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Hybrid Optimal Control for Time-Efficient Highway
Traffic Management

Yue Zu, Chenhui Liu, Ran Dai and Anuj Sharma

Abstract— This article examines the hybrid traffic control
problem to minimize total travel time (TTT) of a highway
network through traffic management infrastructures, including
dynamic speed limit signs, ramp metering, and information
board.We first build the traffic flow model based on the
Moskowitz function for each highway link to predict traffic
status within a control horizon. The traffic density is predicted
based on the flow dynamic model and corrected periodically
by measured traffic flow data. The minimum TTT traffic
control problem is then formulated as a mixed-integer quadratic
programming problem with quadratic constraints. Numerical
simulation of a real world highway network is provided to
demonstrate significant reduction of TTT and alleviation of
traffic congestion compared to results obtained from ALINEA
and PI-ALINEA methods.

Index Terms— Macroscopic Traffic Control; Travel Time
Minimization; Hybrid Optimal Control

I. INTRODUCTION

Highway network plays a critical role in today’s trans-
portation system. However, a great number of automobile
travelers are suffering from traffic congestion, extended
traveling time, and pollution emission due to huge amount
of transportation requests, especially during peak hours of
working days [1]. The fundamental solution to alleviate
traffic congestion is to extend and improve the highway
networks. For example, constructing new highway sections
will improve the traffic volume capacity, decrease travel time,
and address the safety issues. However, highway construction
and improvement requires a great amount of public invest-
ments and resources [2]. Moreover, it takes considerable time
and efforts to complete a highway construction project [3].
Therefore, intelligent transportation technologies that aim
to improve highway transportation efficiency in short-term
become more appealing.

Advanced traffic control methods have been studied in
recent years for congestion management [4]–[7], throughput
improvement [8], [9], fuel and emission reduction [10], [11],
and safety issues [12], [13]. One frequently used strategy is to
model the traffic control problem as an optimization problem
with pre-defined objective and constraints describing traffic
dynamics. For example, work in [14] formulates a linear
programming optimization problem for traffic density esti-
mation. Due to relative error of measured traffic flow, solving
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such type of problem generates the range of estimated
density. Another example in [15] constructs a quadratic
programming problem for traffic flow maximization.

To incorporate the traffic flow dynamics as constraints in
the optimal traffic control problem, the Lighthill-Whitham-
Richards (LWR) model is employed when developing the
analytical solution to predict the traffic flow status [16],
[17]. The cumulative vehicle count is introduced to formulate
the Moskowitz function that yields an identical solution
to the one from Hamilton-Jacobi (HJ) Partial Differen-
tial Equations (PDEs) [18], [19]. Based on the compati-
bility conditions [20], the semi-analytical solutions to the
Moskowitz function proposed by Barron-Jensen/Frankowska
(B-J/F) [21] are transformed into a finite number of linear
model constraints and integrated into the optimal control
problem. In this paper, we apply B-J/F solutions to each
highway link and establish a unified optimization problem
for travel time minimization of the entire highway network
through hybrid infrastructures.

Although traffic flow can be predicted using the semi-
analytical solution to the Moskowitz function, there is pre-
diction error between the predicted value and the real one.
Over the time, the prediction value from the LWR model
is not reliable due to the uncertainties in the fundamental
diagram [22]. In order to prevent prediction error, the traffic
flow data from volume sensors is measured and used to
correct the real world density status.

A single type traffic management infrastructure, such as
dynamic speed limit signs or ramp metering, has been widely
used in today’s transportation system. However, there is
no investigation on control of hybrid infrastructures that
work simultaneously to contribute to improved transporta-
tion efficiency. For example, as a popular local responsive
feedback ramp metering strategy, ALINEA is verified to be
effective in throughput maximization, congestion alleviation,
and risk reduction in both field test and simulation. Recent
years, researchers pay their attention to advanced tuning
approaches for feedback gains and operational parameters
in ALINEA [23], [24], integration of ALINEA with Iterative
Learning Control (ILC) [25], and the derivatives of ALINEA,
e.g. PI-ALINEA [26]. In addition to ramp metering control,
work in [27] presented an integration of local ramp me-
tering with dynamic speed limits to reduce the Total Time
Spent (TTS). Proposed split-range-like scheme separated the
control period for ramp metering and variable speed limits
such that the integrated controller remains simple in field
implementation. Another example is in work [28], where
an optimal coordination of dynamic speed limits and ramp



metering is proposed based on Model Predictive Control
(MPC). The effectiveness is verified for TTS reduction.
Different from previous work on optimal traffic control using
ALINEA-based ramp metering or integrated strategy in [27]
and [28], we present an integrated controller simultaneously
designing the optimal control strategies for dynamic speed
limit sign, ramp metering, and highway information board.
The major contribution of this paper include:

