3-1-1960

For Your Interest

Agricultural and Home Economics Experiment Station

Follow this and additional works at: http://lib.dr.iastate.edu/farmscience

Part of the Agriculture Commons

Recommended Citation
Agricultural and Home Economics Experiment Station (1960) "For Your Interest," Iowa Farm Science: Vol. 14 : No. 10 , Article 3. Available at: http://lib.dr.iastate.edu/farmscience/vol14/iss10/3

This Article is brought to you for free and open access by the Iowa Agricultural and Home Economics Experiment Station Publications at Iowa State University Digital Repository. It has been accepted for inclusion in Iowa Farm Science by an authorized editor of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
What Floor Covering Is Best for You?

Modern ways of living and technological progress have brought many new products into our homes and shown us new uses for older materials. One area that has seen many changes in recent years is floor coverings. Different types of tile and new fabrics in carpets make choosing a floor covering a complex decision.

To aid homemakers in deciding which type of floor covering is desirable under various conditions, Experiment Station researchers studied the maintenance needs and the satisfactions to users of carpeted and smooth-surfaced floors.

In time spent in upkeep of the floors, the homemakers in the study spent about 20 minutes more per week in caring for smooth floors than in caring for carpeted floors. The time spent in washing and waxing smooth floors accounted for much of the difference.

The homemakers definitely preferred carpeted floors to the asphalt tile floors used in the study. It was found that restrictions imposed on family activities by smooth floor coverings were for the safety and protection of children (more injury from falls), whereas restrictions imposed by carpets were for the protection of the carpet (damage from spills, etc.). Carpets also tended to subdue noise.

Elizabeth Beveridge, Glenn Hawkes, Emil Jebe, Nancy Carlson, Mae Strand and Neil Throckmorton were key personnel involved in this research.

High Feed Value From High-Moisture Corn

The feeding value of high-moisture corn proved superior to that of conventional dry corn in tests conducted by Wise Burroughs and associates at the Experiment Station. The researchers fed 12 lots of yearling cattle a high corn fattening ration for 176 days. Half of the cattle lots received high-moisture (30 percent) ground ear corn from an airtight silo. The remaining six lots received conventional dry (14 percent moisture) ground ear corn which had been stored in a slat crib. Results definitely favored the feeding value of the high-moisture corn over the conventional dry corn.

The good results with high-moisture corn, says Burroughs, prompted the testing of high-moisture grain sorghum in a fattening cattle ration. The sorghum grain was fed to one lot of cattle, and results were compared with those from cattle receiving low-moisture cracked shelled corn. Results were disappointing; feeding value on a dry matter basis was about 25 percent better for the dry corn grain than for the high-moisture grain sorghum. Burroughs reports that the low feeding value of the sorghum apparently was due to poor digestion of the sorghum grain.

Thyroprotein Boosts Early Baby Pig Gains

It’s important that sows maintain a high level of milk flow so the pigs get off to a good start, says Damon V. Catron of the Experiment Station. Thyroprotein (iodinated casein) added to a high-energy ration stimulates milk flow and results in more rapid gains in nursing pigs and in a smaller death loss per litter.

Station researchers fed 100 mg. of thyroprotein per pound of feed. A full feed of high-energy ration is necessary at this time, and thyroprotein must be fed continuously during the lactating period, warns Catron. Removal of the thyroprotein results in an immediate drop in milk production.

On excellent rations without thyroprotein, 118 sows in the Iowa experiments brought their pigs up from an average birth weight of 2.9 pounds to an average weight of 5.1 pounds for an average gain of 2.2 pounds per pig in the first week. A similar group of sows with pigs averaging 2.9 pounds at birth were fed a thyroprotein supplement in their ration. This group brought their pigs up to a 5.5-pound average at 1 week—an average gain of 2.6 pounds. This was an 18-percent greater gain for the pigs whose mothers were receiving thyroprotein.

The thyroprotein supplementation cut death loss almost in half during the first week. Sows receiving only the good base ration lost an average of 0.9 pig per litter. Those receiving the thyroprotein lost an average of only 0.5 pig per litter.

Working with Catron in these experiments are Vaughn C. Speer, Virgil W. Hays, James D. Jones, C. C. Cubertson and L. E. Johnson.