
Mathematics Publications Mathematics

6-26-2017

Block Stanley Deompositions II. Greedy
Algorithms, Applications and Open Problems
James Murdock
Iowa State University, jmurdock@iastate.edu

Theodore Murdock
theodoremurdock@gmail.com

Follow this and additional works at: http://lib.dr.iastate.edu/math_pubs

Part of the Mathematics Commons

The complete bibliographic information for this item can be found at http://lib.dr.iastate.edu/
math_pubs/104. For information on how to cite this item, please visit http://lib.dr.iastate.edu/
howtocite.html.

This Article is brought to you for free and open access by the Mathematics at Iowa State University Digital Repository. It has been accepted for
inclusion in Mathematics Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please
contact digirep@iastate.edu.

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fmath_pubs%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fmath_pubs%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/math_pubs?utm_source=lib.dr.iastate.edu%2Fmath_pubs%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/math?utm_source=lib.dr.iastate.edu%2Fmath_pubs%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/math_pubs?utm_source=lib.dr.iastate.edu%2Fmath_pubs%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=lib.dr.iastate.edu%2Fmath_pubs%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/math_pubs/104
http://lib.dr.iastate.edu/math_pubs/104
http://lib.dr.iastate.edu/howtocite.html
http://lib.dr.iastate.edu/howtocite.html
mailto:digirep@iastate.edu

BLOCK STANLEY DECOMPOSITIONS
II. GREEDY ALGORITHMS, APPLICATIONS, AND OPEN

PROBLEMS

James Murdock
Department of Mathematics

Iowa State University
Ames, Iowa 50011

jmurdock@iastate.edu

and

Theodore Murdock
823 Carroll Ave.

Ames, Iowa 50010
theodoremurdock@gmail.com

Running head: BLOCK STANLEY DECOMPOSITIONS II

Corresponding Author
James Murdock

phone: 515-232-7945
email: jmurdock@iastate.edu

fax: 515-294-5454

ABSTRACT: Stanley decompositions are used in applied mathemat-
ics (dynamical systems) and sl2 invariant theory as finite descriptions
of the set of standard monomials of a monomial ideal. The block no-
tation for Stanley decompositions has proved itself in this context as a
shorter notation and one that is useful in formulating algorithms such
as the “box product.” Since the box product appears only in dynamical
systems literature, we sketch its purpose and the role of block notation
in this application. Then we present a greedy algorithm that pro-
duces incompressible block decompositions (called “organized”) from
the monomial ideal; these are desirable for their likely brevity. Several
open problems are proposed. We also continue to simplify the state-
ment of the Soleyman-Jahan condition for a Stanley decomposition to
be prime (come from a prime filtration) and for a block decomposition
to be subprime, and present a greedy algorithm to produce “stacked
decompositions,” which are subprime.

KEYWORDS AND PHRASES:

Geometry of monomial ideals
Simplest Stanley decompositions
Incompressible block decompositions
Algorithms
Organized decompositions
Stacked decompositions
Subalgebras
Hilbert bases
Algebraic relations
Classical invariant theory
Equivariants
Normal forms for dynamical systems
Prime filtrations
Soleyman-Jahan condition
Janet decompositions

1

1. Introduction

There are at least three reasons for taking an interest in Stanley
decompositions:

1. The Stanley conjecture that Stanley depth equals Hilbert
depth. Although this conjecture has been disproved in [8], it
has has been suggested in [12] that there remain more subtle
connections between the two notions of depth that deserve fuller
investigation, so that this is not a time to disavow interest in the
subject (although this question is not our concern here).

2. The use of Stanley decompositions in the study of subal-
gebras, either A ⊂ K[x] = K[x1, . . . , xn] or, in some situations,
A ⊂ K[[x]]. The use of Stanley decompositions for this reason
plays a role in invariant theory ([11], [23]) and normal forms for
dynamical systems in the neighborhood of a rest point, both in
the case of nilpotent linear part ([5],[6],[7],[16, Section 4.7],[15],
[20], [17], [22, Chapter 12]) and semisimple linear part ([2], [16,
pages 214-217]).