1. A hybrid traffic control infrastructure is proposed that
integrates dynamic speed limit sign, ramp metering and
highway information board.

2. We formulate the hybrid traffic control problem
as a mixed-integer quadratic programming problem with
quadratic constraints, named MIQQ.

3. The traffic flow dynamics are transformed as linear
constraints in the optimal control problem and the traffic
density is updated by the optimization results and also cor-
rected periodically using measured volume data to improve
precision.

The rest of paper is organized as follows. The problem
statement and traffic flow dynamics model are introduced
in §II. §III describes the highway network and the hybrid
traffic control infrastructures. We formulate the hybrid traffic
control problem as a MIQQ problem in §IV. §V verifies
the efficiency of the proposed MIQQ method by comparing
with ALINEA and PI-ALINEA methods using a real world
highway network. We address the concluding remarks in §VI.

II. PROBLEM STATEMENT AND TRAFFIC FLOW
DYNAMICS

A. Problem Statement

A typical example of highway network consists of N
conjunctions and L links. A specific link l, l = 1, . . . , L,
with small distance represents a highway link or roadway
link connecting different highways, on-ramp or off-ramp. For
each highway link, it is simplified as a uniform highway
section. Without loss of generality, we focus on modeling
traffic flow dynamics along a single direction on each link
with x and t denoting location and time and [ξl, χl] denoting
upstream and downstream location of link l. Assuming the
inflow and outflow of link l, denoted as Q(t, ξl) and Q(t, χl),
as well as traffic density ρ(t, x), remain constant during a
short time interval t ∈ [tp, tp+1], p = 0, ..., P − 1, at any
location x ∈ [ξl, χl] on link l, l = 1, ..., L. Our purpose is to
minimize total traveling time and queue waiting time of on-
ramps in a highway network over time [t1, tP ] through hybrid
control infrastructures, including dynamic speed limit sign,
ramp metering, and highway information board, as shown in
Fig. 1.

B. Cauchy Problem on single highway link

The LWR model describes the conservation of traffic flow
on the highway sections and is expressed as [16]

∂ρ(t, x)

∂t
+
∂Q(ρ(t, x))

∂x
= 0. (2.1)

LED Highway Information Sign

Dynamic Speed Limit Sign

Ramp metering 

Fig. 1. Example of Hybrid Control Infrastructures.

By introducing the cumulative vehicle count N(t, x), the
LWR PDE is converted to the Moskowitz function as follows,

∂N(t, x)

∂t
−Q(−∂N(t, x)

∂x
) = 0, (2.2)

which yields the Hamilton-Jacobi PDE. The solutions to
(2.2) need to satisfy additional equality constraints associated
with initial, upstream, and downstream boundary conditions,
denoted as cini(x), cup(t) and cdown(t), respectively. Work
in [29] presents the Cauchy problem in the form of

(2.2)

N(0, x) = cini(x)

N(t, ξl) = cup(t)

N(t, χl) = cdown(t),

(2.3)

which indicates the cumulative number of vehicles, denoted
as N(0, x), at initial time on highway section [ξl, χl] is equiv-
alent to cini(x). Similarly, the number of vehicles entering
and flowing out of the highway section, denoted as N(t, ξl)
and N(t, χl), respectively, should be cup(t) and cdown(t).
The boundary conditions, including initial, upstream and
downstream conditions, are defined as,

cini(t, x) =

{
− ρ(tp,l)

ini x, if t = tp & x ∈ [ξl, χl]

+∞ otherwise,
(2.4)

cup(t, x) =


p−1∑
i=0

Q(ti,l)
up ∆t+Q(tp,l)

up (t− p∆t),

if x = ξl & t ∈ [tp, tp+1]

