Ultrahigh Sensitivity of Anomalous Hall Effect Sensor Based on Cr-Doped Bi2Te3 Topological Insulator Thin Films

Y. Ni
Iowa State University

Zhao Zhang
Iowa State University, zzhang@iastate.edu

Cajetan I. Nlebedim
Iowa State University, nlebedim@iastate.edu

David C. Jiles
Iowa State University and Ames Laboratory, dcjiles@iastate.edu

Follow this and additional works at: https://lib.dr.iastate.edu/ameslab_conf
Part of the [Electromagnetics and Photonics Commons](https://lib.dr.iastate.edu/ameslab_conf), and the [Electronic Devices and Semiconductor Manufacturing Commons](https://lib.dr.iastate.edu/ameslab_conf)

Recommended Citation
https://lib.dr.iastate.edu/ameslab_conf/96

This Conference Proceeding is brought to you for free and open access by the Ames Laboratory at Iowa State University Digital Repository. It has been accepted for inclusion in Ames Laboratory Conference Papers, Posters, and Presentations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Ultrahigh Sensitivity of Anomalous Hall Effect Sensor Based on Cr-Doped Bi2Te3 Topological Insulator Thin Films

Abstract
Anomalous Hall effect (AHE) was recently discovered in magnetic element-doped topological insulators (TIs), which promises low power consumption and high efficiency spintronics and electronics. This discovery broadens the family of Hall sensors. In this paper, AHE sensors based on Cr-doped Bi2Te3 topological insulator thin films are studied with two thicknesses (15 and 65 nm). It is found, in both cases, that ultrahigh Hall sensitivity can be obtained in Cr-doped Bi2Te3. Hall sensitivity reaches 1666 Ω/T in the sensor with the 15 nm TI thin film, which is higher than that of the conventional semiconductor HE sensor. The AHE of 65 nm sensors is even stronger, which causes the sensitivity increasing to 2620 Ω/T. Furthermore, after comparing Cr-doped Bi2Te3 with the previously studied Mn-doped Bi2Te3 TI Hall sensor, the sensitivity of the present AHE sensor shows about 60 times higher in 65 nm sensors. The implementation of AHE sensors based on a magnetic-doped TI thin film indicates that the TIs are good candidates for ultrasensitive AHE sensors.

Keywords
Anomalous Hall effect (AHE) sensor, sensitivity, thin films, topological insulators (TIs)

Disciplines
Electrical and Computer Engineering | Electromagnetics and Photonics | Electronic Devices and Semiconductor Manufacturing

Comments
This is a manuscript of an article published as Ni, Y., Z. Zhang, I. C. Nlebedim, and D. C. Jiles. "Ultrahigh Sensitivity of Anomalous Hall Effect Sensor Based on Cr-Doped Bi2Te3 Topological Insulator Thin Films." IEEE Transactions on Magnetics 52, no. 7 (2016): 1-4. DOI: 10.1109/TMAG.2016.2519512. Posted with permission.

Rights
Copyright 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Ultrahigh Sensitivity of Anomalous Hall Effect Sensor Based on Cr-doped Bi$_2$Te$_3$ Topological Insulator Thin Films

Y. Ni1, Z. Zhang1, I. C. Nlebedim$^2,^1$ and D. C. Jiles1, Fellow, IEEE

1 Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011 USA
2 Ames Laboratory, U.S. Department of Energy

Anomalous Hall effect (AHE) is recently discovered in magnetic element doped topological insulators (TIs), which promises low power consumption and high efficiency spintronics and electronics. This discovery broadens the family of Hall sensors. In this work, AHE sensors based on Cr doped Bi$_2$Te$_3$ topological insulator thin films are studied with two thicknesses (15 nm and 65 nm). It is found in both cases that ultrahigh Hall sensitivity can be obtained in Cr doped Bi$_2$Te$_3$. Hall sensitivity reaches 1666 Ω/T in sensor with 15nm TI thin film which is higher than that of the conventional semiconductor Hall effect sensor. The anomalous Hall effect of 65 nm sensors is even stronger, which causes the sensitivity increasing to 2620 Ω/T. Moreover, after comparing Cr doped Bi$_2$Te$_3$ with previously studied Mn doped Bi$_2$Te$_3$ TI Hall sensor, the sensitivity of present AHE sensor shows about 60 times higher in 65 nm sensors. The implementation of AHE sensors based on magnetic doped TI thin film indicates that the TIs are good candidates for ultra-sensitive AHE sensors.

Index Terms— Anomalous Hall effect sensor, topological insulators, thin films, sensitivity.

