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certain aspects of their reliability problems based on physics of failure or previous experience with the same
failure mechanism. For example, engineers often have useful but imprecise knowledge about the effective
activation energy in a temperature-accelerated life test or about the Weibull shape parameter in the analysis of
fatigue failure data. In such applications, the use of Bayesian methods is compelling as it offers an appropriate
compromise between assuming that such quantities are known and assuming that nothing is known. In this
paper we compare the use of Bayesian methods with the traditional maximum likelihood methods for a group
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Abstract 

The development of the theory and application of Monte Carlo Markov Chain methods, vast 
improvements in computational capabilities and emerging software alternatives have made it 
possible for more frequent use of Bayesian methods in reliability applications. Bayesian 
methods, however, remain controversial in Reliability (and some other applications) because of 
the concern about where the needed prior distributions should come from. On the other hand, 
there are many applications where engineers have solid prior information on certain aspects of 
their reliability problems based on physics of failure or previous experience with the same failure 
mechanism. For example, engineers often have useful but imprecise knowledge about the 
effective activation energy in a temperature-accelerated life test or about the Weibull shape 
parameter in the analysis of fatigue failure data. In such applications, the use of Bayesian 
methods is compelling as it offers an appropriate compromise between assuming that such 
quantities are known and assuming that nothing is known. In this paper we compare the use of 
Bayesian methods with the traditional maximum likelihood methods for a group of examples 
including the analysis of field data with multiple censoring, accelerated life test data, and 
accelerated degradation test data. 
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1. Introduction and Motivation 

1.1 Background 
In the past twenty years, there has been a rapid evolution in statistical practice. Increases in 
computer power and developments in the theory and applications of Monte Carlo Markov Chain 
(MCMC) methods have made it possible to apply Bayesian statistical estimation methods to an 
increasingly wide range of applications. In addition, there are a number of freely-available 
software packages that have been developed to facilitate Bayesian computations and some 
commercial statistical software packages are beginning to provide easy-to-use capabilities for 
doing Bayesian statistical analysis. 

1.2 Motivation 
From a practical point of view, depending on the application, there can be three strong 
motivators for the use of Bayesian methods: 

• Bayesian methods allow an analyst to incorporate prior information into a data 
analysis/modeling problem to supplement limited data, often providing important 
improvements in precision (or cost savings). 

• Bayesian methods can handle, with relative ease, complicated data-model combinations 
for which no maximum likelihood (ML) software exists or for which implementing ML 
would be difficult. For example, available software for doing Bayesian computations can 
handle combinations of nonlinear relationships, random effects, and censored data that 
cannot be handled easily by available commercial software. 

• When using Bayesian methods it is easy to produce estimates and credible intervals for 
complicated functions of the model parameters such as the probability of failure or 
quantiles of a lifetime distribution. 

 1.3 Related work 
Although there have been many technical papers written to describe the use of Bayesian methods 
in reliability inference, there has been relatively little written to describe the use of the more 
modern computationally-based methods in this important area of application. Several exceptions 
are worth mentioning. Olwell and Sorell (2001) show how to supplement limited field failure 
data with prior information to estimate a Weibull lifetime distribution. Hamada (2005) describes 
a Bayesian analysis of repeated-measures degradation data from a laser life test in which the 
slopes of the degradation paths vary from laser to laser. León et al. (2007) describe a Bayesian 
analysis of complicated accelerated life data that include random batch effects. Azarkhail and 
Modarres  (2007) also use Bayesian methods in the analysis of accelerated test data. Hamada et 
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al. (2008) describe Bayesian methods for a wide variety of reliability applications including 
accelerated testing, demonstration testing, and the estimation of system reliability. Dezfuli et al. 
(2009) describe the use of modern Bayesian methods to various reliability and probabilistic risk 
problems. This paper is an expansion and further application of some ideas that were described 
in Chapter 14 of Meeker and Escobar (1998). 

1.4 Overview 
The rest of this paper is organized as follows. Section 2 describes the relationship between 
likelihood and Bayesian inference methods, including discussion of some of the advantages and 
a brief introduction to the challenges of using Bayesian inference methods. Section 3 presents a 
basic example that uses simple Monte Carlo simulation to illustrate the ideas behind combining 
data with prior information and to compare the results obtained from using diffuse and 
informative prior information. Section 4 explains some of the issues that arise in the specification 
of prior distributions. Section 5 gives a high-level description of MCMC methods for making 
inferences from MCMC outputs, the popular OpenBUGS program, and some special 
considerations required for the effective handling of heavy censoring that arises in many 
reliability applications. Section 6 presents brief descriptions of several other reliability data 
analysis examples using other kinds of reliability data. We conclude with some remarks about 
the future of Bayesian methods in reliability analysis. 

2. Background for the Bayesian Inference Method 

2.1 The Relationship between Bayesian Inference and non-Bayesian 
Likelihood Inference  
The left-hand side of Figure 1 shows the components of a likelihood-based non-Bayesian 
inference procedure. Inputs are the data and a model for the data. The inference outputs would 
be, for example, point estimates and confidence intervals for quantities of interest (e.g., a 
quantile of a failure probability associated with a failure-time distribution). The right-hand side 
of Figure 1 is a similar diagram for the Bayesian inference procedure. In addition to the model 
and the data, one must also specify a joint prior distribution that describes one’s knowledge 
about the unknown parameters of the model. Bayes’ theorem is used to combine the prior 
information with the likelihood to produce a posterior distribution. Similar to the non-Bayesian 
inference, outputs would be point estimates and credible intervals (the name commonly used to 
describe the Bayesian analog to non-Bayesian confidence intervals).  
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Figure 1   Comparison of the structure of the non-Bayesian likelihood and Bayesian inference methods 

2.2  Bayes’ Theorem and Bayesian Data Analysis 
Bayes’ theorem is a well-known probability rule that relates different kinds of conditional 
probabilities (or conditional probability density functions) to one another. This probability rule is 
also the basis for the Bayesian method of statistical inference which allows one to combine 
available data with prior information to obtain a posterior (or updated) distribution that can be 
used for inference. In this regard, Bayes’ theorem can be written as 

(DATA ) ( )( DATA)
(DATA ) ( )

L ff
L f d

|
| =

|∫
θ θθ
θ θ θ

 (1) 

where θ is a vector of unknown parameters that need to be estimated. The likelihood 
(DATA )L | θ  is a function of the assumed model for the data and the data itself and must be 

proportional to the probability of the data. The likelihood quantifies the information in the data. 
The joint prior distribution ( )f θ quantifies the available prior information about the unknown 
parameters in θ . The output of (1) is ( DATA)f |θ , the resulting joint posterior distribution for 
θ , reflecting knowledge of θ after the information in the data and the prior distribution have 
been combined. The denominator in (1) is a normalizing constant that assures that the joint 
posterior distribution is a proper probability distribution (i.e., that it integrates to 1). In many 
practical statistical problems, computing this normalizing constant would be intractable. Modern 
computation methods for Bayesian analysis avoid this computational difficulty by basing 
inferences on a large, relatively easy to compute sample from the joint posterior distribution, 
making Bayesian inference computations relatively simple to conduct. 

 When the joint prior distribution ( )f θ is diffuse and relatively flat over the range of 
θ values where the likelihood (DATA )L | θ  is non-negligible and the data dominates the joint 
prior distribution, the likelihood is approximately proportional to the joint posterior distribution. 



5 

 

In such situations, one can expect to have Bayesian inferences that are similar to what would 
make using non-Bayesian methods of analysis like ML. The important topic of prior distribution 
specification is discussed more fully in Section 4. 

2.3 Parameterization  
Parametric statistical models have unknown parameters that are to be estimated from data 
(sometimes with the aid of prior information). For example, the Weibull distribution cumulative 
distribution function (cdf) is often written as 

Pr( ) ( ; , ) 1 exp ,    0tT t F t t
β

η β
η

  
≤ = = − − >  

   
 

where β is a unitless shape parameter and η is a scale parameter that has the same units as T . 
This scale parameter can be interpreted as the approximate 0.632 quantile of the failure-time 
distribution (i.e., the time at which 63.2% of the population will fail).  

