Weakly Complete Problems are Not Rare

Thumbnail Image
Date
1994-07-15
Authors
Juedes, David
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Organizational Unit
Journal Issue
Is Version Of
Versions
Series
Department
Computer Science
Abstract

Certain natural decision problems are known to be intractable because they are complete for E, the class of all problems decidable in exponential time. Lutz recently conjectured that many other seemingly intractable problems are not complete for E, but are intractable nonetheless because they are weakly complete for E. The main result of this paper shows that Lutz's intuition is at least partially correct; many more problems are weakly complete for E than are complete for E. The main result of this paper states that weakly complete problems are not rare in the sense that they form a non-measure 0 subset of E. This extends a recent result of Lutz that establishes the existence of problems that are weakly complete, but not complete, for E. The proof of Lutz's original result employs a sophisticated martingale diagonalization argument. Here we simplify and extend Lutz's argument to prove the main result. This simplified martingale diagonalization argument may be applicable to other questions involving individual weakly complete problems.

Comments
Description
Keywords
Citation
DOI
Source
Subject Categories
Copyright
Collections