Corresponding author: Z. Zhang (e-mail: zhenn.zhang@gmail.com).
I. INTRODUCTION

Since the discovery of the Hall effect (HE), its scientific meaning as well as practical application has always been an interesting topic to researchers. Most commercial used Hall sensor nowadays are semiconductor material based on low carrier mobility and high carrier density such as GaAs [1]. However, the high resistance and low response frequency of semiconductor limit its application in industry [2]. Besides using Lorenz force causing charge accumulation to achieve Hall in semiconductor, there is an emergent developing field known as spin-dependent HE including quantum Hall effect (QHE), anomalous Hall effect (AHE) and spin Hall effect (SHE) [3]. Ultrahigh AHE sensitivity has been reported in various metal heterostructure and metal-oxide interfaces [4-6]. Already achieved sensitivity of the AHE-based devices exceeds 1000 Ω/T, which surpasses the sensitivity of semiconducting Hall sensors [4]. It is believed that the AHE is an alternative approach to largely increase the Hall sensitivity and response frequency while keeping the low power consumption.

Recently, quantum AHE has been experiment observed in Topological insulator which broadens the horizon of the AHE sensor. TI is a kind of quantum material which possesses an ultra-high carrier mobility at surface while insulating in the bulk because of spin-polarized massless Dirac surface state [7]. Moreover, after introducing magnetic element into TI, quantum anomalous Hall effect (QAHE) appears in ferromagnetic TI system because the suppression of one spin channel [8-10]. The discovery of TIs broadens spin-dependent electronics and devices [11, 12]. Bi$_3$Te$_3$, Bi$_2$Se$_3$, Sb$_2$Te$_3$ were reported as 3D TI which confirmed by ARPES and magneto-transport measurements [13, 14]. It has been reported that in Mn doped TI, the Hall sensitivity increase 8 times caused by QAHE [15]. However, the sensitivity of Mn doped TI AHE sensor is much lower than other AHE sensor reported. Previously work on Cr doped Bi$_2$Te$_3$ [16] shows that Cr introduces much stronger magnetization in the system than Mn indicating that the sensitivity of AHE sensor based on it will be very high. In order to seek a much higher sensitivity AHE sensor based on TI, in this work, we fabricate Hall effect sensors based on Cr-doped Bi$_2$Te$_3$ TI thin films. The sensitivity, Hall resistivity, coercivity, electrical property, and temperature dependence of sensors will be studied.

II. EXPERIMENT

Cr$_x$Bi$_{2-x}$Te$_3$ thin films were deposited on preheated mica substrate by Perkin-Elmer 430 molecular beam epitaxy. Mica substrate was cleaved freshly and load into the growth chamber before depositions. Mica substrate was heated to 235°C and wait until stable. Two sets of samples with the same atom fraction (x) of 0.14 have been grown with 30min and 2-hour growth time. High purity source materials (Cr, Bi and Te) was placed in the effusion Cells and heated during the growth. The flux ratio of Te per Bi was set to approximately 10 in the growth chamber to maintained Te-rich environment in order to reduce the Te vacancies. Cr concentration was controlled by adjusting the cell temperature. The thickness of the thin film was controlled by deposition duration and monitored by reflection high energy electron diffraction (RHEED).

Crystalline structure of the as-grown thin films were characterized by X-ray Diffractometer (Siemens D500 XRD) at room temperature. Atomic force microscopy (AFM) was used to demonstrate the surface morphology and roughness of sensors. The concentration of Cr concentration was determined by FEI Quanta FE-EDX. Hall effect sensor was then fabricated based on the thin film as follows. First, the Hall bar geometry was defined by reactive-ion etching (RIE) method with Ar gas. Then, the magneto transport was performed on the as-made Hall effect sensor. Hall resistance (R_{xy}) and longitudinal magnetoresistance (R_{xx}) were measured by a Quantum Design Physical Property Measurement System (PPMS) with the excitation current flowing in the film plane and the magnetic field applied perpendicular to the plane shown inset of Fig. 4.