 For the following reasons, the parameters β  and η  are not the best ones to use.  

• When using Bayesian methods in reliability applications, engineers are more likely to 
have prior information on the Weibull shape parameter and a quantile other than the 
0.632 quantile (often, interest centers on a quantile in the lower tail of the distribution).  

• When there is heavy censoring, the likelihood surface for η  and β  will tend to have an 
elongated shape reflecting the strong correlation between the ML estimators of η  and β . 
This strong correlation can make the computation of ML or Bayesian estimates more 
difficult (increasing the amount of computer time needed or increasing the probability of 
algorithmic failure). As an alternative, we would like to identify and use what Ross 
(1972) called stable parameters which generally correspond to quantities that one can 
effectively identify in a plot of the data. 

Although it is possible to use one parameterization for purposes of prior specification and a 
different parameterization for computing parameter estimates, we generally find that one 
alternative parameterization serves both purposes. 

 A useful reparameterization for the Weibull distribution would replace η  with a 
particular distribution quantile that could be estimated nonparametrically directly from the 
available data. For heavily right censored data from a life test of a high-reliability component, 
this would be a lower tail quantile of the failure-time distribution. For example, the p quantile of 

the Weibull distribution can be written as 1/[ log(1 )]pt p βη= − − . Thus a reparameterized version 

of the Weibull distribution is  
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1/Pr( ) ( ; , ) 1 exp ,    0
/ [ log(1 )]p

p

tT t F t t t
t p

β

ββ
  
 ≤ = = − − >  − −   

. 

Especially when there is heavy censoring, pt  and β  will be more stable than η and β , for some 
appropriately chosen value of p . Moreover, graphical estimates of the chosen pt  and β  that are 
within the range of the data (e.g., estimated by fitting a simple linear regression line through the 
points on a probability plot) will provide excellent starting values for either ML or Bayesian 
estimation methods. A useful rule of thumb for choosing p is to choose a value that is near to the 
center of the data. For example, if the nonparametric estimate fraction failing at the largest 
failure time is 0.10, then choosing 0.05p = would be expected to work well. 

We note that changes in parameterization are commonly used in high-quality software to 
produce stable estimation methods. In user-friendly software (especially commercial software) 
such changes are often hidden from the user. The commonly-used free software packages for 
doing Bayesian analysis (e.g., OpenBUGS) have not evolved to the point where such 
reparameterizations are automatic. Thus in the examples in this paper we will suggest and 
illustrate the use of appropriate reparameterizations that should be used to provide more stable 
estimation algorithms. 

2.4 Prior information 
The use of Bayesian methods for statistical modeling and inference requires one to specify a 
joint prior distribution ( )f θ to describe the prior knowledge that is available about the unknown 
parameters in θ . One of the reasons that the use of Bayesian methods has been controversial in 
reliability (and other) applications is that it is possible that the joint prior distribution can have a 
strong influence on final answers, especially when the amount of data is limited (as is common 
in reliability applications). Section 4 provides a more detailed discussion about the practical 
aspects of prior distribution specification. 

3. Example 1 Weibull Analysis for the Bearing Cage Failure Data 
This section uses a relatively simple example of the analysis of multiply-censored field-failure 
data to illustrate the basic ideas and computational methods behind the use of Bayesian methods 
in reliability applications.  

3.1 The data 
To illustrate the basic ideas of Bayesian inference we will use a simple example of fitting a 
Weibull distribution to field failure data for an aircraft engine bearing cage. The data were first 
given in the Weibull Handbook (Abernethy et al. 1984) and were also analyzed in Meeker and 
Escobar (1998, Chapters 8 and 14). 
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Over time, 1,703 similar aircraft engines with this type of bearing cage had been 
introduced into service. The design life specification for the bearing cage was that the 0.10 
quantile of bearing life (also known as B10) should be at least 8,000 hours of operation. The 
longest running units had seen only 2,220 hours of operation. At the time of the analysis of the 
data, there had been six failures and a preliminary Weibull analysis of these limited data 
suggested that the reliability goal had not been met. Managers needed to know if a redesign of 
the bearing cage would be required and also wanted to predict how many spare parts would be 
needed over the coming years to keep the fleet of aircraft flight-ready.  

3.2 Weibull ML analysis 

 

Figure 2 Weibull probability plot of the bearing cage failure data showing the ML estimate of fraction failing 
as a function of time and pointwise 95% likelihood-based confidence interval. 

Figure 2 is a Weibull probability plot of the bearing cage failure data. The north-east corner of 
the inner rectangle corresponds to the bearing cage reliability goal of no more than 10% failing at 
8,000 hours of operation. The ML estimate of the Weibull distribution cdf lies above this corner, 
indicating that there is a good chance that the reliability goal has not been met. On the other 
hand, the lower endpoints of the set of 95% pointwise two-sided confidence intervals suggest 
that it is possible that the true fraction failing is well below 0.10 allowing for an argument to 
postpone decision making until more information is available. Of course the true fraction failing 
at 8,000 hours could also be well above 0.10 and waiting for more information could cause a bad 
situation to become much worse. The problem is that there is very little information in the 
available data. The use of Bayesian methods with informative prior information could provide 
more precision and a better basis for decision making. 
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3.3 Prior information for the Bearing Cage example 
For the sake of comparison, we will first do a Bayesian analysis with a diffuse joint prior 
distribution. An analysis with a diffuse joint prior distribution can be expected to provide 
estimates and credible intervals that are close to the non-Bayesian ML estimates and confidence 
intervals (note that “credible intervals from a Bayesian analysis are similar to confidence 
intervals in a non-Bayesian analysis) . This will be followed by an analysis that uses a joint prior 
distribution with an informative prior distribution containing information about the Weibull 
shape parameter β . In both cases, as described in Section 2.3, we will specify the prior 
distribution in terms of the more meaningful parameters of the 0.10 quantile of the life 
distribution (i.e., 0.10t ) and the Weibull shape parameter β . We do this because it is easier to 
elicit prior information on these two parameters, the information on these two parameters is more 
likely to be approximately independent (allowing the joint prior distribution to be specified more 
simply by two marginal distributions), and because the 0.10 quantile is the primary quantity of 
interest in the study of the bearing cage life. Table 1 contains a summary of the prior 
distributions that we will use in this example. 

Table 1 Prior distribution specification for the Bearing Cage data analyses 

 

Analysis 

Weibull Distribution Stable Parameters 

0.10t  β  

Diffuse Prior Log-uniform(1,000,  50,000) Log-uniform(0.30, 8.0) 

Informative Prior Log-uniform(1,000,  50,000) Lognormal(1.5, 3.0) 

 

There is little or no prior information available for 0.10t . Thus to specify our prior lack of 

knowledge about 0.10t , we use a log-uniform distribution over the wide range between 1,000 and 
50,000 hours. Choosing an even wider range for this prior distribution would have little practical 
effect on final answers. This prior distribution is equivalent to a uniform distribution for 

0.10log( )t between log(1,000) and log(50,000). We use this prior specification for both the 
diffuse-prior analysis and the informative-prior analysis in the bearing cage example.  

For the diffuse-prior analysis we use a log-uniform distribution between 0.30 and 8 to 
describe our lack of knowledge about the Weibull shape parameter β  (for field failure data a 
value of β  outside of this range would not be expected). Again, choosing an even wider range 
for this prior distribution would have little practical effect on final answers. For the informative-
marginal prior distribution for β  we use a lognormal distribution with 99% of its probability 
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between 1.5 and 3.0 [denoted by Lognormal(1.5, 3.0) ]. The justification for this informative 
prior distribution would come from previous field-data experience with fatigue failures in similar 
bearing cages. 

3.4 Generating a sample from the joint posterior distribution via simple 
simulation 
The basic output of modern Bayesian analysis computational tools is generally a sample from the 
joint posterior distribution of the model parameters. For a given likelihood and prior distribution 
shown in (1), there are a number of algorithms that can be used to generate such a sample. In this 
section we use a particularly simple method that can be employed in situations where the 
likelihood is easy to compute and there are only a few parameters. The more versatile MCMC 
methods described in Section 5 can be used with models that are much more complicated. 

