1-1-1960

Insect and Rodent Prospects for 1960

Harold Gunderson
Iowa State University

Earle S. Raun
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/farmscience

Part of the Agriculture Commons

Recommended Citation
Available at: http://lib.dr.iastate.edu/farmscience/vol14/iss7/7

This Article is brought to you for free and open access by the Iowa Agricultural and Home Economics Experiment Station Publications at Iowa State University Digital Repository. It has been accepted for inclusion in Iowa Farm Science by an authorized editor of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Insect and Rodent Prospects for 1960

We have light infestations a few times in the past 15 years but nothing like 1959. Weather conditions were ideal for the aphids, but not for the lady beetles that feed on them. These aphids carried, in their bodies, the virus that causes yellow dwarf of oats, and the loss from this disease was extensive.

Very few Iowa farmers used insecticides to control the green bugs. The aphids can be killed, but you can't control the disease the aphids have already transmitted. So the job is one of preventing the attack rather than curing it. You'd have to spray your oats several times, beginning about May 1, before the aphids showed up. The cost would be $10-$12 per acre and would make your low-value oat crop a high-cost crop. And if past experience means anything, the odds are against the aphids' appearance in 1960. So we can't recommend chemical control.

Since we can't predict the appearance of green bugs in 1960, all we can suggest is that you use good seed, follow the agronomic practices best suited to your farm and keep your fingers crossed. If you raise seed oats, however, you might be justified in spraying to prevent possible damage.

The next crop pest to appear in 1959 was the black cutworm. We've had cutworm troubles many times, but in 1959 the worms were half grown before they began to attack corn in the second week in June. They usually hide in the ground during the day and feed on the surface at night. Last year they did their feeding 1½-2 inches deep and probably chewed away night and day. Heaviest infestations were in the southeast quarter of Iowa. Our reports indicate that 2 pounds of aldrin or heptachlor broadcast before planting and disked in immediately prevented serious loss in most cases.

Flights of black cutworm moths in August-September suggest a threat of cutworm trouble this year. Any field may have these pests in it. The most likely candidates for damage are corn and soybean fields where foxtail was abundant, grassy alfalfa and clover fields planted to corn in 1960, and corn growing along grassed waterways. It seems wise to use 2 pounds actual aldrin or...
heptachlor per acre broadcast and
disked in at once ahead of plant-
ing on most of the corn ground in
Iowa this year. Smaller amounts
won't do the job against cut-
worms. A postplanting treatment
of 2 pounds of toxaphene applied
in the row and followed by culti-
vation will also control cutworms
that showed up in untreated fields
of 2 pounds of toxaphene applied
disked in at once ahead of plant-
ing in the row and followed by culti-
vation will also control cutworms
most years.

Most of our other soil insects
showed up in untreated fields
around the state.
Seed corn mag-
gots and seed corn beetles caused
stand losses in some fields in
every county. Wireworms were
"normally" abundant. White
grubs destroyed corn following
soybeans in northwest Iowa. We
had scattered reports of damage
by sod webworms.

We had unusually heavy flights
of the southern corn rootworm
beetle last spring. These beetles
feed on corn leaves and lay their
eggs in planted cornfields. Larval
damage to the roots is similar to
that caused by our more common
northern corn rootworm. The
western corn rootworm was found
as far east as Polk County. All
of these rootworms are controlled
by broadcast or row treatments of
aldrin or heptachlor. Preplanting
or planting-time treatments were
carried out on about 3,200,000
acres of corn ground in 1959—an
increase of a million acres over
1958. Soil insect control will be
profitable in 1960.

The European corn borer was
a big disappointment in 1959—to
insecticide and equipment manu-
facturers. A number of natural
factors combined to reduce the
number of moths laying eggs.
Poor larval survival also was
noted, and only 75,000 acres were
treated. Fall populations of bor-
ers were very low. But borers-
favorable weather in June can
give us lots of borers from a few
moths. Watch your corn and be
prepared to treat in June or Au-
gust if the need arises!

No chinch bugs were reported
in 1959 or seen in cornfield sur-
veys. The cold winter and wet
spring kept the population low.
Grasshoppers invaded the border
rows of soybeans in a few western
and southern counties. Grasshop-
per eggs are not numerous this
fall, and we don't look for trouble
from either of these two dreaded
old-time pests in 1960.

Pea aphids caused damage in
northern and northeast Iowa in
alfalfa fields of low fertility. They'll be with us again this year. Spittlebugs spread as far west as
Floyd, Calhoun and Pottawatta-
mie counties. Only farmers in
northeastern Iowa need to be alert
and ready to control this pest
with chemicals. The usual recom-
modation is to cut first-crop al-
alfa early if insect damage ap-
pears.

