Accelerating Parallel Verification via Complementary Property Partitioning and Strategy Exploration

Rohit Dureja
Iowa State University, dureja@iastate.edu

Jason Baumgartner
IBM Corporation

Robert Kanzelman
IBM Corporation

Mark Williams
IBM Corporation

Kristin Y. Rozier
Iowa State University, kyrozier@iastate.edu

Follow this and additional works at: https://lib.dr.iastate.edu/aere_conf

Part of the Computer Sciences Commons, and the Systems Engineering and Multidisciplinary Design Optimization Commons

The complete bibliographic information for this item can be found at https://lib.dr.iastate.edu/aere_conf/84. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.

This Conference Proceeding is brought to you for free and open access by the Aerospace Engineering at Iowa State University Digital Repository. It has been accepted for inclusion in Aerospace Engineering Conference Papers, Presentations and Posters by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Accelerating Parallel Verification via Complementary Property Partitioning and Strategy Exploration

Abstract
Industrial hardware verification tasks often require checking a large number of properties within a testbench. Verification tools often utilize parallelism in their solving orchestration to improve scalability, either in portfolio mode where different solver strategies run concurrently, or in partitioning mode where disjoint property subsets are verified independently. While most tools focus solely upon reducing end-to-end walltime, reducing overall CPU-time is a comparably-important goal influencing power consumption, competition for available machines, and IT costs. Portfolio approaches often degrade into highly-redundant work across processes, where similar strategies address properties in nearly-identical order. Partitioning should take property affinity into account, atomically verifying high-affinity properties to minimize redundant work of applying identical strategies on individual properties with nearly-identical logic cones. In this paper, we improve multi-property parallel verification with respect to both wall- and CPU-time. We extend affinity-based partitioning to guarantee complete utilization of available processes, with provable partition quality. We propose methods to minimize redundant computation, and dynamically optimize work distribution. We deploy our techniques in a sequential redundancy removal framework, using localization to solve non-inductive properties. Our techniques offer a median 2.4× speedup yielding 18.1% more property solves, as demonstrated by extensive experiments.

Keywords
Power demand, Scalability, Redundancy, Tools, Parallel processing, Task analysis, Portfolios

Disciplines
Computer Sciences | Systems Engineering and Multidisciplinary Design Optimization

Comments

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Accelerating Parallel Verification via Complementary Property Partitioning and Strategy Exploration

Rohit Dureja*, Jason Baumgartner†, Robert Kanzelman†, Mark Williams† and Kristin Y. Rozier*

* Iowa State University, † IBM Corporation

Abstract—Industrial hardware verification tasks often require checking a large number of properties within a testbench. Verification tools often utilize parallelism in their solving orchestration to improve scalability, either in portfolio mode where different solver strategies run concurrently, or in partitioning mode where disjoint property subsets are verified independently. While most tools focus solely upon reducing end-to-end wall-time, reducing overall CPU-time is a comparably-important goal influencing power consumption, competition for available machines, and IT costs. Portfolio approaches often degrade into highly-redundant work across processes, where similar strategies address properties in nearly-identical order. Partitioning should take property affinity into account, atomically verifying high-affinity properties to minimize redundant work of applying identical strategies on individual properties with nearly-identical logic cones. In this paper, we improve multi-property parallel verification with respect to both wall- and CPU-time. We extend affinity-based partitioning to guarantee complete utilization of available processes, with provable partition quality. We propose methods to minimize redundant computation, and dynamically optimize work distribution. We deploy our techniques in a sequential redundancy removal framework, using localization to solve non-inductive properties. Our techniques offer a median 2.4× speedup yielding 18.1% more property solves, as demonstrated by extensive experiments.

I. INTRODUCTION

Practical hardware and software verification often mandates checking a large number of properties on a given design. For example, functional verification involves checking a suite of low-level assertions and higher-level encompassing properties. Equivalence checking compares pairwise equality of each output across two designs, yielding a distinct property per output. Redundancy removal requires proving many gate-equivalences throughout a design, each comprising a distinct property. Redundancy removal is the core procedure of equivalence checking, and is widely-used to boost verification scalability.

Each property has a distinct minimal cone of influence (COI), or fan-in logic of the signals referenced in the property. Verification of a group of properties requires resources proportional to the collective COI size, which is often exponential (after lighter logic reductions). Each property adds distinct logic to the group’s collective COI; affinity refers to the degree of common vs. distinct logic in the COI. Atomic verification of a group of low-affinity properties is thus often significantly slower than solving them one-at-a-time. Conversely, atomic verification of a high-affinity group saves considerable verification resource, as the effort expended for one property can benefit the others without significantly slowing them down [1, 2]. Parallel verification resource can be optimized to leverage these facts using affinity-based property partitioning [3], where each parallel process, or worker, runs the same strategy on a different property group.