 The points in the left-hand plot in Figure 3 are a sample from the diffuse-analysis joint 
prior distribution (which is actually the product of marginal distributions for both parameters). 
The contours in Figure 3 are relative likelihood contours, obtained by dividing the likelihood 
values by the value of the maximum of the likelihood. Because the likelihood is proportional to 
the probability of the data, we can, for example, say that the probability of the data at the ML 
estimate (where the relative likelihood is 1) is 100 times (10 times) larger than the probability of 
the data at any point on the 0.01 contour (the 0.10 contour). Also, as described in Section 8.3 of 
Meeker and Escobar (1998), the region enclosed by the 0.01 relative likelihood contour is an 
approximate 99% joint confidence region for B10 life and the Weibull shape parameter β . 
Similar statements can be made for any of the other relative likelihood contours. Although the 
upper endpoint of the prior distribution for the Weibull shape parameter exceeds 5, the plots in 
Figure 3 show only points below 5 to provide a better view of the interesting features of the 
interaction between the joint prior distribution and the relative likelihood contours.  

  

Figure 3 A sample from the diffuse joint prior distribution with likelihood contours (left) and the 
corresponding sample from the joint posterior distribution (right). 
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The right-hand side of Figure 3 shows a sample from the diffuse-prior analysis joint posterior 
distribution, along with the relative likelihood contours. As expected, the sample from the joint 
posterior agrees well with the likelihood contours because the posterior is proportional to the 
likelihood when the prior distribution is constant (recall that the actual prior used here is constant 
on the log scale).  

Figure 4 is similar to Figure 3 but is based on the prior distribution that is informative for 
the Weibull shape parameter β . The points plotted in the left-hand side of Figure 4 are a sample 
from the joint prior distribution, restricting the Weibull shape parameter β to the range 1.5 to 3. 
The plot on the right-hand side of Figure 4 shows the corresponding sample from the joint 
posterior distribution. Visually we can see that the joint posterior is concentrated where the joint 
prior distribution and the likelihood overlap.  

  

Figure 4 A sample from the informative joint prior distribution (on the Weibull shape parameter β ) with 
likelihood contours showing the ML estimate (left) and the corresponding sample from the joint posterior 
distribution showing the Bayesian estimates (right). 

The sample from the posterior is easy to generate in applications such as this one where 
the likelihood is easy to compute and when there is only a small number of parameters to be 
estimated. The method we used is a slight modification of the method described in Smith and 
Gelfand (1992). In particular, the sample from the joint posterior is obtained by randomly 
filtering the sample from the joint prior distribution. A point from the joint prior distribution is 
accepted with a probability corresponding to the value of the relative likelihood at the point. 
Thus points on the 0.01 contour would be kept with probability 0.01 and points on the 0.90 
contour would be kept with probability 0.90. Samples of size 10,000 to 20,000 from the posterior 
distribution are sufficient for most practical purposes when the observations are i.i.d. (as they are 
in this simple simulation but not in the MCMC type simulations described in Section 5 and used 
in the other examples in Section 6).  
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3.5 Using the sample from the joint posterior distribution to make Bayesian 
inferences 
The sample from the joint posterior is usually organized as a matrix with columns corresponding 
to marginal posterior distributions for the unknown parameters or other quantities of interest 
(e.g., functions of the parameters) that are to be estimated and rows corresponding to a large 
number of samples from the joint posterior. If one is interested in estimating a particular function 
of the parameters, new columns corresponding to the marginal posterior can be added to the 
matrix by simply computing the function of interest row-wise.  

 Point estimates for quantities of interest can be obtained by using a measure of central 
tendency for a given column of the matrix (i.e., the marginal posterior distribution of the quantity 
of interest). Theoretically, the mean of the marginal posterior distribution will provide (under an 
assumption of a correct model) a Bayesian estimate that minimizes squared-error loss, relative to 
the true quantity being estimated. The median of the marginal posterior distribution is, however, 
less affected by the long tail of a skewed posterior distribution and will generally agree better 
with the ML estimate when using a diffuse joint prior distribution. We will use the sample 
median of the marginal posterior distributions in all of our examples. Bayesian credible intervals 
can be obtained by using the appropriate quantiles of the sample from the same marginal 
posterior distribution. For example, a 95% credible interval for a quantity is obtained by using 
the 0.025 and the 0.975 quantiles of the sample from the marginal posterior distribution. 

Figure 5 shows two Weibull probability plots with Bayesian estimates of the fraction 
failing as a function of time. On the left are the estimates using the diffuse joint prior distribution 
and on the right are the estimates using the joint prior distribution that is informative for the 
Weibull shape parameter. The width of the credible bounds is much narrower for the 
informative-prior analysis. The reason for this can be seen by looking at the informative analysis 
joint prior and joint posterior distributions in Figure 4. In particular, focusing on the lower 
endpoints of the credible intervals, by using the prior information that the Weibull shape 
parameter is larger than 1.5, the optimism that 0.10t  could be larger than 8,000 hours (or 
equivalently that the fraction failing by 8,000 hours could be less than 0.10) disappears. There is 
a similar, but less dramatic change in the upper credible bound for 0.10t . 
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Figure 5 Weibull probability plot of the bearing cage failure data showing the Bayesian estimates of fraction 
failing as a function of time and pointwise 95% credible interval for the diffuse prior analysis (left) and the 
informative prior analysis (right). 

 Figure 6 provides another view of this same conclusion. These plots show density 
estimates for the marginal posterior distributions for 0.10t  with the diffuse-prior analysis on the 
left and the informative-prior analysis on the right. The vertical lines on these plots show the 
lower and upper 95% credible bounds for 0.10t . Again, our conclusion for the informative-prior 

analysis is that 0.10t is less than 8,000 hours. 

  

Figure 6 Plots of the marginal posterior distribution for 0.10t of bearing cage life corresponding to the diffuse 

prior (left) and the informative prior (right) distributions. 
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4. Prior information 

4.1 Diffuse versus informative prior distributions  
A statistical model generally can be described by a relatively small number of parameters. Recall 
that reparameterization is often used to describe a model with quantities that are of particular 
interest to the analyst and we will also refer to these quantities of interest as parameters.  

As described earlier, one of the important motivations for using Bayesian methods is that 
the analysis provides a formal mechanism for including prior information into the analysis. Thus 
if we have information for one or more of the model parameters and if the definition of the 
parameters (i.e., the particular parameterization) has been chosen such that the information about 
the parameters is approximately independent, we can specify a joint prior distribution with 
separate marginal distributions for each parameter. Informative marginal prior distributions can 
be used for those parameters for which there is prior information and diffuse marginal prior 
distributions can be specified for the other parameters. 

A commonly-used practice is to specify diffuse (or vague) marginal prior distributions for 
each of the parameters when there is little or no prior information about the parameters. A prior 
distribution that is flat (or uniform) over the entire range of a parameter space is sometimes 
referred to as a noninformative prior distribution. A difficulty with this term is that a flat 
(noninformative) prior distribution for a parameter will imply a non-flat (and thus informative) 
prior distribution for any nonlinear transformation of that parameter (e.g., a prior that is 
noninformative (flat)  for the standard deviation σ is informative (not flat) for the variance 2σ . 
In applications for which there is little or no useful prior information on any of the parameters, 
one can specify a diffuse joint prior distribution (i.e., a distribution that is flat or approximately 
flat over the range of the parameters where the likelihood is non-negligible). Commonly-used 
proper diffuse prior distribution include uniform distributions with a wide (but finite) range or a 
normal distribution with a large variance. It is important to note that with limited data, the choice 
of a prior distribution (even a diffuse prior distribution) can have strong influence on inferences. 
It is important when attempting to use a diffuse prior distribution that an analyst experiments 
with different specifications of the prior to assess sensitivity to the specification, especially when 
the information in the data is limited. 