3. Janet decompositions. These are a special form of Stanley de-
compositions that were discovered prior to Gröbner bases, and
are primarily used to study the solution of linear systems of ordi-
nary or partial differential equations, via what are called Loewy
decompositions. For partial differential equations, this appli-
cation extends the algebras under consideration to differential
algebras. Modern introductions to these topics are given in [1],
[21] and [24].

The motivation for this paper and its predecessor ([19]) comes from
item 2 above. Let A ⊂ K[x] = K[x1, . . . , xn] be a subalgebra of a
polynomial algebra, H is a Hilbert basis for A, and let J be the (non-
monomial) ideal of relations among the elements of H. Let I be the
(monomial) ideal of leading terms (with respect to any Gröbner term
order) of J . Then, as first shown by Sturmfels and White in [26],
the standard monomials of I (monomials that are not in I) form a
K-vector space basis for A; that is, each element of A can be written
uniquely as a standard polynomial (a linear combination of standard
monomials). A Stanley decomposition for K/I, or for A, provides a
finite description of the set of standard monomials. The hardest part
of such a calculation is the Gröbner basis work to get from J to I.
We interpret this to mean that while H is insufficient information for
unique expressions of elements of A (because of relations), the full ideal
J of relations is too much information, and the exact right amount of
information is given by a Stanley decomposition of A.

2

Karin Gatermann was a significant contributor to this “applied” use
of Stanley decompositions through her book ([11]). In 2001, at a meet-
ing of ISAAC in Berlin, the first author (JM) was present when Jan
Sanders posed to Karin Gatermann the problem of finding the “sim-
plest” Stanley decomposition in a given situation. (Of course this ques-
tion is not limited to the “applied” use of Stanley decompositions to
describe subalgebras.) The precise definition of “simplest” was not dis-
cussed, but it was clear from the context that the “size” of the Stanley
decomposition was at the heart of the question, whether this “size”
was measured by the number of characters in the symbol string, the
number of Stanley spaces in the decomposition, or in some other way.
This is the central question that we address in the present paper. Al-
though Karin does not appear to have worked on this topic before her
untimely death in 2005, we wish to dedicate this paper to her memory.

In [19] we made a start on Jan’s question by defining block decom-
positions, in which a single rectangular block in Newton space may
express several Stanley spaces, reducing, sometimes dramatically, the
amount of space required to write a Stanley decomposition. The block
notation focuses attention on the geometry of the set of standard mono-
mials in Newton space. Disjoint unions of blocks correspond to direct
sums of Stanley decompositions. Since blocks are given by matrices,
they are easily handled by computers. Although at first sight a block
decomposition is coarser than a Stanley decomposition, we interpret
each block decomposition as a short notation for a specific Stanley
decomposition easily obtained by Algorithm 2.2 in [19] (see Section 3
below). The question of “simplest Stanley decomposition” then passes
to a question of simplest block decomposition, and for this we proposed
the notion of incompressibility: a block decomposition is incompress-
ible if it cannot be simplified further by combining some of its blocks
to form larger blocks. An example in [19, §2] shows that incompress-
ibility is a global property of a decomposition, and cannot be detected
by examining the decomposition locally (for instance, two blocks at
a time). Since incompressibility is difficult to detect in an arbitrary
block decomposition, it is natural to seek an algorithm that produces
incompressible block decompositions directly from I. The central re-
sult of the present paper is to give such an algorithm, which we call a
special organized decomposition or (π,σ)-organized decomposition. A
special organized decomposition is obtained by a “greedy algorithm”
that first creates a (nonunique) “largest” block of standard monomials,
and continues by choosing “largest” blocks that are disjoint from the
blocks already created.

This paper falls loosely into three parts.
3

1. Sections 2 through 6 contain basic definitions, exploratory exam-
ples, and a discussion of the linkage between our papers on block
decompositions and another series of papers (on “box products”)
by the first author. Some of this material is crucial for this paper,
while other parts may be omitted without loss of continuity.

2. Sections 7 through 10 form the core of this paper; these contain
the proof (Theorem 7.2) that general organized decompositions
are incompressible, and present an (inefficient) procedure (Pro-
cedure 7.4) to produce general organized decompositions for the
standard monomials of a monomial ideal, and the much more
efficient, greedy algorithm (mentioned above) to produce special
organized decompositions (Algorithm 10.2).