Yard, Garden Insects . . .

Last year proved again that, if
you want insect-free fruit in a
home or commercial orchard, you
must follow a regular spray sched-
ule! Apple maggots destroyed 40-
100 percent of the apple crop in
the northern third of the state.
"Cat-facing" insects (sucking
bugs and curculio) caused mal-
formed and stunted apples, and
the codling moth appeared in
larger numbers than in recent
years. Leaf roller damage at har-
vest indicated that apple spray-
schedules were relaxed too early.
Better make up your mind now
to apply the right chemicals reg-
ularly in 1960.

Dutch elm disease, spread by
two species of elm bark beetles,
continued its destruction in east-
ern Iowa. The over-all program
urged by Iowa State includes:
(1) surveys of shade trees to
find out how big a problem you
have, (2) citizen education on
tree care, (3) removal and burn-
ing of dead elms and (4) the use
of insecticides in early spring to
protect valuable elms from bark
turtle attack.

Adults of the 13-year brood of
the periodical cicada showed up
on schedule in southeastern Iowa.
The range of this insect includes
southeastern Iowa from Monroe
to Mahaska to Lee counties. The
adults do injure shade trees with
their egg-laying habits, but chemi-
cal control is rarely practical.

Attacking Man, Animals . . .

Probably the most encouraging
advance in livestock pest control
in 1959 was the rapid acceptance
of the systemic insecticides for
cattle grub and louse control.
About a million head of beef cat-
tle in Iowa were treated with Co-
Ral in the fall of 1959. This is a
spray material. Applied to ani-
mal, it's absorbed through the
skin, acting to control cattle grubs
in their migrations inside the ani-
mal as well as to control sucking
and biting lice on the outside.

About 80,000 backrubbers are
in use in Iowa for louse and horn-
fly control. We think there should
be more. They've proven effec-
tive and easy to use. Insecticides
for use in backrubbers—for beef
cattle only—include toxaphene,
malathion, Korlan, DDT and
methoxychlor.

Sheep scab continues to plague
the Iowa sheep industry. Scab will
continue to be a problem until
sheepmen see that all sheep com-
ing into their farm flocks are
dipped in an approved insecticide.
It's not only in flocks shipped into
Iowa but also on native sheep.
Toxaphene or lindane dips do a
good job of controlling this mite-
causd disease.

More cattle scab and mange
were noted in 1959—perhaps be-
cause more people were looking
for them. Toxaphene or lindane
dips will control these also.

Hog producers are seeing the
benefits of preventive mange and
louse treatments. A high percen-
tage of sows now are treated be-
fore farrowing, even though no
mange or louse symptoms are
present. This prevents infesta-
tions of mange mites and lice on
the pigs. Lindane, applied as a
spray 30 days before farrowing,
does an excellent job. It can also
be added to the sow's wash water
as she's cleaned up before being placed in the farrowing stall.

Problems caused by poultry lice and mites are being reduced by malathion applications to poultry houses before pullets are housed if infestations break out in a farm flock.

The biggest insect pest problem for livestock is the fly problem. We must continue to stress the sanitation aspects. Many flies can hatch from small breeding areas. Diazinon continues as the best insecticide for residual applications on walls and fences. Pyrethrin mixtures are the only good sprays for application to dairy cattle and must be applied daily. Various highly advertised fly repellants, added to pyrethrin sprays, do a fair job. But they're not the cure-all many cattlemen expect. No better dairy fly sprays seem in the offing for 1960.

Heavy May-June rains promoted the appearance of swarms of mosquitoes all over Iowa. Many towns, large and small, attacked them with a variety of weapons. Most well-planned programs prevented severe mosquito annoyance. But emergency programs, started after the mosquitoes were biting, didn't do the job. Start planning NOW for a successful program this year. Get our pamphlet, Pm-257, from us or your county extension office for suggestions.

A new pest for livestock may get into Iowa this year. The face fly has occurred in eastern North America since 1952. Ohio, Indiana and Illinois in 1959 reported large numbers of these flies clustering on the faces of cattle and horses, probably transmitting pink eye of cattle. It could be an important pest.

Rodents...

Rat and mouse populations were unusually high last year. The huge supply of corn on farms will tend to keep rat populations up this year. We'd suggest that every farm and town carry out a continuous rat-poisoning program with anti-coagulant baits along with a clean-up of rat harbors and the rat-proofing of all buildings housing food or feed.