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Fig. 3. Compute the phase errors by finding the difference between the phase obtained from the sinusoidal fringe patterns, and that

obtained from the defocused binary patterns. (a) One of three phase-shifted fringe patterns using the sinusoidal method; (b) One of three

phase-shifted fringe patterns using the binary method; (c) Cross sections of the unwrapped phase maps; (d) Phase error.

typical result obtained by the aforementioned method. To minimize the effect of color induced problems, we only used B/W

fringe patterns for both the traditional and the defocusing methods. The B/W fringe patterns are generated by equaling the

grayscale values of red, green and blue channels of the projector. Fig. 3(a) shows one of the three phase-shifted sinusoidal

fringe patterns, and Fig. 3(b) shows one of the defocused binary patterns. It can be seen that there are obvious binary

structured in the binary fringe pattern. Figure 3(c) shows the cross sections of the unwrapped phase maps, Φs(x,y) and

Φb(x,y). This figure indicates that they are indeed closely aligned together, and the difference between them will be the

phase error, as shown in Fig. 3(d). The error appears to have periodical structures that could be further analyzed for error

compensation. It should be noted that to reduce the sub-pixel sampling difference between the fringe patterns captured for

these two methods, the phase error is offset to ensure that its average is 0.

The phase error shown in Fig. 3(d) is spatially position dependent, thus is difficult to use for further analysis. To solve

this problem, we plot the phase error map against the wrapped phase (φ(x,y)), as shown in Fig. 4(a). In this figure (as well

as the rest figures), three cross sections of the unwrapped phase map are depicted. This clearly shows that the phase error

appears to be spatially position independent in phase domain, which is desirable for future error compensation purpose.

Moreover, the error map also have very obvious structures. To further verify these, we captured three additional planes

and plotted the phase errors against the wrapped phase (as shown in Figures 4(b)–4(d)), they all appear to have similar

structures as the first one, whist with different amplitudes. The similarity between the phase errors in different planes

provide the opportunity to find a mathematical description of the phase error in terms of the wrapped phase value (φ(x,y)),
and the depth distance (z). Once the function is determined, the associated phase error can be compensated for. Because it

is a deterministic, the phase error function can be foudn from calibration, which will be addressed next.

3.3 Phase error function calibration
To calibrate the phase error function in terms of the wrapped phase (φ(x,y)) and the depth (z), we set up the system in

a manner so that the projected image is focused onto a plane, and the camera is also focused at the same plane. This

plane is chosen as z = 0, we then move the plane towards the system with an increment of Δz = 5 mm. For each plane,

we recorded three phase-shifted binary patterns, and three phased-shifted sinusoidal patterns with exactly the same fringe

pitch, and computed the phase error using Eq. (6). Because the phase error is depth z dependent, and the wrapped phase φ
dependent.we can rewrite the phase error equation as

ΔΦ(x,y;z) = Φb(x,y;z)−Φs(x,y;z) = f (φ ;z). (7)

To simplify the error function determination, we do the following two steps for each plane:

• Step 1: Create a m-element look up table (LUT) by evenly quantize the wrapped phase [−φ ,+φ) with a 2π/M rad

phase interval. Within each interval, the phase error is averaged to reduce the random error for the whole image. In

this research, we use a 1024 element array to store the error LUT. Figure 5(a) shows the error map for the whole

image illustrated in Fig. 4(a).
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Fig. 4. Phase error maps for different depth planes. (a) Depth z = 0 mm; (b) Depth z = 20 mm; (c) Depth z = 40 mm; (d) Depth z = 60

mm.

• Step 2: Fitting the LUT with Nth-order polynomials Φ(x,y;z) = ∑N
k=0 ak(z)φ k. We found that a 40th-order polynomial

is necessary in order to precisely represent the error LUT because of its complex structures. Figure 5(b) shows the

overlay between the fitted polynomials and the original LUT. They seems to be aligned well with each other.