An alternate way to accelerate verification is by using a parallel portfolio (strategy exploration), where the same property group is concurrently verified using a different strategy per worker, as depicted in Fig. 1. However, portfolio approaches often degrade into highly-redundant work across processes, where similar algorithms address properties in nearly-identical order. Existing tools often independently use these modes in different contexts, particularly strategy exploration first running qualitatively-different strategies in available workers (e.g., BMC, IC3, interpolation) then padding differently-configured identical strategies in the remaining processes (e.g., IC3 with different heuristics). The latter yields increasingly-redundant CPU-time for diminishing gains in wall-time. These modes need not be mutually-exclusive: a strategy could partition within a worker, and partitioning could use different strategies for different groups. We explore the mutual optimization between property partitioning and strategy exploration, addressing the following challenges:

Property partitioning →

P1 Some workers are not utilized if the number of high-affinity groups is less than available workers.
P2 Some workers finish their tasks and idle (no more partitions to dispatch) while others degrade wall-time solving large or difficult groups, or run on slower machines.

Strategy exploration →

P3 Nearly-identical strategies verify the same properties concurrently yielding redundant computation; two or more workers would solve the same property at nearly the same time.

Fig. 1. Parallel verification: property partitioning vs. strategy exploration.

https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_8

This article is licensed under a Creative Commons Attribution 4.0 International License
A worker gets stuck on the first difficult property inhibiting progress; easy properties go unexplored.

When using a round-robin resource-constrained approach to avoid P4, a worker fails to solve a difficult property in the allocated time even after several repetitions.

Contributions: We optimize parallel verification using complementary property partitioning and strategy exploration, in terms of both wall- and CPU-time. (1) We present a scalable property partitioning algorithm (Sect. III-A), extending [3] to guarantee complete utilization of available processes with provable partition quality. (2) We propose parallel scheduling improvements (Sect. III-B), such as resource-constrained irredundant group iteration, incremental repetition, and group decomposition to dynamically cope with more-difficult groups or slower workers. (3) We address irredundant strategy exploration of a localization portfolio in a sequential redundancy removal framework (Sect. IV), which we have found to be the most-scalable strategy to prove non-inductive redundancies. (4) We additionally propose improvements to semantic group partitioning within localization (Sect. IV-C). To our knowledge, this is the first published approach to mutually-optimize property partitioning and strategy exploration within a multi-property localization portfolio.

A. Related Work

Despite the prevalence of parallel verification tools and multi-property testbenches, little research has addressed mutual optimization of parallel partitioning and strategy exploration. Furthermore, most approaches optimize wall-time alone without considering CPU-time, treating additional CPUs as free horsepower to fill with slightly-modified strategies without attempting to minimize redundant computation.

Methods to group properties based on COI similarity are either computationally-prohibitive [1, 2, 4], or do not optimally utilize available parallel processes [3]. They may generate fewer groups than processes, or lose affinity guarantees when requiring number of groups as an algorithmic parameter.

Much prior work addresses ways to parallelize specific algorithms in a single-property context [5]–[7]. Other work incrementally reuses information between properties to accelerate specific algorithms [8]–[11]. These are complementary to our work, and can be used as strategies therein.

Much complementary research has addressed sequential redundancy removal, using scalability-boosting strategies including induction [12]–[14], simulation [15, 16], and synergistic transformation and verification algorithms [16, 17]. The benefit of parallelizing inductively-provable redundancies has been noted in [18, 19], though little work addresses parallelizing non-inductive redundancies. Localization is a powerful scalability boost to redundancy removal [14, 16, 20] and property checking [21]–[24]. Prior work is focused mostly upon single-property single-process contexts [21]–[24], or solely upon parallel property partitioning [3]. This work is complementary to ours: we extend state-of-the-art solutions for both, to mutually-optimized parallel verification.

II. PRELIMINARIES

The design under verification is represented as a netlist \(N \), which is a tuple \(\langle V, E, F \rangle \) where \(V \) is a directed graph with vertices \(V \) representing gates, and edges \(E \subseteq V \times V \) representing interconnections between gates. Function \(F : V \rightarrow \text{types} \) assigns vertices to gate types: constants, primary inputs, combinational logic such as AND gates, and sequential logic such as registers. A state is a valuation to the registers. Certain gates are labeled as properties. The fan-in (fan-out) of gate \(u \) is the set of gates which may be reached by traversing edges backward (forward) from \(u \). The fan-in of property \(p \) is called the cone of influence (COI) of \(p \). Registers and inputs in the COI are called support variables. The number of support variables in the COI is its size. A strongly connected component (SCC) is a set of interconnected gates such that there is a non-empty directed path between every pair of gates in the same SCC. A merge of gate \(u \) onto gate \(v \) consists of moving the output edges of \(u \) onto \(v \), then eliminating \(u \) from the netlist by treating \(u \) as a rename for \(v \).