4.2 Who’s prior should we use? 
As mentioned earlier, the use of Bayesian methods has been controversial in reliability and other 
areas of application due to the need to specify a prior distribution. Analysts are faced with the 
question of which or who’s prior distribution should be used in the analysis. One generally 
accepted principle for answering this question is that whoever is assuming the risks associated 
with decisions resulting from the Bayesian analysis should be allowed to choose the prior 
distribution. If, however, different people, groups of people, or organizations have difference risk 
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functions, there will be a conflict. For example, for an experiment where the results will be used 
to determine if a product is safe or not, customers who will use the product and managers who 
will benefit from the development and sale of the product will have different risk functions. In 
such cases it may be necessary to use a diffuse joint prior distribution or to use a non-Bayesian 
method that does not require specification of a prior distribution. 

4.3 Sources of prior information 
In some applications solid prior information, based on a combination of physics of failure and 
previous empirical experience, is available. This is particularly true in some engineering 
applications such as reliability, for which there are known, well-understood failure mechanisms. 
For example, engineers working in certain areas of industry will have previous experience with 
particular failure mechanisms and test and product operating environments that will allow them, 
in some situations, to provide strong prior information about aspects of the failure-time model. 

For a given failure mode (e.g., fatigue), engineers will, for example, typically have useful 
knowledge about the Weibull distribution shape parameter. For example, if the primary failure 
mode for a component is caused by wear out, we immediately know that the Weibull shape 
parameter is greater than 1. Previous field data with similar products (as with the bearing cage) 
may however allow tighter bounding of the parameter. Similar knowledge is often available for 
the shape parameter of a Weibull or a lognormal distribution when it is used to model the failure-
time distribution of microelectronic devices that fail due to known certain causes. For example, if 
a component will fail only when it receives an external shock that arrives according to a 
homogeneous Poisson process, the failure-time distribution would be exponential, corresponding 
to a Weibull shape parameter equal to one. Because such an assumption would be only an 
approximation, describing this knowledge with a prior distribution would be more appropriate. 

In accelerated testing applications there is often available knowledge about the parameter 
describing the relationship between life and an accelerating variable. In the case of temperature 
acceleration of a particular chemical reaction or other mechanism relating to failure, there is 
often strong knowledge about the effective activation energy in the Arrhenius relationship that is 
commonly used to describe how temperature affects the rate of the chemical reaction (or other 
mechanism). Indeed, some reliability handbooks on electronic reliability (e.g., Klinger, Nakada, 
and Menendez 1990, page 59) provide values of the effective activation energy as a function of 
the failure mechanism (e.g., metalization, electromigration, or corrosion). 

Yet another source of prior information is so-called “expert opinion.” Individual or 
groups of individuals with knowledge about reliability in particular situations may be able to 
provide subjective information that can be used to construct appropriate prior distributions. 
Technical descriptions of methods of elicitation of prior distributions have been provided, for 
example, in Meyer and Booker (1991), O'Hagan (1998), O'Hagan and Oakley (2004), and 
Garthwaite, Kadane, and O'Hagan (2005). 
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There is, however, the ever-present danger that such subjective prior information is 
contaminated with biases arising from the risks and rewards associated with decisions that are 
made on the basis of a Bayesian analysis. Pressure from top management within a company or 
political pressure in situations where there is government oversight or funding involved could, 
for example, affect opinions on what prior distribution to use. We must beware of such pressures 
or wishful thinking masquerading as prior information. 

4.4 Specification of prior distributions 
As mentioned in Section 2.3, if appropriate definitions of stable parameters are used, it is 
possible to specify an appropriate joint prior distribution by specifying individual marginal 
distributions for each of the unknown model parameters. At the higher level, the parameters of a 
prior distribution for the model parameters are known as hyperparameters.  

Historically within the area of Bayesian statistics there was a great deal of emphasis on 
the use of conjugate prior distributions. Such distributions have a posterior distribution that is in 
the same family as the prior distribution. Conjugate prior distributions generally afford 
advantages in the development of theory, ease of computation, and may even allow the use of 
closed form expressions for the posterior distribution. In spite of such advantages, the use of 
conjugate prior distributions is, in general, overly constraining. Due to recent advances in 
MCMC theory, related computational methods, and faster computer hardware, the use of 
conjugate prior distributions is no longer such an important consideration in practical 
applications. 

Different text books and software packages use different parameterizations for the same 
distribution. For example most text books characterize the normal (Gaussian) distribution in 
terms of it mean µ  and variance 2σ . The R package (R Development Core Team 2011) uses the 
mean and standard deviation σ . OpenBUGS uses the mean and precision which is defined to be 

21/σ . When programming Bayesian estimation methods in OpenBUGS or in R one must take 
such differences into consideration. 

There are a number of ways that one could specify a marginal prior distribution to 
describe uncertainty in a particular model parameter. One simple method is to specify the form 
of the prior distribution and the corresponding hyperparameters of the prior distribution using the 
distribution’s usual parameterization. Such an approach may not, however, be user-friendly 
because some of the hyperparameters may not have an easy-to-understand interpretation. Also, 
parameterizations for a distribution are not unique. Instead of requiring the user to specify the 
actual hyperparameters for a particular marginal prior distribution, one could require 
specification of the mean and standard deviation of the prior distribution, Such a specification 
may not, however, be meaningful when a distribution is highly skewed. When a prior 
distribution has a finite range, an alternative would be to specify the range of the distribution 
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along with a shape parameter or parameters. The beta and uniform distributions have a finite 
range and are popular for prior specification (the uniform distribution is a special case of the beta 
distribution). When the distribution does not have a finite range, another user-friendly alternative 
is to ask the user to specify a range of the distribution that contains some large proportion of the 
distribution’s probability content. For example 99% of a marginal prior distribution is between 
the 0.005 and 0.995 quantiles of the distribution. 

There are some special challenges in the specification of diffuse prior distributions. 
Relieved from the need to specify conjugate prior distributions, a uniform distribution over a 
wide range of potential parameter values (wide enough that the likelihood is near to 0 at the 
extremes of the joint prior distribution) often works well. Another popular diffuse prior 
distribution alternative is to use a normal distribution with a large variance (poor precision).   

The conjugate distribution for the precision (i.e., the reciprocal of the variance) of a 
normal distribution is the gamma distribution. To specify a diffuse prior distribution for a 
variance parameter, it has been suggested to use a gamma distribution with a large variance. As 
described by Gelman (2006), many of the examples in OpenBUGS use the specification 
dgamma(.001,.001) as a prior distribution for the variance parameters.  He points out, however, 
that this type of prior can be far from noninformative and can present difficulties in estimation. 
For example this specification implies that the precision parameter has a gamma distribution 
with a mean of 1.0 and a standard deviation of 31.62. The particular gamma distribution implied 
by this specification is highly skewed to the right, having most of its mass extremely close to 0. 
The distribution median is 2995.24 10−×  and the 0.99 quantile is 0.024, implying that large values 
of precision (small values of variance) are unlikely. Gelman (2006) describes alternative ways to 
specify diffuse prior distributions for variances and variance components in hierarchical models. 
In our examples we use a finite-range uniform prior distribution (over some sensible range of 
values) to specify a diffuse prior distribution for parameters that must be positive. Then we do 
sensitivity analyses to assess the effect that the choice of the range has on posterior inferences. 

One might specify a diffuse prior distribution by using a uniform distribution over a very 
wide range of values. For example, for a particular parameter one could specify the marginal 
prior distribution for that parameter by using ( )-5 4uniform 10 ,  10 . If, however, the values of the 

profile likelihood for that parameter are essentially 0 outside the range from 10-3 to 103, then 
using ( )-3 3uniform 10 ,  10 instead would have little or no effect on the resulting joint posterior 

distribution and but would generally result in faster, more efficient computation of the joint 
posterior distribution. 
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5. Monte Carlo Markov Chain Simulation 

5.1 Basic ideas of MCMC simulation 
The purpose of this section is to provide a general overview of the MCMC method. MCMC is a 
powerful, versatile method of simulating a sample from a particular joint posterior distribution 
(i.e., the joint posterior distribution corresponding to a given model, data, and joint prior 
distribution). MCMC methods are particularly important in inference problems that have a large 
number of parameters. During the past 20 years there have been many developments and much 
has been written about MCMC. For technical details and examples, we refer the reader to some 
of the many books on Bayesian inference and MCMC simulation that are now available. These 
include, for example, Gilks, Richardson, and Spiegelhalter (1996), Congdon (2003), Gelman et 
al. (2013), Robert and Casella (2004), and Carlin and Louis (2008). 