To verify the effectiveness of the LUT and the polynomial fitting, we used them to compensate for the phase errors in

that particular plane. Figure 5(c) shows The residual error after the error compensation with this LUT, while Figure 5(d)

shows residual error with the fitted polynomials. The phase error is reduced from originally RMS 0.108 rad, to RMS

0.028 rad with the LUT, and to RMS 0.030 rad with the fitted polynomials. It is approximately three times smaller for

both methods. The polynomial fitting method performs slightly worse than the direct LUT method because it has some

approximation during optimization stage. One may notice that after error compensation, not only is the magnitude of the

phase error significantly reduce, but also the periodical structure of the phase error diminishes. Because the phase error

after compensation appear to be random, a standard random noise reduction method (e.g., a Gaussian filtering) can be

adopted to further reduce their influence. This experiment demonstrated the effectiveness of phase error reduction by both

the LUT-based method and the polynomial-based approach.

This prior error fitting approach introduced is called intra-plane error fitting. Figure 4 also shows the phase error is

depth distance z dependent. Once the error functions for different depths are determined, the polynomial coefficients can

be further fitted with polynomials in terms of distance z. These polynomials are called inter-plane error fitting. Finally, the
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Fig. 5. Phase error compensation using the LUT and the polynomial fitting. (a) The LUT in terms of wrapped phase value; (b) Polynomial

fitted curve; (c) The residual error after compensation using the LUT shown in (a) (RMS: 0.028 rad) ; (d) The residual error after

compensation using the fitted polynomials (RMS: 0.030 rad).

error function can be written in the following equation,

Φ(x,y;z) =
N

∑
k=0

(
M

∑
l=0

ck,lzl

)
φ k. (8)

Here, ck,l are constants. In this research, we found that at least N = 40st -order polynomials are needed for intra-plane

fitting, and at least M = 4th-order polynomials are needed for inter-plane fitting (coefficient fittings).

To calibrate the phase error function, we measured 34 planes and with an distance interval of δ z = 5 mm. Among these

planes, 15 of them are used for the polynomial function calibration, and the rest planes are used for validation purpose. The

phase errors for each of these calibration planes are calculated and fitted with intra-plane polynomials, and the coefficients

of these polynomials are further fitted with inter-plane polynomials. Once ck,l is determined, they can be used for error

compensation.

4. EXPERIMENTAL RESULTS
To verify the performance of the error functions obtained above. We tried to compensate for the phase error of an plane that

was not used for the polynomial function calibration (z = 5 mm). Figure 6(a) plots the original error against the wrapped

phase. The RMS error is found to be 0.108 rad. To find out the correctness of calibrated polynomials to represent the phase

error of this plane, we calculated the LUT directly from the phase error from this particular plane, computed the phase
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Fig. 6. Error reduction by polynomial fitting. (a) The original error (RMS: 0.108 rad); (b) The original LUT and the LUT with polynomial

fittings; (c) Error after applying the error compensation approach introduced in this paper (RMS: 0.030 rad).

error using the calibrated polynomial function Eq. (8) by plugging in depth value z = 5mm. Figure 6(b) shows the result.

This experiment indicates that the calibrated polynomial function well represents the error function of this plane, thus can

be used to compensate for the error of this plane. Figure 6(c) shows the result after compensation. The RMS value is

dramatically reduced from 0.108 rad to 0.030 rad, and the error map appears to random, similar to those plane that were

used to estimate the error function. This experiment verified the success of the proposed error compensation approach to

compensate for the phase error in an arbitrary plane.

5. SUMMARY
This paper has presented a method to compensate for the phase error caused by the binary structured patterns. The prelimi-

nary experimental results showed that the error function can be approximated as a polynomial function in terms of wrapped

phase (φ(x,y)) and the depth z, and this phase error function can be determined by calibration. Once the error function is

calibrated, it can be used to compensate for the phase error caused by different level of defocusing, which is represented

as the difference depth z. Experiments had been conducted and verified that this approach could reduce the phase error

approximately 3 times smaller, and could effectively alleviate the periodical structure of the original phase errors. How-

ever, we used 40th-order polynomials to represent the intra-plane phase error function, which is very time consuming for

calculations and may result in inaccuracy with for the calculation. In the future, we plan to find a better and more efficient

methodology to represent and compensate for the phase error induced by the projector defocusing.
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