A. Affinity Analysis

Property grouping algorithms represent support variable information as a Boolean bitvector per property [25]. Every support variable in the netlist is indexed to a unique position in the bitvector, set to “1” if and only if the support variable is in the COI of the property. The length of such a bitvector is equal to the total number of support variables in the netlist, and all bitvectors have the same length. The COI size of the property is the number of bits set to “1”. These bitvectors may be compared to determine relative property affinity. Properties \(p_1, p_2 \) with bitvectors \(b v_1, b v_2 \) respectively have

\[
0 \leq \text{affinity}(p_1, p_2) = 1 - \frac{\text{hamming}(b v_1, b v_2)}{\text{length}(b v_1)} \leq 1.0
\]

where \(\text{hamming}(b v_1, b v_2) \) is the Hamming distance between \(b v_1 \) and \(b v_2 \), and \(\text{length}(b v_1) \) is the number of support variables in the netlist [3]. The distance between \(p_1, p_2 \) equals the Hamming distance between their bitvectors, i.e., \(\text{dist}(p_1, p_2) = \text{hamming}(b v_1, b v_2) \). A group \(g \) is a set of properties, with a single property \(g^* \) therein representing its center. The quality \(Q(g) \) of a group is the minimum affinity between any property in \(g \) vs. its center \(g^* \):

\[
Q(g) = \min\{\text{affinity}(p, g^*) \mid \forall p \in g\}
\]

It is desirable that property partitioning algorithms guarantee group quality to be greater than a specifiable threshold.

B. High-Affinity Property Grouping

Three-leveled grouping [3] (Fig. 2) utilizes support bitvectors of properties to generate high-affinity groups. The algorithm takes the desired grouping level (\(l \)) and affinity threshold (\(t \)). It groups properties based upon: a) **Level-1:** identical bitvectors (identical support variables); b) **Level-2:** common large SCCs (containing \% netlist support variables) in the COI; and c) **Level-3:** small Hamming distance between support bitvectors, scalably identified by equivalence-classing mapped
Structural grouping \((\text{Properties } P, \text{ Netlist } N, \text{ Level } l, \text{ Affinity } t)\)
\begin{enumerate}
\item Groups \(G = \text{P} \) # each property in singleton group
\item if \(l \geq 1\) : \text{grouping} \(_{1}\) \((G, N)\) \# identical COI
\item if \(l \geq 2\) : \text{grouping}_2 \((G, N, t)\) \# large SCCs in COI
\item if \(l \geq 3\) : \text{grouping}_3 \((G, N, t)\) \# Hamming distance
\item return \(G\) \# return high-affinity groups
\end{enumerate}

Fig. 2 Algorithm to group properties based on structural affinity \([3]\). Bitvectors are subdivided using threshold-aware mapping functions. Higher levels yield progressively fewer but larger groups.

Straightforward grouping approaches such as pairwise comparison are computationally prohibitive \([25]\), requiring at least quadratic resource with respect to number of properties. Despite being conceptually a quadratic-resource algorithm, bitvector equivalence-classing \([3]\) consumes near-linear runtime and memory in practice, enabling scalable online partitioning with provable quality bounds \([3]\). Bitvectors are computed during a linear sweep of the netlist, and have size proportional to the number of SCCs plus non-SCC support variables. SCC computation has linear runtime \([26]\). With efficient implementation, this entire process consumes a few seconds on netlists with millions of support variables and properties: e.g. computing bitvectors in topological netlist order, and garbage-collecting bitvectors as soon as all fanout references have been processed \([25]\).

A priori knowledge of solvers may dictate the ideal grouping level. For example, BDD-based reachability is highly sensitive to COI size, and thus may prefer level=1. BMC may prefer level=3 with lower affinity. Localization may prefer level=1, =2, or =3 depending on subsequent solvers. In many contexts, the caller can set level=3 and allow Fig. 2 to determine group count and size, especially when using the techniques of Sect. III-B and Sect. IV-C to decompose difficult groups.

Theorem 1 \((3)\). Level-1 grouping generates property groups \(G\) such that \(\forall g \in G : Q(g) = 1.0\).

Theorem 2 \((3)\). Given affinity \(t\), level-2 grouping generates property groups \(G\) such that \(\forall g \in G : Q(g) \geq t\).

Theorem 3 \((3)\). Given affinity \(t\), level-3 grouping generates property groups \(G\) such that \(\forall g \in G : Q(g) \geq 3 \times t - 2\).

Note that desired number of property groups is not an algorithmic parameter; affinity analysis determines the optimal number of groups respecting configurable quality bounds. For more details on leveled grouping, we refer the reader to \([3]\).

III. GROUPING FOR PARALLEL VERIFICATION

Many organizations have large clusters of computers for load-balancing of tasks such as verification. The maximum number of available workers for a given task \((n)\) is often known, e.g. the maximum number of organizational job submissions allowed per user, minus how many that user wishes to reserve for other tasks. Existing scalable grouping algorithms \([3]\) may generate fewer high-affinity groups than \(n\) \((P1)\). While partitioning a high-affinity group may yield redundant CPU-time (similar effort expended on nearly-identical COIs), it may benefit wall-time due to disparate difficulty of properties therein: e.g. one may be inductive, and another require deep sequential analysis. Traditional clustering algorithms can be configured to produce \(\geq n\) groups, though are computationally prohibitive for online use and may not yield affinity guarantees if \(n\) does not align with the given netlist.