3. Finally, Sections 11-12 present a subordinate topic that the reader
may omit. This continues the simplification of the Soleyman-
Jahann condition for a block decomposition be prime (to come
from a prime filtration), [25], that we began in [19], and gives a
greedy algorithm for stacked decompositions, which are subprime.

Now we describe the individual sections briefly.
Section 2 is a brief historical introduction to the use of Stanley de-

compositions in the study of dynamical systems near a rest point, fo-
cusing on the recent idea of box products, first defined as such in [20]
and [22, Chapter 12]), but having earlier roots. At about the same time
that block notation was introduced in [19], one of us applied block no-
tation to box products in [17]. We consider that [19] demonstrates the
success of block notation in applications. We hope that the notion of
box products will appeal to invariant theorists outside of the dynam-
ical systems context. But this section may be omitted by a reader
interested only in Stanley decompositions.

Section 3 reviews basic definitions from [19], improving some and
adding others. Section 4 reviews and extends the notion of elementary
decomposition from [19] and gives new lemmas that will be used later.
These two sections are necessary for the rest of the paper.

Section 5 gives an easily pictured example of block decompositions in
two dimensions. It gives six (general) organized decompositions for the
standard monomials of the same ideal I, pointing out that two of these
meet (at least) one of the requirement for being “special,” while the
other four do not. In doing so it motivates the work in Sections 8 and
9 below, for special decompositions. The example also shows that al-
though all (general) organized decompositions are incompressible, and
the special decompositions are the easiest of these to compute, the spe-
cial decompositions do not necessarily minimize the number of Stanley

4

spaces present in the block decomposition (another notion of simplicity
for a Stanley decomposition). In this example, there is one organized
decomposition, general but not special, that does minimize this num-
ber. Although useful for motivation, this section is not essential in the
sequel.

Section 6 introduces inner-minimal block decompositions, in which
the inner corners of the blocks are minimal in a specified sense. All
decompositions created in this paper are inner-minimal, including all
organized and stacked decompositions. Procedure 6.1 sketches a way
to construct inner minimal decompositions. In this paper a procedure
is a near-algorithm that falls short in some ways, such as being incom-
pletely specified, or requiring choices, or not always terminating. The
procedure in this section is not actually used, but serves as a framework
around which later algorithms (that are truly algorithmic) are built.
Example 6.5 illustrates difficulties that can arise in executing Proce-
dure 6.1 and motivates a way to resolve one of them (collisions, that
is, intersections, between blocks). Example 6.6 gives a counterexample
(the “twisted cube”) to a false conjecture about minimal inner corners
that held us back for a while.

Section 7 defines (general) organized decompositions, which are both
inner-minimal and outer-maximal (that is, the outer corners of the
blocks satisfy a certain maximality condition). Theorem 7.2 proves
that organized decompositions are incompressible, and Theorem 7.3
that each block in an organized decomposition is a union of elemen-
tary blocks. (This is essential for later algorithms.) Then it gives
a procedure (which is almost algorithmic; it requires choices but al-
ways terminates) to produce (general) organized decompositions. This
procedure is not efficient, and is still intended only as a step to the
algorithms for special organized and stacked decompositions.

Sections 8 and 9 provide the techniques that allow true algorithms
to be built for special organized decompositions. Specifically, Section
8 gives an algorithm for finding minimal inner corners for the blocks
(a problem left over from Section 6), and 9 an algorithm for finding
maximal outer corners for these blocks (a problem left over from Section
7).

Finally, Section 10 puts all of this together to give the algorithm for
special organized decompositions, the principal result of this paper.

In [19] we simplified the Soleyman-Jahan condition for a Stanley de-
composition to come from a prime filtration, adapted it a condition for
block decompositions to come from what we called subprime filtrations,
and proved that the gnomon block decomposition defined in that paper
satisfies this condition. Section 11 gives yet other formulations of this

5

condition. Section 12 gives a greedy algorithm, similar to the orga-
nized algorithm, that produces a type of block decomposition that we
call stacked. These are always subprime, but not always compressed.
(Sometimes these two conditions are incompatible.) The topics in these
two sections are optional, and may be omitted.

