Ancient Gene Duplicates in Gossypium (Cotton) Exhibit Near-Complete Expression Divergence

Thumbnail Image
Date
2014-04-01
Authors
Renny-Byfield, Simon
Gallagher, Joseph
Grover, Corrinne
Szadkowski, Emmanuel
Page, Justin
Udall, Joshua
Wang, Xiyin
Paterson, Andrew
Wendel, Jonathan
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Wendel, Jonathan
Distinguished Professor
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Department
Ecology, Evolution and Organismal Biology
Abstract

Whole genome duplication (WGD) is widespread in flowering plants and is a driving force in angiosperm diversification. The redundancy introduced by WGD allows the evolution of novel gene interactions and functions, although the patterns and processes of diversification are poorly understood. We identified ∼ 2,000 pairs of paralogous genes in Gossypium raimondii (cotton) resulting from an approximately 60 My old 5- to 6-fold ploidy increase. Gene expression analyses revealed that, in G. raimondii, 99.4% of the gene pairs exhibit differential expression in at least one of the three tissues (petal, leaf, and seed), with 93% to 94% exhibiting differential expression on a per-tissue basis. For 1,666 (85%) pairs, differential expression was observed in all tissues. These observations were mirrored in a time series of G. raimondii seed, and separately in leaf, petal, and seed of G. arboreum, indicating expression level diversification before species divergence. A generalized linear model revealed 92.4% of the paralog pairs exhibited expression divergence, with most exhibiting significant gene and tissue interactions indicating complementary expression patterns in different tissues. These data indicate massive, near-complete expression level neo- and/or subfunctionalization among ancient gene duplicates, suggesting these processes are essential in their maintenance over ∼ 60 Ma.

Comments

This article is from Genome Biology and Evolution 6 (2014): 559, doi:10.1093/gbe/evu037. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Wed Jan 01 00:00:00 UTC 2014
Collections