+∞ otherwise,

(2.5)

cdown(t, x)=


p−1∑
i=0

Q
(ti,l)
down∆t+Q

(tp,l)
down(t−p∆t)−ρ(tp,l)

ini Xl,

ifx = χl & t ∈ [tp, tp+1]

+∞ otherwise,

(2.6)

where ρ(tp,l)
ini , Q(tp,l)

up and Q(tp,l)
down are the initial traffic density,

upstream and down stream traffic flow, respectively, during
the time interval [tp, tp+1] on link l. Xl is the length of link
l and ∆t is the uniform time duration for each time interval.



C. B-J/F Solutions and Model Constraints

According to the B-J/F solution to HJ PDE (2.2), which
is a semi-continuous solution proposed by Frankowska [30]
and Barron-Jensen [31], solutions to the HJ PDE associated
with initial and boundary conditions is expressed as [32]

Nc(t, x) = inf
(u,∆t)∈[wl,vlf ]×R+

[c(t−∆t, x−∆tu) + ∆tR(u)],

(2.7)

where c is a set satisfying cini(x), cup(t) and cdown(t). R(u)
is a convex transform, expressed as

R(u) = sup
ρ∈[0,ρlj ]

(Q(ρ)− uρ), ∀u ∈ [wl, vlf ], (2.8)

where wl = dQ
dρ |ρ=ρlj < 0, vlf and ρlj are obtained from the

fundamental diagram of traffic flow. This work considers the
triangular fundamental diagram, which is defined by

Q(ρ) =

{
vlfρ, if for link l : 0 ≤ ρ ≤ ρlc,
wl(ρ− ρlj) if for link l : ρlc < ρ ≤ ρlj ,

(2.9)

where ρlc and ρlj are critical density and jam density of
link l. To save space, we omit the explicit expressions of
(2.7). More details can be found in [29]. However, equalities
in Cauchy problem (2.3) cannot be incorporated into the
traffic flow dynamic model due to the continuous time t and
unknown variable x. To handle this issue, we introduce the
compatibility conditions to obtain finite number of equalities.

Lemma 2.1: Compatibility Conditions [21]: The solution
to HJ PDE is characterized by the Inf-morphism property,
i.e. c(t, x) = mini∈I ci(t, x), where I is the index number
of value condition, the solution Nc(t, x) = mini∈I Nci(t, x)
for (t, x) ∈ [t0, tP ] × [ξl, χl]. The B-J/F solution to (2.2)
satisfies the boundary conditions if and only if

Nci(t, x)≥cj(t, x), ∀(t, x) ∈ Dom(cj), (i, j) ∈ I2. (2.10)
Work in [14] proved the affinity of Nci(t, x) and cj(t, x),

as well as the convex feasible region defined in (2.10).
Intuitively, affine solution Nci(t, x) is greater than or equal
to the affine value condition cj(t, x) defined in (2.4)-(2.6) on
all points of a segment, as long as it holds at two extremity
points of the segment. Therefore condition in (2.10) can be
reduced to finite number of inequalities. In the following
sections, we first describe the highway network and then
implement the model constraint in each highway link.

III. HIGHWAY NETWORK

A. Components of a Highway Network

A highway network is composed of nodes and edges that
connect two distinct nodes, as illustrated in Fig. 2. Each node
n ∈ N represents one of the three types of location:

1. The conjunction of different highway mainstreams,
specifically, the conjunction node nic ∈ Ncout

, e.g., n2
c and

n4
c in Fig. 2, that allows for outgoing traffics, or njc ∈ Ncin ,

e.g., n1
c and n5

c , that have incoming traffic flow from other
highway sections, where Ncout and Ncin are two subsets of
N .

1
offn 2

onn

2
offn 3

onn

1
onn

1
cn

2
cn

3
cn

4
cn

5
cnHighway #3

Highway #1

Highway #2

𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
1 𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

2

𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
3 𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

4

𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
5

𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
6 𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

7 𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
8

𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
9

𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
10 𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

11 𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
12

𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
13
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𝑙𝑙𝑟𝑟𝑚𝑚2

𝑙𝑙𝑟𝑟𝑚𝑚3

Fig. 2. Example of a highway network. Mainstream links are marked
as green for Highway #1, red for Highway #2, and blue for Highway
#3. Black arrows: on-ramps or off-ramps connecting urban/rural roadway
to highway. Yellow arrows: roadway links connecting different highways
links.