A Markov chain is a well known stochastic process model that can be used to 
characterize the probability of moving from one state to another. An important property of a 
Markov chain is that the probability of going from one state to another depends only on the 
current state and not on any of the other history of the process. Numerous algorithms have been 
developed that will simulate samples from a discrete-time continuous-space Markov chain such 
that after reaching a steady-state, the sequence of samples constitutes a sample from the desired 
joint posterior distribution. The most well known methods are Gibbs sampling and the 
Metropolis-Hastings algorithm, although combinations of these two methods and other MCMC 
algorithms also exist. 

Because the probability of being in a particular state at time i depends on the state at time 
1i − , simulated samples from a Markov Chain are not, in general, independent (as they were in 

the simple Monte Carlo simulation used in Section 3). Technically, this is not a problem, as 
estimates of marginal posterior quantities computed from autocorrelated sample are still 
statistically consistent. The autocorrelation does, however, imply that larger samples from the 
joint posterior are needed to adequately estimate the mean and, especially, the quantiles (used to 
compute credible bounds) of the marginal posterior distributions for the parameters of interest. In 
some cases (especially when it is desired to save the joint posterior for later use), analysts will 
“thin” the sample by retaining every thk  value in the sequence, where k  would be larger if 
autocorrelation is stronger. 

It is also common practice to drop some number of the initial values from the sample, so 
that the remaining points more accurately represent a sample from the Markov chain after steady 
state has been reached. The dropped values are referred to as “burn-in” values. 

The plots in the NE, NW, and SW corners of Figure 7, based on the Bearing Cage 
problem from Section 3 with the informative prior distribution, show Metropolis-Hastings 
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MCMC sample paths for three different relatively short chains (1,000 samples) that had different 
starting values. The plot in the SE corner shows, on the same scales, a “final” sample obtained 
after initial “burn-in” samples have been dropped and the sample was thinned. For this plot, 
20,000 samples were drawn, the first 2,000 were discarded, and then every 20th sample was 
retained. The resulting thinned samples are approximately independent and it is easier to store 
and process the smaller thinned sample. In addition, because autocorrelation is generally small or 
non-existent in the thinned samples, it is relatively easy to assess the amount of Monte Carlo 
error in estimates computed from the samples. 
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Figure 7 Simple illustrations of samples from a Markov chain for a 2-dimensional (two-parameter) distribution. 

5.2 Risks of misuse of MCMC simulation 

Although modern MCMC methods are extremely versatile and powerful, it is possible for a 
naïve user to misuse the methods and obtain seriously incorrect results. Putting programming 
errors aside, MCMC application problems are especially likely to occur with combinations of an 
attempt to use diffuse prior distributions when there are only limited data or when a poor 
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parameterization is used. If an improper prior distribution is used and the data are not sufficient 
to identify the unknown model parameters, joint posterior distribution will be improper. An 
MCMC algorithm will still give answers, but they will generally be wrong. If a proper joint prior 
distribution is specified, then the joint posterior distribution will be proper. If, however, the 
proper prior is diffuse and there is limited information in the data, then posterior inferences can 
be highly sensitive to the exact way in which the diffuse prior was specified. Sensitivity analysis 
is then recommended (i.e., try different methods to specify the diffuse joint prior distribution to 
see the effect that the choice has on posterior inferences). 

If a proper joint posterior distribution exists for a given model, data, and joint prior 
distribution, then MCMC theory assures us that eventually a properly chosen MCMC algorithm 
will converge to a sample from the joint posterior distribution. In practice, however, there is no 
guarantee that a given MCMC simulation, run for a finite number of iterations, has converged. 
To gain some degree of assurance, it is necessary to use appropriate diagnostics to assess 
whether the sample from the chain has reached a steady state and that a sufficient number of 
samples have been obtained to properly estimate quantities of interest. This assessment will be 
more difficult to make when the sequence of samples have a high degree of autocorrelation. 
Useful graphical diagnostics include trace (time series) and autocorrelation function plots of the 
MCMC samples from the joint poster distribution for each of the model parameters. It is 
common practice to run the MCMC algorithm three or four times, using different starting values, 
and then check (using plots and numerical diagnostics) that all of them have converged to the 
same distribution. There are also numerical summary diagnostic tools that complement the 
graphical approach. These diagnostics are described in the books referenced at the beginning of 
Section 5.1.  

A common, but difficult-to-answer question is “How many MCMC samples do I need?” 
The answer to this question will depend on the strength of the autocorrelation in the samples (the 
autocorrelation will not be the same in all dimensions of the parameter space) and on the inherent 
variability in the MCMC output. The autocorrelation functions (ACF) of the simulated chains are 
also helpful to assess how long the simulated chain should be (after the burn-in samples have 
been removed). One useful guideline is that if the MCMC sample is thinned sufficiently such 
that there is little remaining autocorrelation, then standard methods of sample size determination 
for independent samples can be used as a guideline. Raftery and Lewis (1992) provide some 
guidance on this subject. 

Figure 8 gives some examples of some simple MCMC diagnostic plots from one chain 
corresponding to the Bearing Cage example and the MCMC output shown in Figure 7. The top 
row shows a trace plot of first 1000 of the Weibull 0.10 quantile sample draws provided by the 
chain’s output, after the initial 2000 “burn-in” samples were dropped. Figure 8 suggests that the 
time series contains autocorrelation. The autocorrelation can be seen more clearly in the plot of 
the sample autocorrelation function (ACF) on the right. The bottom part of the plot is similar, but 
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shows first 1000 of the Weibull 0.10 quantile sample draws provided by the chain’s output after 
the  “burn-in” samples were dropped and after the output was “thinned” by keeping every 20th 
value. The effect of the thinning is to provide samples that have little or no autocorrelation.  

 

 

 

  

Figure 8 MCMC diagnostic plots corresponding to the chain in Figure 7 showing a trace plot (on the left) 
and a plot of the ACF (on the right) for both raw samples from the chain (top) and a thinned sample (bottom).  
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5.3 Software for MCMC simulation 
Although we can expect commercial packages to eventually have easy-to-use procedures for 
doing a Bayesian analysis, not much is available today. In the past, many analysts would 
program their own analyses in a low-level programming language like C or within programming 
environments like R or MATLAB. Such programming can be tedious and provides a barrier that 
would make Bayesian analysis available only to experts. Books, such as Albert (2009), however, 
provide useful guidance for programming Bayesian computations. 

A popular alternative to writing one’s own code has been to use WinBUGS or 
OpenBUGS. Although OpenBUGS requires knowledge of their general Bayesian model-
specification language, using OpenBUGS is far easier than lower-level programming. The 
documentation for OpenBUGS provides a wide range of examples with data and codes necessary 
to do the analyses. This collection is a valuable resource for users of the package. We used 
OpenBUGS for the examples in Section 6 and the codes for these examples should be useful for 
those wanting to use OpenBUGS for reliability data analyses. For further information about the 
BUGS project (past, present and future), see Lunn et al. (2009). 

The proper and safe use of OpenBUGS will, however, still require a high degree of 
expertise that will come only with hard work and accumulated experience. For our examples, we 
had to pay special attention to parameterization as described in Section 2.3 and in the examples 
in Section 6. OpenBUGS has built-in methods for handling censored observations. Their 
approach assumes that there is an unknown failure time for each censored observation. Then, 
using a natural Bayesian approach, a parameter is added to the model for each unknown failure 
times. For problems involving heavy censoring, we found this approach to be computationally 
inefficient. As an alternative, we used the OpenBUGS “zero trick” that allows one to specify a 
likelihood directly. In our case we specified the usual likelihood for censored data, providing a 
large improvement in speed of convergence. 