As with [19], the authors are JM, a mathematician, and his son
TM, a software engineer. The initial ideas of the greedy algorithm
for organized decompositions, directional extension of blocks, lexico-
graphic choice of inner corners, and the graph-theoretic criterion for
subprimeness in Section 11, were due to TM. The idea for stacked de-
compositions, the notion of inner-minimal block construction, the use
of the elementary decomposition to find minimal points, the proofs that
organized decompositions are incompressible and stacked decomposi-
tions are subprime, and the final mathematical writing, were due to
JM. Most of the examples and initial proof sketches (including many,
not shown here, that guided the development) came from joint discus-
sions.

For convenience we collect in one place the conventions governing
the indices that will be introduced later.

1. n, r, and s are constants denoting, respectively, the dimension of
Newton space Nn, the unique minimal number of generators for
the monomial ideal I, and the number of blocks in D (a block
decomposition for the standard monomials of I).

2. h and i range from 1 to n and pick out a coordinate of a point
or a face or edge of a block.

3. ` ranges from 1 to r and picks out a generator m` of I.
4. j and k range from 1 to s and indicate blocks in a decomposition.

Usually j < k.

Proofs are ended by open squares, remarks and examples by solid
squares.

2. A digression on box products

As noted in the introduction, the box product idea has so far only
appeared in the context of normal forms for dynamical systems near
a rest point, in particular, a rest point with nilpotent nonlinear part.
But the notion actually belongs to sl2 invariant theory in greater gen-
erality. For easy cross-reference, this historical survey is presented as a
sequence of remarks. The application of block notation to box products
occurs at Remark 2.7 below, in connection with the paper [17], and
demonstrates the utility of block notation in formulating algorithms

6

for Stanley decompositions in the context of sl2 representations. Some
open questions are included in Remark 2.8.

2.1. Remark. Overview of the box product. Suppose representa-
tions of sl2 are given onK[x] = K[x1, . . . , xn] andK[y] = K[y1, . . . , ym],
where there is no overlap between the variables of x and y. Let A1 and
A2 be the subalgebras of seminvariants in K[x] and K[y] respectively,
with associated Hilbert bases Hi, ideals Ji of relations, Ii of leading
terms of such relations (with respect to chosen term orders). (Covari-
ants can be used in place of seminvariants, with only minor changes.)
Classical invariant theory enables finding a Hilbert basis H for the
seminvariants A of the tensor product of the two representations, us-
ing transvectants. But in order to find a Stanley decompositionSD(A)
for A, it is still necessary to do the Gröbner basis work to find J and
pass from J to I. The goal of the box product (which is also built on
transvectants) is to go directly from SD(A1) and SD(A2) to SD(A); we
write this (loosely) as SD(A) = SD(A1)�SD(A2), although additional
information must be included in this notation to obtain a unique result
for the box product. In other words, viewing Stanley decompositions
as the “exact right amount of information” for representing elements
of these subalgebras uniquely (see above), box products use this “right
information” for the two inputs and the output, bypassing J and the
Gröbner work. We have found two methods to do this, the expansion
method and the factoring method; see below. �

2.2. Remark. The first stage. Early work (prior to anything men-
tioned above) on invariants, equivariants, and normal forms for local
dynamical systems (near a rest point) do not mention Stanley decompo-
sitions, but Stanley decompositions are nonetheless present implicitly.
Typically one considered a nonlinear system of differential equations
with rest point at the origin, written as ẋ = Ax + · · · , with a given
linear term with matrix A (specified numerically) and arbitrary higher
order terms. If A = S is semisimple, the system is in normal form if
the nonlinear terms are equivariant under the flow of the linear term;
if A = N is nilpotent, the system is in normal form if the nonlinear
terms are equivariant under a different nilpotent linear linear flow, that
of N∗ (the conjugate transpose) in the inner product normal form style
or under a linear flow determined via an sl2 representation in the sl2
normal form style; and if A = S+N (a Jordan decomposition) the two
approaches are combined. For each case, the systems that are in normal
form can be characterized as containing only certain special nonlinear
terms (thought of as terms that cannot be removed). This gives what
is often called the form of the normal form for systems with a given