2. The joint where incoming traffic contributes to the
highway mainstream from on-ramp, denoted as nion ∈ Non.

3. The joint where traffic exits the mainstream via off-
ramp, denoted as nioff ∈ Noff .

Based on the above assumptions, the set N contains four
subsets, N = {Ncin ,Ncout

,Non,Noff}. Similarly, three
types of edges are defined below:

1. Mainstream link (highway link), denoted by lmmain ∈
Lmain, m = 1, ..., Lmain, that connects two adjacent nodes
to form the mainstream of traffic on highway section, e.g.
l7main represent highway link (n1

on, n
4
c) in Fig. 2.

2. On-ramp or off-ramp, denoted as lhon ∈ Lon, h =
1, ..., Lon and lgoff ∈ Loff , g = 1, ..., Loff , respectively,
that allows the traffic entering or exiting the highway.

3. Roadway, denoted by lrroad ∈ Lroad, r = 1, ..., Lroad,
represents the link for which traffic flow changes the route
from one highway section to another, e.g. l3road represents
roadway link (n4

c , n
5
c) in Fig. 2.

The total number of links is determined by L = Lmain +
Lroad + Lon + Loff . Furthermore, we make the following
assumptions to simplify the problem.

Assumption 3.1: The on-ramp traffic volume Q(tp,l
h
on)

on , is
constant and controlled by ramp metering.

Assumption 3.2: The off-ramp vehicle volume is propor-
tional to the corresponding downstream volume at main-
stream link lmmain with the constant ratio R

(tp,l
g
off )

off during
[tp, tp+1].

Assumption 3.3: The traffic flow exiting a highway sec-
tion via roadway link lrroad remains a constant ratio
R

(tp,l
r
road)

off with respect to the corresponding downstream
volume at mainstream link lmmain during [tp, tp+1]. The
downstream flow of link lrroad, denoted by Q

(tp,l
r
road)

on , is
controlled by a ramp meter.

B. A Hybrid Traffic Control Infrastructure

A hybrid traffic control infrastructure, consisting dynamic
speed limit sign, ramp metering, and highway informa-
tion board, is expected to improve efficiency of the traf-
fic management than a single control method. As illus-
trated in Fig. 1, the dynamic speed limit sign is em-
ployed as one of the traffic management infrastructures
to control flow on each highway link. The desired vol-



ume can be obtained by displaying an appropriate speed
v(tp, l

m
main) on the speed limit sign. According to the time-

varying traffic states, the speed limit on each mainstream
link lmmain is adjusted periodically via the control variable
set v=[v(t0, l

1
main), ..., v(t0, l

Lmain
main ), . . . , v(tP−1, l

1
main), ...,

v(tP−1, l
Lmain
main )].

The ramp metering controls the outflow of on-ramp traffic,
Q

(tp,l)
on for all l ∈ {Lroad,Lon}. The one vehicle per green

principle is adopted in meter control, where one vehicle is
allowed to pass the meter during a short green light cycle. To
obtain the desired on-ramp volume, the meter cycle length
T is designed for each time interval at downstream of lrroad
and lhon. The control variable set for ramp metering is T =
[T (t0, l

1
on), ..., T (t0, l

Lon
on ), T (tP−1, l

1
on), ..., T (tP−1, l

Lon
on ),

T (t0, l
1
road), ..., T (t0, l

Lroad

road ), T (tP−1, l
1
road), ...,

T (tP−1, l
Lroad

road )].

The highway information board guides the traffic to
their destination by selecting the optimal routes. For
example, as shown in Fig. 2, traffic from Highway
#2 with destination n5

c is guided to travel via l2road
or l3road. The highway information board is located
at link l5main in this case. The control variable
set determining the route selection is set as b =

[b(t0,l
1
road), ..., b(t0,l

Lroad
road ), ..., b(tP−1,l

1
road), ..., b(tP−1,l

Lroad
road )].