A. Property Grouping Algorithm

Fig. 3 shows our extension to leveled grouping \([3]\) (Fig. 2), guaranteeing generation of at least \(\min(n, |P|)\) provable-affinity groups. Each property is returned as a singleton if there are fewer than \(n\) properties. Otherwise, grouping is performed in three levels that iteratively generate fewer, larger groups. Later levels are skipped if the number of generated groups becomes less than \(n\) at any level. The algorithm then rebalances as needed by fine-grained affinity analysis: subdividing large or lower-affinity groups to generate at least \(\min(n, |P|)\) property groups. As discussed in Sect. III-B, this procedure is beneficial even after initial partitioning to subdivide a difficult group into provably high-affinity subgroups.

The rebalancing algorithm is shown in Fig. 4. It subdivides groups based on the grouping level \(l_n\) that generated fewer groups than \(n\). For level-1, quality is already 100\% so division is based on number of properties in the group (Fig. 5). Groups with the most properties are halved until at least \(\min(n, |P|)\) groups are generated. Finer-grained analysis may be integrated if desired, e.g. considering affinity of combinational gates in the combinational fan-in of these properties. Group rollback for higher levels is more intricate (Fig. 6), with the goal of improving group quality. A group with minimal quality is conservatively subdivided until at least \(\min(n, |P|)\) groups are generated. A minimal-quality group is split to yield smaller,
Given a group \(g \), the rollback_group procedure subdivides \(g \) into two disjoint subgroups \(g_0 \) and \(g_1 \) such that
\[
Q(g_0) \geq Q(g) \quad \text{and} \quad Q(g_1) \geq Q(g).
\]

Proof. (Sketch) The algorithm returns two 100% affinity groups when properties in \(g \) generate at most two level-1 subgroups. Otherwise, the greatest-Hamming-distance property \(g^* \) is identified. Subgroup \(g_0 \) inherits \(g^* \) as its center, and \(g_1 \) inherits \(g_0^* \) as its center. Remaining properties in \(g \) are added to \(g_0 \) vs. \(g_1 \) to minimize distance from \(g_0^* \) vs. \(g_1^* \), ensuring provable quality bounds. \(\square \)

Corollary 4.1. Given affinity \(t \) and level \(l \), grouping for parallelism (Fig. 3) generates groups \(G \) such that \(\forall g \in G: a) Q(g) = 1.0 \quad \text{if} \quad l = 1, b) Q(g) \geq t \quad \text{if} \quad l = 2, \quad \text{and} \quad c) Q(g) \geq 3 \times (l - 2) \quad \text{if} \quad l = 3.\]

Proof. The proof follows per Theorems 1, 2 and 3 when no rebalancing occurs. Otherwise, rebalancing divides group \(g \) into smaller groups based on: (i) \(l = 1 \), level-1 subgroups are generated and \(Q(g) = 1.0 \) per Theorem 1; (ii) \(l = 2 \), level-1 or 2 subgroups are generated and \(Q(g) \geq t \) per Theorems 2 and 4; and (iii) \(l = 3 \), level-1, 2 or 3 subgroups are generated and \(Q(g) \geq 3 \times (l - 2) \) per Theorems 3 and 4. \(\square \)

Theorem 5. Given groups \(G \) over a set of properties \(P \), and workers \(n \) with \(|G| < n \) and \(|P| \geq n \), rebalancing generates property groups \(G' \) such that \(|G'| = n \).

Proof. Both halve_group and rollback_group subdivide a non-singleton group \(g \) into exactly two subgroups, and iterate until \(|G'| \geq n \). Therefore, the number of groups increases by exactly one in every iteration, unless all groups become singleton which cannot happen until \(|G'| = |P| \geq n. \square \)

Corollary 5.1. Given a set of properties \(P \) and \(n \) workers, grouping for parallelism (Fig. 3) generates groups \(G \) from \(P \) such that \(|G| \geq \min(n, |P|) \).

Proof. The proof trivially holds when \(\geq n \) groups or \(|P| \leq n \) singletons are generated without rebalancing. Otherwise, the proof holds per Theorem 5 when rebalancing occurs. \(\square \)

B. Group Distribution Heuristics

We propose three heuristics to optimally utilize parallel workers, used on-the-fly by a manager that dispatches property groups and dynamically adjusts based upon worker feedback. When partitioning is supported by an engine within a strategy (e.g. a localization engine [3]), there might be multiple managers partitioning an identical or overlapping set of properties.

It is sometimes beneficial to use a hierarchy of managers: the root might use lower-affinity partitioning onto parallel strategies, with higher-affinity partitioning within a strategy.