7

(fixed) linear part. (To find the normal form of a specific system re-
quires extra work to express the coefficients present in the “form of the
normal form” as functions of the coefficients in the original system.)
The statement of the form of the normal form is actually a (somewhat
disguised) Stanley decomposition for the module of equivariants of the
correct linear flow (for the style required) over the algebra of invariants
of that same flow. See [16, Chapter 1] for easy examples done in this
way. �

2.3. Remark. The second stage. Once it was recognized (by Cush-
man and Sanders) that this was the case, it became possible, par-
ticularly in the nilpotent case using sl2, that the required algebra of
invariants and module of equivariants could be determined using ideas
from classical invariant theory for representations of sl2. (The invari-
ants of the linear flow based on sl2 are also seminvariants of the full
sl2 representation.) This marks the second stage in the development
of these techniques. Key papers here are [5], [6], [7], [15, Section 4],
and [13, Section 3]. Papers of the second stage typically make use of
what we now call the “Cushman-Sanders test,” which is a computa-
tion using aa two-variable Hilbert function (sometimes called the table
function). A rigorous statement is given in [16, Lemma 4.7.9]: Given
a subalgebra of the algebra of invariants, together with a Stanley de-
composition of the subalgebra (from which the table function can be
found), a “successful” Cushman-Sanders test proves that the subalge-
bra is in fact the full algebra of invariants and its Stanley decomposition
is the correct one that we seek. An unsuccessful Cushman-Sanders test
indicates that there are more invariants to be found (that are not in
the given subalgebra), and gives indications about where (in terms of
weight and degree) to look for them. Rigorous use of this test gen-
erally requires Gröbner basis calculations to find the leading terms of
the relations among the Hilbert basis for the subalgebra, but Sanders
does not illustrate these. Instead, he mostly used an informal ver-
sion, in which the subalgebra is given and a set of known relations
(obtained by inspection, and perhaps not complete) is also given. In
this case a successful Cushman-Sanders test only shows that the sub-
algebra and (conjectured) Stanley decomposition are probably correct,
on the grounds that it is unlikely that missing Hilbert basis elements
and missing relations would exactly cancel to give a successful test.
(It has not been determined whether such a cancellation is possible.)
For a rigorous example, see [13, Section 3] for a difficult problem in

8

which the Gröbner calculations are done explicitly, and the determina-
tion that the Cushman-Sanders test is successful relies on Zeilberger’s
algorithm. �

2.4. Remark. An infinite family of Stanley decompositions. The
problem solved by Malonza in Section 3 of his paper was to determine
Stanley decompositions for the invariants of the entire family of nilpo-
tent matrices having any number of two-by-two Jordan blocks (and no
other Jordan blocks). Why is it possible to solve an infinite family
with a finite amount of calculation? It is because the required Gröbner
calculations fall into repetitive families, and as soon as enough Jordan
blocks (of a given size) have been considered, all possible Gröbner cal-
culations will already have been done. In the rest of Malonza’s paper a
Stanley decomposition for the equivariants (and thus the normal form)
for the same family of dynamical systems is found using the boosting
method in Remark 2.5 below. This problem had already been solved
by a more complicated method (“covariants of special equivariants”) in
[7] and [6]. This method does not generalize well, and does not belong
to the line of development leading to box products. See also Remark
2.8, item 3. �

2.5. Remark. The third stage: boosting; half way to the box
product. In [15, Section 5] I developed a technique for “boosting”
a Stanley decomposition for the invariants of a nilpotent flow to an
Stanley decomposition for the module of equivariants, without the ex-
tra work required by the method of covariants of special equivariants.
This turned out later to be a special case of a box product. Malonza
used this in [13, Section 4] to boost the Stanley decomposition for
invariants of his problem to equivariants. �

2.6. Remark. The fourth stage: box products by the expan-
sion method. After the “boosting” procedure (from Stanley decom-
positions for invariants to Stanley decompositions for the module of
equivariants) had been found (in [15]), Sanders pointed out to me that
since boosting was based on tensor products, the method might be
generalized to other situations involving tensor products of two sl2
representations. As noted above in Remark 2.1, the box product of
two Stanley decompositions for invariants of representations of sl2 is
a Stanley decomposition for their tensor product representation. In
particular, the problem arising from a nilpotent matrix with two or
more nilpotent Jordan blocks (of any size) falls into this category. We
found that there were additional difficulties, not found in boosting, due
to the fact that all of the representation spaces in the tensor product
are infinite-dimensional. (In boosting, one of them was finite.) After