The element in b is defined as a binary variable according
to

b(tp,l
r
road) =

{
1, if lrroad is allowed
0, if lrroad is not allowed.

(3.11)

In practice, the highway information board closes or activates
the links between highway sections. If a link is closed,
alternative route information will be displayed on the in-
formation board. For example, if l2road is closed, then traffic
with destination n5

c will be guided to travel trough l3road.

IV. PROBLEM FORMULATION

A. Intermediate Control Variables and The Objective Func-
tion

To minimize the TTT of the highway network, the min-
imum time traffic management problem is formulated as
a MIQQ problem. The intermediate control variables in-
clude upstream, Q(tp,l

m
main)

up , and downstream traffic flow,
Q

(tp,l
m
main)

down , of all highway links, the outflow at the end of
all on-ramps, Q(tp,l

r
road)

on and Q(tp,l
h
on)

on , as well as the binary
variables for route selection, b(tp,l

r
road), during each time

interval [tp, tp+1] for all p = 0, . . . , P − 1. Therefore, the
intermediate control variables include both continuous and
binary variable sets.

The TTT for all vehicles in the highway network over
the duration [t1, tP ] consists of traversing time Jm along
all highway link lmmain, waiting time Jc in the queue on all
roadway link lrroad, as well as the waiting time Jon on all

on-ramp lhon. Accordingly, the objective is expressed as

J=Jm + Jc + Jon

=

P−1∑
p=0

∆t{
∑

lmmain∈Lmain

[(Q
(tp,l

m
main)

up −Q(tp,l
m
main)

down )∆t

+ρ
(tp,l

m
main)

ini Xlmmain
] +

∑
lrroad∈Lroad

[(Q
(tp,l

r
road)

up

−Q(tp,l
r
road)

on )∆t+ ρ
(tp,l

r
road)

ini Xlrroad
]

+
∑

lhon∈Lon

[(Q
(tp,l

h
on)

up −Q(tp,l
h
on)

on )∆t+ ρ
(tp,l

h
on)

ini Xlhon
]},

(4.12)

where Xlmmain
, Xlrroad

, and Xlhon
are the segment length of

link lmmain, lrroad, and lhon respectively, ρini is the initial
density and periodically updated by the new measurements
from the volume sensors, and Q(tp,l

h
on)

up is obtained from the
volume sensors. Q(tp,l

r
road)

up is a quadratic function of the
intermediate variables, expressed as

Q
(tp,l

r
road)

up = Q
(tp,l

m
main)

down b(tp,l
r
road)R

(tp,l
r
road)

off +Qother

where traffic on link lmmain flows into other highway links
via lrroad and Qother, measured by volume sensors, is the
volume contributed from other resources excluding lmmain.

B. MIQQ Problem Formulation

By incorporating the linear model constraints describing
the traffic dynamics of each highway into the objective
function, the hybrid traffic control problem to minimize the
TTT of the highway network is formulated as

min
y

J = (4.12)

s.t. (a)Amodely ≤ bmodel
(b) 0 ≤ (Q

(tp,l
r
road)

up −Q(tp,l
r
road)

on )∆t+ ρ
(tp,l

r
road)

ini Xlrroad

<MAX lrroad
,∀ lrroad ∈ Lroad, p = 0, ..., P − 1,

(c) 0 ≤ (Q
(tp,l

h
on)

up −Q(tp,l
h
on)

on )∆t+ ρ
(tp,l

h
on)

ini Xlhon

<MAX lhon ,∀ l
h
on ∈ Lon, p = 0, ..., P − 1,
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k
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(4.13)

where y represent the intermediate control variable set. The
linear model constraints describing the traffic dynamics in
(2.10) are represented in a compact form in (a) of (4.13). To
prevent traffic congestion on ramps due to ramp metering,
additional quadratic and linear inequality constraints are



introduced in (b) and (c). The left hand side of (b) and (c)
compute the number of vehicles on links lrroad and lhon for
every time interval and are assumed to be less than the pre-
determined maximum allowed vehicle number MAX lrroad

and MAX lhon , respectively. According to assumptions 3.1-
3.2, equalities (d) and (e) hold in (4.13). Since the above
formulation includes mixed continuous and binary variables
and the objective is a quadratic function subject to quadratic
and linear constraints, problem (4.13) is classified as a MIQQ
problem.