III. RESULTS AND DISCUSSION

A. Surface morphology and crystal structure of Cr$_{0.14}$Bi$_{1.86}$Te$_3$ Hall effect sensors

Figure 1(a) and 1(b) shows the surface morphology of Cr$_{0.14}$Bi$_{1.86}$Te$_3$ topological insulator thin film for the sensor with different growth duration. The AFM image shows triangle terrace-like surface for both samples indicating a layer-by-layer epitaxy mechanism. However, different terrace width can be detected between two samples. The terrace width of sensor with 2-hour growth time is about 300nm which is about 10 times larger than 30min growth time. The thickness of the two samples can also be obtained by scratching the surface and scanning by AFM. The results are shown in Figs. 1(c) and (d). The dark regions indicate the film been removed and the step in the curve shows the thickness is approximate 15 nm and 65 nm for a 30min and 2 hour sample respectively. The growth rate then can be calculated to be 0.52nm/min. The RMS roughness for both samples is under 1nm indicating the good quality of sample for device applications.
The crystal structure analysis is shown in Figs. 1(e) and (f). Two sets of diffraction peaks are observed for both samples. One set of these diffraction peaks can be indexed as mica substrate; while (0015), (0018) and (0021) diffraction peaks are obtained from Cr$_{0.14}$Bi$_{1.86}$Te$_3$ thin films with rhombohedral structure. Since the low thickness of thin films, the X-ray penetrates the thin film and detected both mica substrate and sample. It is noticed that the intensity of thicker sample is higher than that of the thinner sample. No extra peak is observed in both samples indicating the thin film is highly orientated. From the strongest peaks (0015), (0018) and (0021) of Cr$_{0.14}$Bi$_{1.86}$Te$_3$, the c-axis lattice constant can be calculated as 30.5 Å, which is larger than that of the pure Bi$_2$Te$_3$ (c = 28.8 Å). This lattice expansion of Cr doped Bi$_2$Te$_3$ indicates that Cr not only substitutes into the Bi site but also trapped in the Van de Waals gap between layers. To summary, all the characterization results demonstrate that the Cr$_{0.14}$Bi$_{1.86}$Te$_3$ thin film with thickness of 15nm and 65nm are in high quality and suitable candidate for HE sensors.

B. Magneto-transport properties of Cr$_{0.14}$Bi$_{1.86}$Te$_3$

Hall effect sensors

After characterizing thin films, HE sensors are fabricated and magneto-transport measurements are carried out. Figure 2 shows Hall resistivity results at different temperatures from 20K to 2.5K. At 20K, the Hall resistivity (ρ_{xy}) varies between sensors with different thicknesses. The 15nm thin film sensor shows linear behavior of ρ_{xy} and almost field independence. Whereas the 65nm thin film sensor shows nonlinear behavior in ρ_{xy} and a positive slope of ρ_{xy} regarding to magnetic field, indicating the sample has similar HE as a p-type semiconductor and it is difficult to observe QAHE in present samples. The appearance of nonlinearity in large magnetic field indicates Cr appears to substitute in Bi site and a net magnetization is generated in the thick sample at this temperature.

With decreasing the testing temperature to 10K, both 15nm and 65nm sample show hysteresis behavior with small coercivity which indicates that AHE happens at this temperature due to a paramagnetic to ferromagnetic phase transition [17]. As can be observed that ρ_{xy} saturated at a certain magnetic field. The saturation Hall resistivity (ρ_{xy}^s) of 65nm sample is much larger than that of 15nm sample. The Hall resistivity shows more obvious hysteresis behavior when temperature drops further down to 7.5K and 2.5K.

At lowest testing temperature in present work ($T = 2.5K$), the hysteresis behavior with relative large coercivity can be observed both in thick and thin sensors. For AHE, Hall resistance is described as $\rho_{xy} = R_H + R_{AH}(M)$, which is composed of both ordinary Hall resistivity $R_H H$ and anomalous Hall resistivity $R_{AH}(M)$. Here, $R_{AH}(M)$ takes the dominant role in Hall resistivity. Since the magnetization of sensors behaves hysterically, the ρ_{xy} also shows the hysteresis behavior. Obviously, in all testing temperature range in this work, the saturation Hall resistivity (ρ_{xy}^s) of 65nm sensor is much larger than that of the 15nm sample. This may result from the magnetic anisotropy of the thin sample is different from that of the thick samples [18]. This different can be further explained by comparing ρ_{xy}^s of these two sensors at different temperature.

Figure 2(f) shows the temperature dependence of saturation Hall resistivity (ρ_{xy}^s). Both sensors with thinner and thicker film show a rapid decrease when near 8K indicating the ferromagnetic phase transition happened around this temperature (Tc), which generate magnetization after the phase transition contribute to AHE effect in Cr$_{0.14}$Bi$_{1.86}$Te$_3$ sensors [17]. The highest saturation Hall resistivity in 15nm sensor is about 27 μΩ•cm at 2.5K which is larger than that of Mn doped Bi$_2$Te$_3$ AHE sensor. Moreover, the largest value reaches to 225 μΩ•cm in 65nm sensor. The large difference between the 15nm sensor and 65nm sensor demonstrate that a magnetic easy axis in the plane when thickness is about 15nm whereas a perpendicular magnetic anisotropy (PMA) has been obtained when the Cr$_{0.14}$Bi$_{1.86}$Te$_3$ sensor thickness reach 65nm which is the similar to the AHE sensor with CoFeB and PtFe thin film [19]. More values of thickness will be performed in our future works to reveal this interesting phenomenon in detail.
Another crucial characteristic of AHE sensor is the saturation field (H_s). Fig. 2 (e) displays the saturation field temperature variation for both samples, consistent with the Curie temperature (T_c) of the device application. The high saturation Hall resistivity and low saturation field imply the ultrahigh sensitivity in $\text{Cr}_x\text{Bi}_{2-x}\text{Te}_3$ based sensors.