There exist several interfaces that can be used to run OpenBUGS from other programs 
such as R or Excel. For more information on these, see the OpenBUGS webpage. Another 
package, which is similar to OpenBUGS, is JAGS. JAGS uses the same model-specification 
language and capabilities. Some analysts like to use OpenBUGS and JAGS to make sure that the 
final answers agree. The R package coda (Plummer et al. 2006) contains useful diagnostics for 
studying MCMC output. 

Finally, summarizing some of what we have said, the WinBUGS website provides the 
following “Health Warning” about the use of packages like WinBUGS, OpenBUGS, and JAGS. 

The programs are reasonably easy to use and come with a wide range of 
examples. There is, however, a need for caution. A knowledge of Bayesian 
statistics is assumed, including recognition of the potential importance of prior 
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distributions, and MCMC is inherently less robust than analytic statistical 
methods. There is no in-built protection against misuse. 

  

6. Other Examples 
In Section 3 we used an example of field-failure data. In this section we present three more 
examples illustrating the types of data that reliability analysts encounter in accelerated testing 
applications. The first example is an accelerated life test. The other two are examples of 
accelerated degradation tests. One of these is an example of an accelerated repeated measures 
degradation test and the other is an example of an accelerated destructive degradation test. All of 
these examples were done using OpenBUGS to simulate samples from the joint posterior 
distributions with post-processing of these results using specially written R functions to compute 
needed estimates, credible intervals and to produce the graphical outputs in this section. 

6.1 Example 2 Analysis of the Device-A Accelerated Test Data 
Meeker and Escobar (1998) describe the analysis of accelerated life test (ALT) data of an 
electronic device that they call Device A. The data were first presented and analyzed by Hooper 
and Amster (1990). The purpose of the ALT was to evaluate the suitability of the device for use 
in the first undersea digital telecommunications cable between North America and Europe. Units 
were tested for 5,000 hours at 10, 40, 60, and 80 Degrees C. There were 0 failures out of 30 
units, 10 failures out of 100 units, 9 failures out of 20 units, and 14 failures out of 15 units tested, 
respectively, at these four levels of temperature. The complete data are given in Table C.10 of 
Meeker and Escobar (1998). The analysts needed to obtain an estimate of the failure-time 
distribution at the nominal use conditions of 10 Degrees C (the approximate temperature at the 
bottom of the Atlantic Ocean). We will focus on the estimation of 0.01(10)t , the 0.01 quantile of 
the failure-time distribution at 10 Degrees C. 

The lognormal/Arrhenius model (as identified in both Hooper and Amster 1990 and 
Meeker and Escobar 1998) for the data implies that ( )log HoursY = follows a normal 

distribution with mean ( ) 0 1Temperature xµ β β= + , variance 2σ , and 

 11605/(Degrees C +273.15)x =  is the Arrhenius transformation on temperature where 11605 is 
the reciprocal of Boltzmann’s constant in units of eV. Then 1β  can be interpreted as the effective 
activation energy of the failure-causing reaction in units of eV per Kelvin. 

Because the ML and Bayesian estimators of the parameters 0β  and 1β  can tend to be 
highly correlated, potentially causing estimation problems, we will use an alternative stable 
parameterization. In particular, we replace 0β with the 0.01 quantile of the failure-time 
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distribution at 40 Degrees C (chosen to be near to the center of the data). More generally, the 
p quantile at a given temperature can be expressed as 

0 1
11605log[ (Temperature)]

Degrees C+273.15p pt zβ β σ= + +  

where for 0.01(40)t , 0.01 -2.326z =  is the 0.01 quantile of the standard normal distribution. Then 
the reparameterized model can be expressed as 

( ) 0.01 0.01 1
11605 11605Temperature log[ (40)]

Degrees C+273.15 40 273.15
t zµ σ β

 
= − + − + 

. 

The effective activation energy 1β  generally depends on the particular acceleration 

mechanism and perhaps other factors such as material properties. Prior information for 1β  is 
often available from sources like previous experience testing similar components or products, 
general engineering knowledge, and physical-chemical knowledge about the failure mechanism. 
As mentioned in Section 4.3, approximate values of the effective activation energy values are 
available as functions of the failure mechanism. 

 For the Device-A example we will do an ML analysis and also do Bayesian analyses with 
both a diffuse joint prior distribution and a joint prior distribution that uses commonly-available 
information on the effective activation energy for the Arrhenius relationship. For the Bayesian 
analyses, we will use the prior distributions in Table 2. Here normal (0.5, 0.8) implies a normal 
distribution with 99% of it probability between 0.5 and 0.8. The informative prior distribution for 

1β  would, in other applications, be obtained by looking at the estimates and intervals reflecting 
uncertainty of the effective activation energy in other experiments involving temperature 
acceleration of devices of the same type as Device A.  For the diffuse marginal prior 
distributions,  we use a uniform distribution between a number that is close to 0 ( 510− ) and a 
very large number ( 410 ). 

Table 2 Prior specification for the Device A accelerated life test example 

 

Analysis 

Lognormal/Arrhenius Failure-time Model Stable Parameters 

0.01log[ (40)]t  1β  σ  

Diffuse Prior ( )-5 4uniform 10 ,  10  ( )-5 4uniform 10 ,  10  ( )-5 4uniform 10 ,  10  

Informative Prior ( )-5 4uniform 10 ,  10  normal (0.5, 0.8) ( )-5 4uniform 10 ,  10  
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The plot on the left-hand side of Figure 9 is a multiple probability plot in which the 
plotted points are adjusted Kaplan-Meier (nonparametric) estimates of the fraction failing as a 
function of hours of exposure for the different levels of ambient temperature. The lines are ML 
estimates of fraction failing as a function of hours of exposure for the lognormal-Arrhenius 
acceleration model described above. The dotted lines are a set of pointwise approximate 95% 
confidence intervals for the 10 degrees C estimates. The ML estimate for 0.01(10)t  is 21,793 
hours with a corresponding approximate 95% confidence interval of [9962.0,     47,676] hours. 
The plot on the right-hand side of Figure 9 is a model plot showing quantiles (0.10, 0.50, and 
0.90) of the Device-A failure-time distribution as a function of temperature, reflecting the linear 
relationship between log life and reciprocal temperature kelvin. The horizontal line shows the 
censoring time. 

  

Figure 9 Lognormal multiple probability plot showing ML lognormal-Arrhenius model estimates of fraction 
failing as a function of time at different temperature levels (left) and a Lognormal-Arrhenius model plot of 
the Device-A accelerated life test data (right). 

The plots in Figure 10 are similar to the plot on the left-hand side of Figure 9, except that the 
model estimates are from the diffuse-prior Bayesian analysis (left) and the informative-prior 
Bayesian analysis (right). Using the diffuse prior distribution, the 95% Bayesian credible interval 
for 0.01(10)t  is [9,902.9,    56,223] hours. The analysis based on the informative-prior Bayesian 

provides somewhat more precision, owing to the information about 1β , the effective activation 
energy, which was included in the informative joint prior distribution. Using the informative 
prior distribution, the 95% Bayesian credible interval for 0.01(10)t  is [11,933,    39,039] hours.  
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Figure 10  Lognormal multiple probability plot showing the lognormal-Arrhenius model Bayesian estimates 
of fraction failing as a function of time at different temperature levels and 95% credible intervals for 10 
degrees C using diffuse prior distributions (left) and corresponding plot that incorporated informative prior 
information on the effective activation energy (right). 

 

6.2 Example 3 Analysis of the Adhesive Bond B Accelerated Destructive 
Degradation Test to Evaluate the Failure-time Distribution of an Adhesive 
Bond 
Escobar et al. (2003) describe an accelerated destructive degradation test (ADDT) that was used 
to evaluate the strength of an adhesive bond called Adhesive Bond B. They show how to use 
estimates of the degradation distribution to compute ML estimates of the adhesive bond failure-
time distribution.  