C. Conversion from Intermediate Control Variable Set to
Final Set

Solution from problem (4.13) generates intermediate con-
trol variables. To convert the intermediate control variables to
the final ones, including v, T, and b, to display on the traffic
infrastructures, the following transformations are required.

First, based on the triangular fundamental diagram defined
in (2.9), elements in v are determined by

v(tp, l
m
main)=


v
lmmain

f , if 0 ≤ ρ ≤ ρl
m
main
c

wl
m
main(1−

ρ
lmmain
j

ρ
), if ρl

m
main
c < ρ≤ρl

m
main
j

(4.14)

where

ρ =
(Q

(tp−1,l
m
main)

up −Q(tp−1,l
m
main)

down )∆t

Xlmmain

+ ρ
(tp−1,l

m
main)

ini .(4.15)

Hence, the parameters in the fundamental diagram of high-
way link lmmain are represented by vl

m
main

f , wl
m
main , ρl

m
main
c and

ρ
lmmain
j in (4.14)-(4.15).
Second, the meter cycle length T is set in unit of second

and calculated based on the outflow of on-ramp in form of.
Given a constant green phase Tg that allows one vehicle
passing the meter during that cycle, the controlled meter
cycle length is determined by

T (tp, l) =
Tg ∗ 3600

Q
(tp,l)
on

, l ∈ {Lroad,Lon}. (4.16)

As the final control variable set b is consistent with the
corresponding ones in the intermediate control variables, no
conversion is required for this set.

D. Implementation of the Hybrid Traffic Control Strategy

When determining control variables, the traffic flow and
density are predicted based on current density and the traffic
flow dynamics model. However, the traffic dynamic model
is not an ideal one due to uncertainties of the fundamental
diagram. In order to improve prediction accuracy, the real
world traffic flow data is measured to update real-time
density periodically. During each updating period, the control
system integrates the sensing-optimizing-displaying (SOD)
procedure which is illustrated in Fig.3.

The volume sensors record the amount of vehicles entering
and fluxing out of all highway links lmmain, roadway links
lrroad and on-ramp links lhon during the updating period

[tp−p′ , tp]. p′ is defined as time steps in between two
consecutive updating times. After receiving the measured
volume data, the traffic density is updated via

ρ
(tp,l)
ini =

N
(tp−p′ ,l)
up −N (tp−p′ ,l)

down

Xl
+ ρ

(tp−p′ ,l)

ini , (4.17)

where l ∈ {Lmain,Lroad,Lon}, N
(tp−p′ ,l)
up and N

(tp−p′ ,l)

down

are measured number of vehicles during [tp−p′ , tp] at up-
stream and downstream of link l. Before new measurements
from the volume sensors become available at the next up-
dating time tp+p′ , problem (4.13) will be solved at each
time interval tp+i, tp+i+1 for index i and 0 ≤ i < p′ to
determine the new intermediate control variables which are
converted into the final control variables based on (4.14)-
(4.16). Values of the final control variables at each time
interval are then sent to corresponding dynamic speed limit
signs, ramp metering and highway information boards. The
density will be updated by new measured data at tp+p′ , which
initiates the next SOD procedure.

Initialize the knowledge of 
density information 𝜌𝜌 𝑡𝑡𝑝𝑝, 𝑙𝑙

for each link at time 𝑡𝑡𝑝𝑝.

Collect volume data during [𝑡𝑡𝑝𝑝−𝑝𝑝𝑝, 𝑡𝑡𝑝𝑝]
from volume sensors (symbolled as blue 

rectangle) for each link. 

Solve MIQQ optimization problem

Update speed 
limit signs.

Update ramp 
metering.

Update highway 
information signs.