Iteration order (I): Fig. 3 orders groups deterministically, and thus distributed managers within a strategy will likely verify common properties in the same order. This results in redundant CPU-time, where two or more strategies may solve the same property at nearly the same time (P3). The root manager could instead dispatch disjoint properties to different workers, though there are motivations for building.
intelligence into distributed managers working on the entire property set, such as enabling incrementality and data sharing across properties [8]–[11]. To minimize redundant work, the manager may be augmented with options to iterate common groups in different orders: 1) smallest to largest COI (forward); 2) largest to smallest COI (backward); and 3) random to heuristically minimize concurrent solving of the same group while more groups than workers remain unsolved. If all properties are of comparable difficulty, running two identical strategies with opposite group ordering effectively halves wall-time with almost no redundant CPU-time. This approach can yield superlinear irredundant speedup when different strategies are tailored for easier vs more-difficult properties: a lighter strategy can iterate forward heuristically addressing easier properties first (the heavier strategy would be slower for these), while the heavier strategy can iterate backward addressing more-difficult properties first (the lighter strategy might be unable to solve these).

Controlled repetition (R): Each worker solves groups one-at-a-time. Encountering a difficult group inhibits overall progress (P4). Easier groups might follow, which when solved might speed-up incremental verification of the previous difficult group. Furthermore, solving easy properties sooner benefits other workers, allowing them to focus on fewer difficult groups. It is thus beneficial to impose time-limits per group within certain fast strategies. The manager must be capable of pruning already-solved properties (possibly solved by different workers), and repeating groups up to a configurable maximum allowed repetitions (to reduce redundant CPU-time). It may be beneficial to increase resource limits between repetitions, possibly after n repetitions with no progress. Engine incrementality is fairly important when imposing time-limits and repetition, to minimize redundant CPU-time.

Decomposition (D): Some groups are more difficult than others, either because they are large (e.g., many properties), or because individual properties therein are more difficult (e.g., having a very-deep counterexample). Some workers might be slower than others, possibly due to varying machine load. A common wall-time degradation occurs when fewer difficult groups than workers remain, and previously-active workers become idle (P2). This heuristic decomposes unsolved groups and dispatches them to idle workers, to accelerate convergence despite imposing some redundant CPU-time. Rather than redundantly dispatching an entire unsolved group, this heuristic utilizes the algorithms of Fig. 5 and Fig. 6 to subdivide unsolved groups to smaller and higher-affinity groups, eventually becoming singletons. Smaller groups are easier for idle workers to redundantly solve (P5), benefiting but not preempting active workers (which might be on the verge of solves). The corresponding manager with decomposition is shown in Fig. 7. A group is inactive when no worker is currently verifying it. Solved properties and groups are discarded; groups with unsolved properties are subdivided and redundantly dispatched. Singleton groups are not redundantly dispatched, being inactive after the first dispatch.

IV. LOCALIZATION FOR REDUNDANCY REMOVAL

Industrial hardware designs are often rife with redundancy, e.g. to boost the performance of semiconductor devices, and to implement features such as error resilience, security, initialization logic and post-silicon observability. Verification testbenches yield additional netlist redundancies, due to input constraints restricting the set of stimulus applied to the design, and due to redundancies arising between the design and synthesized properties. Equivalence checking can be viewed as verifying a composite netlist comprising two designs as per Fig. 8. Sequential redundancy removal [12]–[14, 16]–[18, 27] (Fig. 9) is the process of proving that equivalence-classes of gates evaluate to equal or opposite values in all reachable states; each speculated redundancy entails solving a property called a miter. When a miter is proven, the corresponding redundant gates can be merged. This COI reduction is highly beneficial to verification scalability, and is the core procedure of sequential equivalence checking (SEC).

Various heuristics control the scope of equivalence-class candidates affecting runtime vs. reduction (Fig. 9 Step 1); e.g. whether to consider only registers vs. all gate types; whether to prune classes to reflect corresponded signal names or require per-class candidates spanning both designs in an equivalence-checking context (Fig. 8) [14, 20]. A speculatively-reduced netlist (Steps 2-3) accelerates verification of the miters. Techniques such as BMC and guided simulation are typically used to falsify miters; then induction proves the easier miters; and finally multi-engine strategies prove the difficult miters or find difficult counterexamples (Steps 4,5). Failed proofs (falsified miters or inconclusive results) cause a refinement of the equivalence classes to separate unproven miters’ gates, then another expensive proof iteration is performed. Our goal is to minimize inconclusive proofs to achieve maximum netlist reduction with

get_next_group (Groups G, Netlist N, Level l, Affinity t)
1: Group g = pick unsolved or inactive group from G
2: if g == null : return null # all group are solved or active
3: if unsolved(g) and inactive(g) : return g # dispatch group
4: if unsolved(g) : # decompose (new groups are unsolved and inactive)
5: if l == 1 : G = (G \ g) \ halve_group(g) # see Fig. 5
6: else G = (G \ g) \ rollback_group(g, N, l, t) # see Fig. 6
7: else remove g from G # group is already solved
8: goto 1 # pick next group to dispatch

Fig. 7. Manager routine to dispatch unsolved groups using decomposition.
A. Fast-and-Lossy Localization