 In the experiment, adhesive bond specimens were placed into chambers operating at 
50, 60, and 70 degrees C and were removed at particular points in time, as indicated in Table 3, 
and subjected to a destructive strength test in which a steadily increasing force was applied until 
the adhesive failed. Eight baseline units were tested for strength without any aging. 

Table 3 Adhesive Bond B test plan showing the number of specimens allocated to different temperature/time 
combinations 

 
Temperature 
Degrees C 

Weeks Aged 

0 2 4 6 12 16 

70  6 6 4 9 0 

60  6 0 6 6 6 
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50  6 0 8 8 7 

Not aged 8      

 

The development in this example follows that of Escobar et al. (2003), except that we use 
Bayesian estimation instead of ML. Figure 11 shows the measured strength data for the different 
combinations of Weeks and Degrees C. On the left the data are plotted on linear axes and on the 
right the same data are plotted on transformed axes using a log transformation for strength 
(newtons) and a square root transformation for Weeks (along with a fitted model described 
below). These transformations were identified empirically to provide an approximate linear 
relationship between the transformed strength and time. The horizontal line at 40fµ =  newtons 

is the soft-failure definition for the adhesive. 

  

Figure 11 Scatter plot of the Adhesive Bond B accelerated destructive degradation data on linear scales (left) 
and transformed scales (right). The transformation scales are log for newtons and square root for Weeks. The 
horizontal line at 40 newtons is the soft failure definition. On the right the other lines are the ML estimates of 
the mean degradation level as a function of Weeks for the four different levels of temperature. 

The model suggested by the plots of the data is ( )~ Normal ,Y µ σ  where log(newtons)Y = and  

( ) ( )0 1 2, ; expx xµ τ β β β τ= + −β     (2) 

The explanatory variables in this nonlinear regression model are Weeksτ =  and 
 11605/(Degrees C +273.15)x =  is again the Arrhenius transformation on temperature. The 

model implies that at a given level of temperature, log strength is linearly decreasing in the 
square root of time. 0β  can be interpreted as the mean log strength of units tested at time 0 and 

the degradation rate of change at a given temperature is ( )1 2exp xβ β−  where 2β is interpreted as 
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the effective activation energy, describing the effect that temperature has on the degradation rate 
of change of transformed strength versus transformed time. In the original parameterization 
using ( )0 1 2, , ,β β β σ , correlations among the parameter estimates can be extremely strong (in the 

Adhesive Bond B data 1̂β  and 2β̂  have a correlation that is 0.9997− . Thus, as in the other 
examples, it is important to use a stable parameterization. An alternative stable parameterization 
can be obtained that uses parameters that describe features of the data that are observed directly. 
One way to do this is to use the alternative form of the model with stable parameters: 

( ) ( ){ }0 1 2, ; expx x xµ τ γ γ γ τ τ = + − − − γ  

where  

( )0 0 1 2exp xγ β β β τ= + −  

is the mean (transformed) strength at mean (transformed) temperature x  and at mean 
(transformed) time τ  and 

( )1 1 2exp xγ β β= −  

is the slope of the linear relationship between µ  and τ  at the mean (transformed) temperature 
x . The parameters 2 2γ β=  and σ do not change. 

Table 4 gives the diffuse and informative prior distributions that we use in the analysis of the 
Adhesive Bond B data. As in the Device A analysis, for the informative prior analysis, we 
specify an informative marginal prior distribution only for the effective activation energy, 

2 2γ β=  and we use diffuse marginal priors for the other stable parameters.  In particular, 

( )normal 0.65,  0.75 implies a normal distribution with 99% of its probability between 0.65 and 

0.75. We do this because there would generally be useful prior information for 2 2γ β= but not 
necessarily for the other two parameters. For the diffuse marginal prior distributions we again 
use a uniform distribution between 510−  and 410 . For the regression parameters (unrestricted in 
sign), we use a “flat” prior, corresponding to a uniform distribution between−∞  and ∞ . Again, 
the cautious analyst would use informative prior information only when it is grounded in solid 
knowledge of the physics or chemistry of failure for the particular failure mode, combined with 
previous similar experience. 
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Table 4 Prior distribution specification for the Adhesive Bond B accelerated destructive degradation Arrhenius 
model. 

 

Analysis 

Lognormal/Arrhenius Destructive Degradation Model Stable Parameters 

0γ  1γ  2γ  σ  

Diffuse Prior  flat flat flat ( )-5 4uniform 10 ,  10  

Informative Prior  flat flat ( )normal 0.65,  0.75  ( )-5 4uniform 10 ,10  

 

The plot on the right-hand side of Figure 11shows the transformed data (using log by square root 
axes to show the data in the untransformed units) along with the diffuse-prior analysis Bayesian 
estimates of mean log strength µ  as a function of time and temperature. These estimates are 
close to the ML estimates given in Meeker, Kugler, and Kramer (2003). 

The purpose of the Adhesive Bond B accelerated test was to estimate the fraction of bonds that 
would fail at 2 years and at 4 years (104 and 208 weeks) of operation. As shown in Meeker, 
Kugler, and Kramer (2003), the degradation model in (2) induces a failure time distribution with 
fraction failing as a function of time given by  

 ( ; ) ,       0F t x tτ ν
ς

 −
= Φ ≥ 

 
 

where  

 0 2 2

1 1

( ) exp( ) exp( )   and   .f x xβ µ β σ βν ς
β β

− − −
= =  

Figure 12 shows estimates of the fraction failing as a function of time for different 
temperature levels. The plot on the left is based on the diffuse-prior analysis and is almost 
exactly the same as the ML analysis given in Escobar, Meeker, Kugler, and Kramer (2003). The 
estimate for the nominal use conditions of 25 degrees C is accompanied by a set of pointwise 
95% credible intervals. The plot on the right-hand side of Figure 12 is similar, but based on the 
informative-prior distribution analysis and we can see that this analysis provides an important 
improvement in estimation precision. Numerically, for the diffuse-prior analysis, the upper 
endpoint of the 95% credible interval for fraction failing at 25 degrees C is 0.00039 and 0.0020 
respectively at 104 and 208 weeks. The corresponding values for the informative-prior analysis 
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are 0.00020 and 0.00054. For either analysis the conclusion would be that the probability of 
failure during the technological life of the product in which the adhesive was to be used would 
certainly be acceptably small (assuming that the acceleration model adequately describes the 
degradation process). 

 

  

Figure 12 Lognormal probability plots showing the Bayesian estimates of the failure-time distribution of  
Adhesive Bond B  along with 95% credible intervals at 25 decrees C, based on the accelerated destructive 
degradation data, an Arrhenius model and diffuse (left) and informative (right) prior distributions on the 
activation energy. 

 

6.3 Example 4 LED Accelerated Repeated Measures Degradation Test  
Pascual, Meeker, and Escobar (2006) describe the analysis of data from a repeated measures 
accelerated degradation test on LEDs. Here we reanalyze these data using a Bayesian approach. 
Samples of 50 LEDs were tested at six different combinations of junction temperature 
(temperature at the junction of the diode in the LED) in degrees Celsius and current in milliamps 
(mA). The light output of the LEDs was measured at the beginning of the test and at 10 other 
approximately equally spaced times up to 906 hours. The response used by the engineers was 
light output, relative to an initial measurement taken on each unit at time 0, so that all units start 
at 1. The plots in Figure 13 show a decrease in light output as a function of operating time. LED 
failure was defined as the time at which the relative light output drops to 60% of the initial value. 

As can be seen on the left-hand plot in Figure 13, the sample paths in the first 138 hours had a 
complicated irregular behavior that LED experts were unable to explain. Because primary 
interest was in the long-run behavior of the LEDs, it was decided to omit the first 138 hours of 
data and to renormalize so that all units start with a value of 1. The renormalized data are shown 
in the right-hand plot in Figure 13.  
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Figure 13 Plots of the original data on the left and the truncated renormalized data on the right. 