Design corresponding 
control strategy.Mainstream 

Volume 
Sensors

On-Ramp 
Volume 
Sensors

𝑝𝑝 ← 𝑝𝑝 + 1

𝑝𝑝 ← 𝑝𝑝 + 𝑝𝑝𝑝
Send request for 

volume data

Send message of 
volume data

until
𝑝𝑝 ← 𝑝𝑝 + 𝑝𝑝𝑝

Optimizing

Displaying

Sensoring

Fig. 3. A Sensoring-Optimizing-Displaying (SOD) Procedure for Real-
Time Highway Traffic Control

V. SIMULATION EXAMPLE

A. A Highway Network Example and VISSIM Settings

In this section, a real world scenario is considered as a
test highway network. We extract two sections with 6.08
km length of each one from two major highways, I-35 and
US-69, which are located between the cities Ames and Des
Moines in Iowa, as illustrated in Fig. 4. Two on-ramps divide
the test highway sections into four segments. Two roadways,
with one located in north and another one in south, allows
traffic traveling between US-69 and I-35.

Volume sensors are installed at the starting and ending
point of each highway segment, roadway link and on-ramp.
Each of them records the number of vehicle entering and
fluxing out of the corresponding link. For every 8 mins,
the volume sensors send the sensor data to the computation
center update real time density on highway segments and
on-ramps.

VISSIM is connected to the MIQQ solver [33] through
the Component Object Model (COM) interface in MATLAB.
The COM interface provides access to dynamically change
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Fig. 4. A Test Highway Network

simulation parameters of VISSIM in real time [34], [35]. To
control speed limit in this study, the desired speed limits
are dynamically adjusted at upstream point of each highway
segment for every 2 mins. Moreover, ramp metering cycle
lengths are updated per 2 mins based on the optimal solution
from MIQQ. For ramps that are supposed to be closed from
the control results, traffic volume of the corresponding ramp
is assumed to be zero in the simulation.

B. Simulation Results

In order to compare the performance of MIQQ with
other control strategies, four typles of simulation results are
provided, including cases without control, ALINEA strategy,
PI-ALINEA ramp metering method, and the proposed MIQQ
method. Relative setting from the four methods are shown
in Table I. For each case, the simulation lasts for 3 hours,
where simulation from the 1st 20 mins is ignored due to the
unstable traffic status at the beginning time.

ALINEA is a popular local responsive feedback ramp
metering strategy, and has been verified to be an effective
strategy in both field tests and simulation [36], [37]. ALINEA
determines the metering rates based on the downstream
mainline occupancy from the meter. Its objective is to
maximize the mainline throughout by maintaining occu-
pancy values below the preset threshold. Since it focuses
on preventing merging congestion, ALINEA requires the
real-time occupancy measurements around the merging areas
to achieve efficiency. However, bottlenecks may be further
away from the merging areas in real world scenarios, where
ALINEA cannot lead to high efficiency. Thus, PI-ALINEA,
a Proportional-Integral (PI) extension of ALINEA has been
proposed and proved to be an efficient ramp-metering algo-
rithm in the presence of far-downstream bottlenecks [26].

To verify the feasibility of the proposed MIQQ strategy
in high traffic demands, north-to-south traffic flow are set to

TABLE I
COMPARISON OF TRAFFIC CONTROL STRATEGIES

No Control ALINEA PI-ALINEA MIQQ

Speed Limit
Signs 90km/h 90km/h 90km/h Dynamic

Ramp
Metering Unavailable Dynamic Dynamic Dynamic

Information
Board Unavailable Unavailable Unavailable Available

TTT
[veh ∗ h]

633.26 634.53 624.53 542.63
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Fig. 5. Time history of vehicle conservation at highway segment 1 (upper
left), highway segment 2 (upper right), highway segment 3 (lower left) and
highway segment 4 (lower right).

1600 veh per hour (vph) and 1200 vph at source location
of highway I-35 and US-69, respectively. Traffic volumes is
600 vph for on-ramp #3 and #4. It is assumed that 20% of
traffic flow on US-69 coming from north will transfer to I-35.
During each time interval, they are guided to travel through
roadway #1 or #2 by the highway information board. For
every 8 mins, densities are updated by the measured data on
each highway link and on-ramp. The control variables are
regenerated and displayed through the hybrid infrastructures
every 2 mins.

