3-1-1960

For Your Interest

Agricultural and Home Economics Experiment Station

Follow this and additional works at: http://lib.dr.iastate.edu/farmscience

Part of the Agriculture Commons

Recommended Citation

Agricultural and Home Economics Experiment Station (1960) "For Your Interest," Iowa Farm Science: Vol. 14 : No. 9 , Article 6. Available at: http://lib.dr.iastate.edu/farmscience/vol14/iss9/6

This Article is brought to you for free and open access by the Iowa Agricultural and Home Economics Experiment Station Publications at Iowa State University Digital Repository. It has been accepted for inclusion in Iowa Farm Science by an authorized editor of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Milking Facilities Found Inadequate On Many Iowa Farms

Inadequate facilities for milking and handling the milk existed on many of the Iowa farms visited during the year by researchers from the Experiment Station. These farms supply bulk tank milk of manufacturing grade to Iowa dairies. Obvious faults frequently noticed included: lack of running water in the milk houses, no hot water heater, no wash vat, improper ventilation and lighting, no screening of openings, and, in many milk houses, no cement floor with proper drainage.

These inadequacies showed up when researchers were examining milk from farm bulk tanks in the state for use in determining the relationship of the quality to the conditions under which the milk was produced as well as in determining trends in quality of this product in Iowa.

Study Pretreatments for Fresh and Frozen Fryers

One research project at the Experiment Station is concerned with the effects of pretreatments and types of packaging on the quality of fresh and frozen fryers. In a part of this work, researchers are evaluating the effectiveness and the practicality of pretreatments that might be used on cut-up poultry. Two goals are to minimize the seepage of fluid from the cut tissues of packaged broilers and to improve the acceptability of frozen poultry.

Reporting on one phase of this research, Frances Carlin and Irma M. Taylor point out that the new electronic range uses microwave heat which cooks faster than the heat of a conventional-type oven. They are exploring this method of cooking as a means of cooking frozen broilers and preventing bone discoloration in frozen broilers.

They explain that bone discoloration in defrosted fryers is objectionable from the standpoint of the appearance of the bones and of the meat next to the bones. Even though the flavor isn't altered, they continue, many consumers object to this condition and, therefore, discriminate against frozen fryers.

Get Early Yield When Muskmelons Are Transplanted

Muskmelons transplanted from a hotbed to the field came into production 7 days earlier than field-planted melons in Experiment Station tests conducted by L. E. Peterson. Three different planting dates in the hotbed and three different spacings in the field were tested. A 2-foot spacing system produced a slightly higher yield than did a system of two plants spaced 4 feet apart. The best date for planting seed in the hotbeds in these trials was April 10.

Vegetable Varieties Compared in Trials

Variety trials of sand land vegetable crops are conducted each year by researchers at the Experiment Station under the direction of L. E. Peterson. These trials test new varieties and selections to determine their adaptability to Iowa conditions and their commercial value. Here are the results from the 1958 trials:
bed and planting corn on various acreages with six different tillage systems have been estimated and compared by agricultural engineers at Iowa State. The six systems compared were (1) conventional, (2) hard-ground listing, (3) mulch tillage, (4) tractor-track planting, (5) new plowed ridges and (6) old ridges.

Using 2-row equipment and 1954 prices as a base, the fixed costs per acre were estimated at 20 percent of the initial costs of the equipment. Variable costs per acre (fuel, labor, etc.) were added to these to find the relative costs of each of the systems for various acreages.

The graph shows the relative costs of the six different tillage systems with labor charged at $1.50 per hour. Costs for the conventional system are highest. Mulch tillage costs came out somewhat lower than those for conventional tillage but higher than those for hard-ground listing, plowed ridges, tractor-track planting and using old ridges.

The cost estimates don't include all of the factors which might be considered but are useful in making comparative cost estimates of various tillage practices under consideration. They will be more useful as additional information becomes available on yields and other factors associated with the different tillage systems, according to W. G. Lovely, USDA agricultural engineer stationed at Iowa State.

farm business and management

Is Loan-Storage Program Supporting Corn Prices?

The CCC corn loan and storage program was first established for the purpose of stabilizing corn production and prices. Later it was changed and has been used for a number of years in an attempt also to support corn prices above long-run average market levels. But in recent years, the price supports for corn (the CCC loans) haven't supported the price of corn as well as they did earlier.

For several years and through 1958, the United States average price of corn received by farmers has been running about 35 cents below the national average loan rate for farmers who complied with the program, report Geoffrey Shepherd, Allen B. Richards and John Nordin of the Experiment Station.

In cooperation with other experiment stations in the north-central region, these economists have been studying and analyzing the effects of the CCC loan and storage operations on corn and other feed-grain supplies and prices.

From this study, the researchers have tentatively concluded: (1) that the CCC loan and storage programs can be used effectively for stabilizing corn and other feed-grain supplies and prices near their long-run average levels but (2) that they cannot be used effectively for raising the long-run level of prices. The latter, they say, would call for production controls to reduce total supplies.

Experiment Station Aids Local Farm Marketing and Processing Businesses

Agricultural economists at the Experiment Station are cooperating with local agricultural marketing and farm supply businesses in improving their management practices. Management practices presently used are being analyzed from the standpoint of improvements which may be made.

Improved efficiency and management practices in both local farm supply and marketing businesses should benefit not only themselves but local farm producers as well, according to Richard Phillips and Phillip Baumel.

Ensiling Oat Crop May Offer Some Advantage

Ensiling oats rather than harvesting only the grain may offer advantages for some Iowa farms, according to Raymond R. Beneke and Kenneth K. Barnes of the Experiment Station. Beneke, an agricultural economist, and Barnes, an agricultural engineer, compared the costs and returns for ensiling oats and harvesting only the grain for different situations.

They report that the cost of ensiling the oat crop compares most favorably with combining when the entire crop is ensiled and the fixed cost of the combine is eliminated. If the silage machinery can't be used on other crops, however, the cost of ensiling the oats is prohibitive because of the limited acreage, unless custom operation or part-ownership of equipment arrangements are used.

The total volume of feed nutrients is increased two to three times by ensiling the oat crop. The value of the crop, however, is increased somewhat less than this since the silage contains a smaller percentage of protein than does the grain alone. A major indirect return is the improvement that results in the seeding stand when the oats are removed early for ensiling.

Spoilage wasn't excessive on most of 60 Iowa farms observed where oats were ensiled rather than harvested as grain. Most of the farms used upright silos. Where spoilage was a problem, it usually occurred in a bunker or trench silo and appeared to be associated with insufficient packing.

A large proportion of the oat silage produced on these farms was used for cattle feeding. Using the silo for both oats and corn silage was a common practice—with the oat silage, or most of it, fed prior to making corn silage—especially on dairy farms. Generally, say Beneke and Barnes, oat silage wasn't used as a substitute for corn silage.