Different transformations were used on both the relative output response and hours of operation 
in order to find a combination for which the degradation paths would be approximately linear. 
With no transformation on the response but a square root transformation on hours, the sample 
degradation paths could be well-approximated by linear relationships with different slopes for 
each path. Figure 14 is a plot of the data with a square root axis for time and also showing 
separate least-squares line fit to each sample path, extended to the 0.60 failure definition line. 
Although it is possible to use the individual linear regression lines to define pseudo failure times 
which can then be analyzed with ordinary failure-time regression model (as done in Pascual, 
Meeker, and Escobar 2006), here we will use a mixed effect model in which the distribution of 
the slopes of the degradation curves is modeled as a function of temperature and current. Both of 
these approaches to the estimation of lifetime from repeated measures degradation data are 
described in Chapter 21 of Meeker and Escobar (1998). 
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Figure 14 Plot of the truncated renormalized data with a square root time axis showing fitted linear regression 
lines extrapolated to reach the failure threshold. 

 

In their analysis, Pascual, Meeker, and Escobar (2006) showed that data at the combination of 
130 degrees C junction temperature and 40 mA current caused serious model fit problems, 
suggesting the test at this combination had caused the occurrence of a new failure mechanism. 
When the data at 130 degrees C junction temperature and 40 mA current were removed, the 
standard accelerated test model (described below and used in our analysis) fit well. All of our 
analyses omit the data at these conditions. 

Following the standard acceleration models for temperature and current (e.g., Chapter 2 of 
Nelson 1990, Chapter 18 of Meeker and Escobar 1998, or Escobar and Meeker 2006) we use 

1 11605 / ( 273.15)Cx T= + , the Arrhenius transformation on junction temperature Celsius and 

( )2 log mAx I=  is known as Black’s law for current acceleration. 

In the mixed effect model used here for the LED light-output degradation, motivated by the plot 
of the data in Figure 14, is 

 
( ) ( )

( )

0 0
1 1 1 2 2 2

0 0
1 1 2 2 1 1 2 2

1

      1

ijk k j k j i j

k j k j i j

D x x x x b

x x b x x

β τ β τ τ

β τ β τ β β τ

= + − + − +

= + + + − −
 (3) 

where 1kx  and 2kx are the values 1x  and 2x for test condition k, 138tτ = −  (recall that the first 
138 hours of data had been removed before renormalization of the response, and the transformed 
time variable τ is defined such that 0τ =  when 138t = ), ( )2~ N , , 1,...,180 i b bb iµ σ = describes 

the randomness in the slopes for the 180 different LEDs, and 0
1 11605 / (94 273.15)x = + and 
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0
2 log(35)x = . The values of 0

1x  and 0
2x were chosen to be near the center of the respective 

transformed variables and the centered x values were used in the model to improve numerical 
stability (resulting in reduced autocorrelation in the MCMC samples). Then the model for the 
observed degradation is  

( )0 0
1 1 2 2 1 1 2 21                        ijk ijk ijk k j k j i j ijkY D x x b x xε β τ β τ β β τ ε= + = + + + − − +  

where ( )2~ N 0, , 1,...,10 (time points),  and 1,...,5 (test conditions)ijk j kεε σ = = describes 

measurement error, assumed to be independent of the ib  and across time (a reasonable 
assumption for well-controlled laboratory experiments).  

The engineers who conducted the LED accelerated test were interested in estimating the lifetime 
distribution of the LEDs at the nominal use conditions of 40 degrees C junction temperature and 
20 mA current. Generally operating the LEDs at higher levels of current would provide better 
performance (i.e., more light output), but shorter life. 

As mentioned above, LED failure is defined as the time when light output falls to 0.60fD =  of 

the original light output. For model (3), the probability of failure by time t  at 1x  and 2x is 

  
( ) ( )( )0 0

1 1 1 2 2 21
Pr( ) Pr( )

f b
f

b

D x x x x
T t D D

β τ β τ µ τ

τσ

 − + − + − +
 ≤ = ≤ = Φ
 
 

. (4) 

Table 5 gives the diffuse and informative prior distributions used in the analysis. The diffuse 
prior distributions are similar to those used in the previous examples. Typically engineers would 
have some prior information on the accelerating variable coefficients. For purposes of 
illustration, the informative prior distributions on these parameters were obtained by using a 
distribution that has 99% of its probability between the credible limits of the posterior 
distribution from the diffuse prior distribution analysis. For example, the prior specification 

( )4 4normal 3.5 10 , 4.1 10− −× ×  implies a normal distribution with 99% of its probability between 
43.5 10−×  and 44.1 10−× . For the other parameters, the marginal prior distributions are the same as 

in the diffuse analysis. 
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Table 5 Prior distribution specifications for the LED repeated measures degradation example. 

 

Analysis 

Lognormal/Arrhenius/Inverse Power Repeated Measures Degradation Model Stable Parameters 

bµ  1β  2β  bσ  εσ  

Diffuse Prior  flat flat flat ( )-5 4uniform 10 ,10  ( )-5 4uniform 10 ,10  

Informative Prior  flat 
4

4

3.5 10 ,
normal

4.1 10

−

−

×

×

 
 
 

 
3

3

2.4 10 ,
normal

3.0 10

−

−

− ×

− ×

 
 
 

 ( )-5 4uniform 10 ,10  ( )-5 4uniform 10 ,10  

 

For both analyses, the MCMC samples from the joint posterior distribution of the model 
parameters were used with (4) to compute marginal posterior distributions of the failure time 
distribution for a large number of time values between 2,000 and 15,000 hours. For each of these 
time points the marginal posterior distribution was used to compute the point estimate and 95% 
credible bounds and these are shown in the plots in Figure 15 with the diffuse prior results on the 
left and the informative prior results on the right. We can see that, as expected, the informative-
prior analysis improved precision of the estimates. Of course, it should be kept in mind that 
credible intervals (like confidence intervals in non-Bayesian analyses) reflect only sample 
uncertainty (due to limited data) and assume that the acceleration model and assumed 
distributions are correct. 

  

Figure 15 Lognormal probability plots showing the Bayesian estimates of the failure-time distribution  of  
LED accelerated repeated measures degradation test, an Arrhenius model and diffuse (left) and informative 
(right) prior distributions on the activation energy. 
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7 Concluding remarks 
Engineers often have useful prior information that they should use in an analysis. Bayesian 
methods provide a convenient formal means to incorporate engineering information or other 
prior information into a formal statistical analysis. 

All statistical analyses involve making certain assumptions about the model (adequacy 
relative to the truth) and the manner in which data were obtained (e.g., from a random sample). 
In some applications it is possible to check these assumptions with the data or with other sources 
of information. The use of Bayesian inference methods requires another layer of assumptions 
concerning the nature of the prior information to be used in the analysis. Incorrect prior 
information can lead to seriously misleading inferences. Thus the use of Bayesian methods can 
lead to higher levels of risk of being misused. Caution is required, not only in the specification of 
prior information, but also to assure that there are not unrecognized convergence/estimability 
issues that can arise in the use of the relatively more complicated MCMC methods. 

In some applications involving science and engineering, however, there will be strong, 
verifiable sources of prior information that can be used to construct appropriate joint prior 
distributions. In such applications the use of Bayesian methods can be compelling. With proper 
and careful use of the software tools that are available today, there will be little added risk to do 
such an analysis. A key advantage of a Bayesian analysis when prior information is available can 
be more precise estimates or smaller sample sizes in reliability tests. 

 Today, for most practitioners, software like OpenBUGS and JAGS, perhaps used from 
within the R computing environment, will offer the best alternative for doing the computations 
needed for a Bayesian analysis. Eventually commercial software will provide the needed 
functionality in an environment that will be more user-friendly (e.g., making it unnecessary for 
users to specify and program needed reparameterizations, making it easy for users to specify 
prior distributions, automatically doing needed diagnostics to check for proper convergence of 
the MCMC algorithms, and making it easy to do sensitivity analyses with respect to uncertain 
inputs). After such user-friendly software is available, we can expect to see rapid increases in the 
use of Bayesian methods in reliability data analysis. 
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