Simulation results are shown in Table I and Fig. 5. The
proposed MIQQ leads to further reduced TTT compared to
the other three methods. The TTT reduction percentages
are 14.31%, 14.48% and 13.11% compared to cases with
no control, ALINEA, and PI-ALINEA, respectively. Fur-
thermore, less vehicles are observed in each test highway
link for every time interval. The comparative results verify
that the proposed MIQQ strategy has improved efficiency in
congestion alleviation during rush hours.

Since not all on ramps have ramp metering in a real
world highway network, we assume only a subset of on-
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ramps is controlled by ramp metering. In this case, on-ramp
1 and 2 are controlled while on-ramp 3 are 4 have no ramp
metering. Time history of vehicle count of on-ramps 1 and
2 are illustrated in Fig. 6. A threshold is considered to
restrict queue length at on-ramps, i.e. maximum 6 vehicles
in the waiting queue. Figure 6 demonstrates the queue length
restriction is satisfied on each of the two controlled on-ramps.

VI. CONCLUSION

This article presents a time efficient traffic control strat-
egy using hybrid highway infrastructures, including dy-
namic limit signs, ramp metering, and highway information
boards. To predict the highway traffic status, the Barron-
Jensen/Frankowska explicit solutions to the Cauchy problem
is introduced based on the triangular fundamental diagram.
The Lighthill-Whitham-Richards model is applied to each
highway link to construct a finite number of linear con-
straints to describe the traffic dynamics. The minimum time
transportation problem for the entire highway network is
formulated as a mixed-integer quadratic programming prob-
lem with quadratic constraints, named MIQQ. Performance
of the proposed MIQQ method is verified in a real world
simulation example using VISSIM. Compared to existing
methods, ALINEA and PI-ALINEA, MIQQ lead to more
reduced travel time and alleviation of congestion during busy
hours.
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[29] P.-E. Mazaré, A. H. Dehwah, C. G. Claudel, and A. M. Bayen,
“Analytical and grid-free solutions to the lighthill–whitham–richards
traffic flow model,” Transportation Research Part B: Methodological,
vol. 45, no. 10, pp. 1727–1748, 2011.

[30] H. Frankowska, “Lower semicontinuous solutions of hamilton-jacobi-
bellman equations,” SIAM Journal on Control and Optimization,
vol. 31, no. 1, pp. 257–272, 1993.

[31] E. Barron and R. Jensen, “Semicontinuous viscosity solutions for
hamilton–jacobi equations with convex hamiltonians,” Communica-

tions in Partial Differential Equations, vol. 15, no. 12, pp. 293–309,
1990.

[32] J.-P. Aubin, A. M. Bayen, and P. Saint-Pierre, “Dirichlet problems for
some hamilton–jacobi equations with inequality constraints,” SIAM
Journal on Control and Optimization, vol. 47, no. 5, pp. 2348–2380,
2008.

[33] A. G. K. Holmstrom and M. M. Edvall. (2005) User’s guide for
tomlab/miqq. [Online]. Available: http://tomlab.biz

[34] T. Tettamanti and I. Varga, “Development of road traffic control by
using integrated vissim-matlab simulation environment,” Periodica
Polytechnica. Civil Engineering, vol. 56, no. 1, p. 43, 2012.

[35] V. Verghese, L. Chenhui, S. C. Subramanian, L. Vanajakshi, and
A. Sharma, “Development and implementation of a model-based road
traffic-control scheme,” Journal of Computing in Civil Engineering,
vol. 31, no. 5, pp. 1–11, 2017.

[36] H. Hadj-Salem, J. Blosseville, and M. Papageorgiou, “Alinea: a local
feedback control law for on-ramp metering; a real-life study,” in Road
Traffic Control, 1990., Third International Conference on. IET, 1990,
pp. 194–198.

[37] M. Papageorgiou, H. Hadj-Salem, and F. Middelham, “Alinea local
ramp metering: Summary of field results,” Transportation Research
Record: Journal of the Transportation Research Board, no. 1603, pp.
90–98, 1997.


	2018
	Hybrid Optimal Control for Time-Efficient Highway Traffic Management
	Yue Zu
	Chenhui Liu
	Ran Dai
	Anuj Sharma
	Recommended Citation

	Hybrid Optimal Control for Time-Efficient Highway Traffic Management
	Abstract
	Keywords
	Disciplines
	Comments


	tmp.1523897873.pdf.7jy6c