Fast-and-Lossy localization (Fig. 10) attempts to quickly discharge easier property groups, using timeouts to skip difficult groups. If the group is not solved within the allotted time, verification data (e.g., the current abstract netlist and achieved cutoff groups) the former alone to accelerate BMC itself [23]. When ready to prove (i.e., no refinements of BMC depth) is saved for incremental reuse to accelerate later repetition. Skipped groups can be repeated as-is, or rebalanced (Fig. 7) after several repetitions of no progress. Note that repeating a group as-is may likely proceed further upon repetition, by incrementally skipping earlier processing and since a different worker might have solved some properties therein. Fast-and-Lossy localization uses counterexample-based refinement sometimes with quick proof-based abstraction (PBA), possibly yielding larger abstract netlists that are more-difficult to prove but with less time expended in BMC itself [23] for faster performance on easier groups. When ready to prove (i.e., no refinements occur for n consecutive BMC steps), abstracted groups are passed to a sequence of lighter reduction engines then IC3 [5, 28]) under a modest time-limit (e.g. ≤ 300s) which can be increased across repetitions (R).

B. Aggressive Localization

Aggressive localization (Fig. 11) is aimed at solving difficult properties, where Fast-and-Lossy may fail due to larger-than-necessary abstractions, insufficient reductions prior to IC3, or small group time-limits. Aggressive never repeats groups, so either imposes no time limit whatsoever, or a large time-limit as shown applied to semantically-partitioned (Sec. IV-C) subgroups but iterated and increased until the group is solved. Aggressive typically uses a hybrid of counterexample-based refinement and PBA run after every unsatisfiable BMC result, to yield smaller abstractions than the former alone to accelerate subsequent proofs at the expense of more runtime spent in BMC itself [23]. When ready to prove (i.e., no refinements occur for n consecutive BMC steps), abstracted groups are passed to a sequence of heavier reduction engines (including nested induction-only sequential redundancy removal across
aggressive Localization (Group g, unbiased n, bool pba, bool semantic, Affinity t, Timeout T, Multiplier m)
1. Netlist L = initial abstraction(g) # initially empty
2. unbiased k = 0 # bmc depth
3. localize_bmc (g, L, k, unchanged) # see Fig. 10
4. if semantic : collect support info (…) # see Sect. IV-C
5. if pba : minimize L using proof-based abstraction
 # check if netlist unchanged for last n bmc steps
6. if unchanged < n : k = k + 1, goto 3 # increment depth
7. Groups G = semantic ? structural grouping (g, L, 3, t) : G
 # Sort via (I) mode (Sect. III-B): forward, backward, or random
8. Sort G by abstract COI size
9. for each unsolved group g ∈ G :
 while elapsed_time() ≤ T and unsolved(g) :
 runproofstrategy(L, g, T - elapsed_time())
 if unsolved groups remain : T = T × m, goto 9

Fig. 11. Aggressive localization with semantic partitioning, counterexample-and proof-based abstraction.

all gates, which might be too expensive to converge on large netlists before localization) followed by IC3 [5, 28]).

C. Semantic Partitioning

Semantic partitioning [3] refers to re-partitioning a group whose unabstracted COI was high-affinity, yielding subgroups of high affinity with respect to abstract COI as correlates to subsequent verification complexity. Abstract COI information is mined onto support bitvectors on a per-property basis as cutpoints are refined (Fig. 11 Step 4), considering minimized counterexamples for individual properties despite incrementally using the same BMC instance for the entire group. The group is partitioned into smaller, high-localized-affinity subgroups (Step 7) before attempting to prove.

Improvements to semantic partitioning vs. [3]: Per-property abstract-COI bloating may arise during counterexample analysis, because the group must be mutually refined to be free of spurious counterexamples. Eager partitioning (as soon as any diverged abstract COI occurs) could circumvent this ambiguous bloating, though often severely hurts performance since intermediate abstract-COI differences often reconverge. In practice, lazy partitioning deferred until modest BMC time limits are exceeded is far superior (particularly since BMC often benefits from level=3 lower affinity), retaining high-affinity atomic verification benefits. Abstract-COI ambiguities can be largely corrected during proof analysis, by analyzing a distinct proof per property. Incremental data should be saved when semantically re-partitioning, to minimize restart penalty.

Difficult sub-groups are susceptible to delaying easier later sub-groups. Subgroups should be ordered as per (I) mode (Sect. III-B): forward, backward, and random, configured differently in parallel strategies for better portfolio performance with less redundant CPU-time. Subgroups are verified in the chosen order using controlled repetition (R) and large Aggressive time-limits (Steps 9–11). We recommend T ≥ 1h multiplying 2x: at each iteration (Step 12) and overriding to unlimited when a single sub-group remains.

V. EXPERIMENTAL RESULTS

We evaluate our techniques within the post-induction proof strategy of a sequential redundancy removal framework (Fig. 9). To eliminate noise such as different counterexamples yielding different equivalence-classes (Step 5), we snapshot the speculatively-reduced netlist after ten minutes of induction, before the final iteration of a six-hour eight-process semiformal bug-hunting [29] and localization portfolio to eliminate most incorrect and easier [27] miters. The following experiments2 are run on these snapshotted netlists (pruning those with fewer miters than processes), yielding three benchmark sets. Set B1 (Fig. 12a) are the most-difficult 291 of 1822 proprietary SEC benchmarks, where initial equivalence classes comprise original properties and name corresponded register pairs. Set B2 (Fig. 12b) has 269 netlists derived from the former, including a large equivalence class for registers without name correlation. Set B3 has 72 netlists from the SINGLE property HWMCC 2017 benchmarks, comprising a large initial equivalence class of all registers. Our techniques are implemented within RuleBase: Sixthsense Edition [30].

