.03 0.02 0.61 0.64 

1,000 90 
IRI (m/km) 2.09 1.49 1.40 1.36 

TCracking (% slabs) 4.5 4.5 3.8 3.8 
Faulting (mm) 0.53 0.51 1.50 1.53 

5,000 50 
IRI (m/km) 1.53 1.12 1.10 1.08 

TCracking (% slabs) 0.7 0.7 0.1 0.1 

 Faulting (mm) 0.15 0.14 5.11 5.16 

5,000 90 
IRI (m/km) 2.18 1.59 1.51 1.47 

TCracking (% slabs) 6.6 6.6 4.6 4.6 
Faulting (mm) 0.81 0.76 6.86 6.91 

HMA 

1,000 50 

IRI (m/km) 1.76 1.77 1.80 1.82 
LCracking (m/km) 0.0 0.0 22.1 30.1 

ACracking (%) 0.2 0.2 0.2 0.2 
TCrack  (m/km) 0.0 0.1 0.0 0.1 

Rutting (Total ) (mm) 9.4 9.5 10.9 11.1 

1,000 90 

IRI (m/km) 2.39 2.39 2.44 2.47 
LCracking (m/km) 6.2 4.9 28.3 35.0 

ACracking (%) 1.6 1.6 1.6 1.6 
TCrack  (m/km) 1.3 0.5 1.3 0.5 

Rutting (Total ) (mm) 12.1 12.2 15.1 15.2 

5,000 50 

IRI (m/km) 1.92 1.92 2.13 2.17 
LCracking (m/km) 0.1 0.2 42.9 55.9 

ACracking (%) 0.9 0.8 0.9 0.8 
TCrack  (m/km) 0.0 0.1 0.0 0.1 

Rutting (Total ) (mm) 15.5 15.5 23.9 24.0 

5,000 90 

IRI (m/km) 2.58 2.58 2.86 2.90 
LCracking (m/km) 12.6 21.8 55.4 77.4 

ACracking (%) 2.3 2.3 2.3 2.3 
TCrack  (m/km) 1.3 0.5 1.3 0.5 

Rutting (Total ) (mm) 19.3 19.3 31.3 31.5 
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  In HMA pavement, only longitudinal cracking and transverse cracking predictions show 
some difference in MEPDG and Pavement ME Design using both nationally and locally 
calibrated models. Similar to JPCP, these differences might be related to climate data used in 
MEPDG and Pavement ME Design, but further research is warranted to investigate these 
differences. Note that HMA longitudinal cracking and thermal cracking models are still evolving. 
 
Summary  
 
This research aims to improve the accuracy of MEPDG/Pavement ME Design projected 
pavement performance predictions for Iowa pavement systems through local calibration of 
MEPDG performance prediction models. The local calibration factors of MEPDG prediction 
models were identified using both linear and nonlinear optimization approaches to improve the 
accuracy of model predictions. The comparison of MEPDG predictions with Pavement ME 
Design ones were conducted to ensure that the local calibration coefficients determined from 
MEPDG version 1.1 are acceptable in Pavement ME Design. Based on this study, the following 
conclusions were made for each pavement type and the corresponding performance prediction 
models. Finally, recommendations for use of the calibration coefficients in MEPDG/Pavement 
ME Design for Iowa pavement systems are also provided.   
  
Conclusions: JPCP 
 

1. The locally calibrated faulting model for Iowa JPCP gives better predictions with lower 
bias and standard errors than the nationally calibrated model with severely 
underestimated faulting measures.   

2. The locally calibrated transverse cracking model for Iowa JPCP gives better predictions 
with lower bias and standard errors than the nationally calibrated model with severely 
overestimated transverse cracking measures.   

3. The locally calibrated IRI model for Iowa JPCP improves the accuracy of predictions by 
tightening the scatter around the line of equality. The nationally calibrated model 
overestimates IRI measures.     

4. Fewer differences are observed in faulting and transverse cracking predictions from 
Pavement ME Design and MEPDG using nationally and locally calibrated models. 
Locally calibrated JPCP IRI model reduces prediction difference between Pavement ME 
Design and MEPDG for Iowa conditions. 
 

Conclusions: HMA Pavement 
 

1. Both nationally as well as locally calibrated rutting models provide good predictions of 
the total (accumulated) rutting measures for new Iowa HMA pavements. However, the 
locally calibrated rutting model provides better predictions than the nationally calibrated 
model which underestimates HMA layer rutting measures and overestimates granular 
base and subgrade layer rutting measures.   

2. The nationally calibrated alligator (bottom-up) cracking model provides acceptable 
predictions for new Iowa HMA pavement. 

3. The locally calibrated longitudinal (top-down) cracking model provides better predictions 
with lower bias and standard errors than the nationally calibrated model with severely 
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underestimated longitudinal measures. Note that improved HMA longitudinal cracking 
models are being developed under NCHRP projects.    

4. Little or no thermal cracking was predicted using the MEPDG when using the proper 
binder grade for Iowa climate conditions, but significant transverse cracking 
measurements are observed in the field in new Iowa HMA pavement systems. Note that 
improved thermal cracking models are currently being developed under FHWA pooled 
fund studies. 

5. Good agreement is observed between new Iowa HMA IRI measurements and predictions 
from (1) IRI model containing nationally calibrated distress model inputs with nationally 
calibrated model coefficients and (2) IRI model containing locally calibrated distress 
model inputs with nationally calibrated model coefficients. 

6. Few differences are observed in rutting, alligator carking and IRI predictions from 
Pavement ME Design and MEPDG under nationally and locally calibrated models.  
 

Recommendations 
 

1. The locally calibrated JPCP performance prediction models (faulting, transverse cracking 
and IRI) identified in this study are recommended for use in Iowa as alternatives to their 
nationally calibrated counterparts.  

2. The locally calibrated rutting models identified in this study are recommended for use in 
Iowa HMA systems as alternatives to the nationally calibrated ones.  

3. The nationally calibrated alligator (bottom-up) cracking models are recommended for use 
in Iowa HMA. 

4. It is recommended to use Pavement ME Design/MEPDG for longitudinal cracking and 
thermal cracking analysis in Iowa HMA only for experimental/informational purposes, 
and not for decision making in design until these distress models (which are currently 
undergoing refinement) are fully implemented. 

5. It is recommended to use the nationally calibrated IRI model coefficients for Iowa HMA 
systems because the HMA longitudinal cracking and thermal cracking models as IRI 
design inputs are still evolving and the accuracy of nationally calibrated IRI model is 
acceptable for Iowa conditions. 
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