The carrier density can be extracted from the Hall measurement by using: $n = \frac{\left[|R_H| e \right]^{-1}}{\mu}$, where R_H is the Hall coefficient and e is the electron charge. Fig. 3 (a,b) shows the temperature dependence of the carrier density for both thin film sensors, with the Hall coefficient shown in (c). The lowest H_s for both thin film sensors is observed at about 8K for the device application [19].

C. The effect of temperature on sensitivity of $\text{Cr}_x\text{Bi}_{2-x}\text{Te}_3$ Hall effect sensors

The most important characteristic parameters of HE sensor are Hall sensitivity (S), which is the figure of merit for Hall sensor. The sensitivity of AHE sensors can be defined as initial Hall slope $S = \frac{d \rho_y}{dH}$, measured at 2.5K, the sensitivity reaches 2620 Ω/T in 65nm sensor, surpassing the highest sensitivity of semiconductor HE sensor (1000 Ω/T) [22]. The sensitivity of $\text{Cr}_{0.14}\text{Bi}_{1.86}\text{Te}_3$ samples with different thickness can be calculated.

Figure 4 shows sensitivity of sensors within saturation field as a function of temperature and thickness. Inset of Fig. 4 shows the schematic picture of Hall sensor under testing. It can be observed that with temperature decreasing the sensitivity tends to increase. Below the temperature ($T = 8K$), sensitivity suddenly jumped to magnitude higher than that of the higher temperatures. This is because doping Cr introduces magnetization after ferromagnetic phase transition causing AHE. The thinner TI sensor (15nm) shows the highest sensitivity $S = 1666 \, \Omega$/T at $T = 2.5K$, surpassing the highest sensitivity of semiconductor HE sensor (1000 Ω/T) [22]. At $T = 2.5K$, the sensitivity reaches 2620 Ω/T in 65nm sensor which is twice higher than 15nm sample. Moreover, Fig. 4 also compares the sensitivity between Cr doped Bi_2Te_3 and Mn doped Bi_2Te_3, of which the sensitivity is in the range 5 Ω/T - 43 Ω/T [15]. The sensitivity of $\text{Cr}_{0.14}\text{Bi}_{1.86}\text{Te}_3$ AHE sensor is about 60 times higher than that of Mn doped Bi_2Te_3 AHE sensor, which may due to the more stable ferromagnetism and insulation of $\text{Cr}_{0.14}\text{Bi}_{1.86}\text{Te}_3$. It should be mentioned that in the temperature range from 2.5K to 10K, sensitivity keep higher than 2000 Ω/T. This low temperature
AHE sensor can be used as cryogenic magnetic field measurements, research of superconducting materials and low temperature magnetometry measurements.

IV. CONCLUSION

To summarize, we studied AHE sensor based on Cr$_{x}$Bi$_{2}$Te$_{3}$ topological insulator with thickness of 15 nm and 65 nm. It is found that the sensor remains high sensitivity in both thicknesses. The giant sensitivity is found S=2620 Ω/T at 2.5K in Cr$_{x}$Bi$_{2}$Te$_{3}$ sensor with thickness of 65 nm which is more than twice the sensitivity of semiconductor HE sensor. The high sensitivity results from Cr induced AHE in TI thin films. The Cr$_{x}$Bi$_{2}$Te$_{3}$ sensors show high carrier mobility, which enables the application of low power consumption magnetic sensors. Moreover, both saturation Hall resistivity and sensitivity show dependence on thickness, which indicates the variation of magnetic anisotropy with changing thickness in sensors. Our work therefore enlightens the design of low-energy consumption and high sensitivity Hall devices such as magnetic sensor and memory devices.

ACKNOWLEDGMENT

This work was supported in part by the Division of Electrical, Communications and Cyber Systems, U.S. National Science Foundation under Grant 1201883. Magnetotransport analysis performed at Ames was supported by the U.S. DOE, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division. Ames Laboratory is operated for the U.S. DOE by Iowa State University under contract DE-AC02-07CH11358.

REFERENCES