A. Localization Portfolio

We select our localization portfolio (Table I) from extensive evaluation of 36 single-process localization configurations and 30 subsequent proof strategies, exploring options such as enabling vs. disabling PBA [23]; different levels of property grouping vs. no grouping [3]; enabling vs. disabling semantic partitioning (Sect. IV-C); and different policies for group iteration (I), repetition (R), and decomposition (D) (Sect. III-B). The best-performing collection is chosen, maximizing complementary unique solves. Aggressive localization (Sect. IV-B) primarily uses both counterexample-based and proof-based abstraction, yielding smallest abstract netlists solved with a single-process heavy strategy of combinational rewriting: input elimination [31]–[33] which is especially powerful after localization due to inserted cutpoints; min-area retiming [34]; a nested induction-only gate-based sequential redundancy removal; then IC3. Fast-and-Lossy localization (Sect. IV-A) uses counterexample-based refinement mainly with no or lighter PBA for faster BMC, yielding larger abstract netlists solved using light combinational rewriting, input elimination, then IC3. The former is fastest for difficult properties; the latter for easier properties.

We compare four 6-process localization portfolios derived from Table I. The localization configuration and subsequent solving strategy of each process is identical across portfolios.

2Detailed results available at http://temporallogic.org/research/FMCAD20
except for adherence to the illustrated scheduling differences as discussed below. For greater portfolio value, each process includes localization configuration differences beyond the illustrated scheduling distinction in Table I. S1 only performs counterexample-based refinement; S2 and S3 also perform PBA. S2 vs. S3 perform hybrid counterexample-based refinement with light PBA (modest time limit) after every unsatisfiable BMC step vs. only before the subsequent solving strategy, respectively. Abstract-netlist gates remaining after PBA are considered committed and cannot be eliminated in later PBA steps [21] in S2, but not S3. S3 utilizes a minimal unsatisfiable core to further reduce the abstract netlist. S4-S6 are identical to S1-S3, respectively, without imposed time-limits and modulo the above-mentioned post-localization solving strategy differences. To highlight our individual contributions, we compare four variants of this portfolio:

1) base: No property grouping or incremental repetition of properties; all processes iterate properties in forward order. This represents a standard state-of-the-art localization portfolio approach without property grouping, e.g., before [3].

2) base+g extends base with affinity property grouping, including semantic partitioning in one Fast-and-Lossy and one Aggressive strategy. This represents a state-of-the-art localization portfolio with property grouping, e.g., as per [3] though with our semantic refinement improvements of Sect. IV-C.

3) best-d extends base+g with incremental repetition (R) and irredundant iteration order (I), to reduce CPU-time.

4) best extends best-d with decomposition (D).

Processes S1-S6 are generic online localization strategies. Multi-property localization without affinity-partitioning generally yields poor/noncompetitive performance [3], eroding most of its scalability benefit, especially for difficult miters. (Recall that these benchmarks pre-filter easier miters, using induction and semi-formal bug-hunting.) Therefore, base and base+g are highly-competitive 6-process localization portfolios, for online “first-run-of-a-testbench.” Industrial verification tools may use more processes for large testbenches, and may post-process data from prior/ongoing runs to accelerate future results. This level of sophisticated benchmark-specific orchestration is valuable, though does not readily benefit “first-run-of-a-testbench” and introduces noise in experiments hence are not used herein. We optimize runtime of a generic 6-process localization portfolio without per-benchmark customization.

B. Experiment Setup

Our experiments run on a computing grid with identical x86 Linux nodes. Each benchmark run uses a 6-process portfolio (Table I); each process S1-S6 runs on a single identical CPU core on the same host-machine. Each process eagerly cancels solved properties across all processes in that portfolio, to reduce redundant computation.

While most prior research and competitions focus solely upon optimizing wall-time, our techniques additionally benefit CPU-time. Traditionally, Fast-and-Lossy (unlike Aggressive) processes terminate early, leaving unsolved difficult properties. In these experiments, base and base+g augment Fast-and-Lossy processes to naively repeat identical-configuration S1-S3 with identical resource limits per group (whereas best-d and best add incremental-repetition (R) with resource-doubling across repetitions), until all properties are solved or global timeout. This naive repetition is wasteful in practice, yielding highly-redundant CPU-time for marginal benefit. However, disabling naive repetition in these experiments yielded 3.2% fewer solves in base and base+g vs. best-d and best, which arguably unfairly penalized them as state-of-the-art solutions before our contributions. Therefore, S1-S6 in each portfolio continue working until all processes terminate, hence CPU-time is approximately 6× wall-time in these experiments.

C. Proprietary Benchmarks

Fig. 13 shows the number of properties solved vs. wall-time for B1 and B2. best is the clear winner, solving 18.1% (15.3%) more properties in 17.2% (22.9%) less time for B1 (B2, respectively) compared to base. Affinity-grouping significantly improves performance of base+g over base. Level-3 grouping with our semantic partitioning improvements (Sect. IV-C) benefits Aggressive, atomically solving properties in fewer, larger high-abstract-affinity groups compared to level-1-2. Incremental repetition and irredundant iteration allows best-d to solve 8.1% more properties than base+g, less-severely hindered by difficult groups. best yields additional solves through decomposition of difficult groups after five incremental repetitions of no progress, solving all properties in 4 vs. 6 benchmarks in B1 vs. B2 that time out with...
other portfolios. Fig. 14 details per-B1-benchmark runtimes of best, yielding a median speedup of $2.4 \times$, $2.0 \times$ and $1.5 \times$ vs. base, base+g, and best-d, respectively.

Fig. 15 shows the distribution of properties solved per process (Table I) within these portfolios. The percentage solved by each Fast-and-Lossy (and Aggressive) process is nearly uniform in best, showing near-optimal irredundant work distribution. In contrast, without (I) and (R), base and base+g have highly-uneven distributions due largely to parallel processes addressing the same groups concurrently. While the number of solved (easier) miters is considerably larger with Fast-and-Lossy, we emphasize how critical the Aggressive solution of difficult miters is to the overall redundancy removal process. If any are left unsolved, Fig. 9 Step 5 will forgo attempting to merge the corresponding gates, thereby weakening netlist reductions, risking unsolved SEC, and hurting runtime by requiring yet another expensive proof iteration with refined equivalence classes [14] – where fan-out miters often become more-difficult than those unsolved in prior iterations. Table II shows the number of properties solved by best, and a modified best portfolio with all Fast-and-Lossy strategy processes where S4-S6 are identical to S1-S3 respectively, but without imposed time-limits and iterating groups in opposite order. Without Aggressive processes in the portfolio, modified best solves 10.9% (2.31%) fewer properties in 16.5% (11.51%) more time for B1 (B2).

To further highlight the value of decomposition (D), Fig. 16b illustrates an additional big benchmark containing 77728 properties partitioned into 9958 level-1 and level-2, and 2991 level-3 high-affinity groups. Fig. 16a shows the number of properties solved by each portfolio vs. time. best is 3.0× faster than base. Fig. 16b shows the number of properties solved by two Fast-and-Lossy processes of best and best-d; decomposition enables S2 and S3 in best to collectively solve 25.2% more properties than best-d.

D. HWMCC Benchmarks

Fig. 17 shows the number of properties solved by each portfolio for set B3. best is again the winner, solving 3054 more properties in less time than base. Incremental repetition and irredundant iteration is particularly beneficial in this set: several benchmarks have counterexamples that are discovered in earlier group repetitions, enabling Aggressive and later Fast-and-Lossy repetitions to direct resource upon more-difficult provable miters.

VI. CONCLUSIONS AND FUTURE WORK

We focus upon boosting the scalability of multi-property parallel verification, with application to sequential redundancy removal using a localization portfolio. Our contributions optimize both wall-time and CPU-time, orchestrating via complementary strategy exploration and property partitioning. (1) We extend scalable affinity-based property partitioning to guarantee complete utilization of available processes with provable partition affinities. (2) We propose improvements to the scheduling of parallel processes, such as resource-constrained irredundant iteration, incremental repetition, and decomposition of difficult groups. (3) We deliver a carefully-optimized localization portfolio, self-tailoring to irredundantly address a range of property difficulties through a synergistic balance of Fast-and-Lossy vs. Aggressive configurations. (4) We propose improvements to semantic group partitioning within localization, boosting scalability by enabling the BMC within localization to benefit from larger and slightly-lower affinity groups, then optimally sub-dividing those groups before solving the localized properties. To our knowledge, this is the first published approach to optimize both property partitioning and strategy exploration within a multi-property localization portfolio. Experiments confirm that this solution works well across large suites of benchmarks.

Note that our mutually-optimized partitioning vs. strategy-exploration orchestration offers broad insights early in an ongoing verification-tool run, whereas traditional orchestration typically explores only easier (smaller-COI) properties or only a subset of strategies early in the run. Exploring how this insight may enable dynamic benchmark-specific customized orchestration during an ongoing run is a promising future direction, e.g. dynamically adjusting which strategy is used per process and partition. Exploring these techniques across a broader set of engines, and exploring incrementality of strategies across localization and equivalence-class refinements, are additional promising research directions.
ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable feedback and suggestions. We thank Alexander Ivrii for assistance in implementing various localization features and for feedback on early drafts of this paper. We thank Raj Kumar Gajavelly for providing benchmarks and assistance with experimental evaluation. This work is partially supported by National Science Foundation CAREER Award CNS-1664356.

REFERENCES