9

working together on this, Sanders found an approach, the expansion
method, that worked, although to me it seemed to work only formally,
and to require justification. When I found a justification that satisfied
me, we agreed that I would put my version in [20], and Sanders would
put his in [22, Chapter 12], which we were writing at the same time.
Each of these has valuable points that are not present in the other
version. At this point the box product method absorbed the boosting
method (which became unnecessary as a separate method). �

2.7. Remark. The fifth stage: box products by the factoring
method, and the first application of block decompositions. It
turned out that there were some defects to the expansion method for
box products, which did not lead to errors, but sometimes led to Stan-
ley decompositions of an unexpected type: The monomials described
by the Stanley decomposition were not always standard monomials
of a monomial ideal (so these Stanley decompositions could not have
arisen from an ideal of leading terms of relations in the usual way).
Rather than having any advantages, these decompositions were also
more complicated than necessary. Such an example arose in connec-
tion with the nilpotent matrix N2,2,3 (where the subscripts indicate
block sizes) in [20]), but we did not notice it at the time. I then for-
mulated the factoring method for obtaining box products, [17]. The
factoring method was better motivated than the expansion method,
but more difficult to carry out; it amounted to propositional logic ap-
plied to integer inequalities–essentially, integer programming, but it
did not seem to fit with any methods found in the integer program-
ming literature. It was clear that this could, in principle, be made into
an algorithm, since propositional logic is algorithmic (unlike first order
logic), but the complexity was great enough that I had to handle each
example separately with no uniform method. It happened that at the
same time that I was working on [17] by myself, I was working with
Theodore Murdock (TM) on [19], where TM had introduced the block
notation as a more efficient way of writing Stanley decompositions, and
one that could easily be handled by computers. Although very little
from [19] beyond the definition of block decomposition was used in
[17], the notation fully proved its worth in formulating the factoring
method for box products algorithmically; it still seems to be nearly
impossible to formulate some of the algorithms without this notation,
because propositional logic without blocks has no natural connection
to geometry in Newton space. (Although the algorithms in [17] have
not yet been programmed, the examples in that paper were worked by
hand, following the algorithms exactly.) This encourages us to think

10

that block notation could be useful in other places where complicated
calculations with Stanley decompositions might arise. �

2.8. Remark. Final remarks.

1. We have adhered throughout this project to the use of classi-
cal methods that would be accessible to workers in dynamical
systems, rather than modern methods using algebraic geometry,
which obscure the concrete details in which we are interested.

2. It was observed in [20] that through the box product, we under-
stand more about Stanley decompositions for high dimensional
dynamical systems than we are able to use in studying their dy-
namics and its bifurcations. The applications of our results that
we would hope for depend on a corresponding development in
the techniques (such as blow-ups) that are used for this purpose.
Therefore we do not expect any large quantity of citations of this
work in the short term. It will be up to others to see what it is
possible to do with these ideas.

3. Gachigua and Malonza ([10], [9]) have offered promising solutions
to the infinite family of nilpotent matrices having any number of
three-by-three Jordan blocks using box products by the expan-
sion method. Their solutions satisfy the Cushman-Sanders test,
but they do not completely explain the rules of formation for the
diagrams that represent the solution. (These are not quite the
same as the “maximal monotone path” diagrams that are used
for this purpose in the two-by-two family.) So it seems fair to
say that there are still open questions here, although the solution
they have given is probably correct.

4. One of the original motivations for developing the factoring method
was that it can be extended to covariants of the Lie algebra slk2,
while the expansion method cannot. This Lie algebra arises in
several contexts: k commuting representations of SL2; the co-
variants of certain multiforms in k pairs of variables; and the
entangled states of k qubits in quantum computing, where the
group is known as SLOCC (stochastic local operations with clas-
sical communication). See for instance [3]. In unpublished sketchy
notes we have shown that an early form of the factoring method
works in this context. (The expansion method does not work be-
cause it depends on the existence of certain least common mul-
tiples that do not exist in this situation.)

5. There also exists (in sketchy unpublished notes) a modification
of the factoring method called the method of tokens. This ap-
plies whenever one or both of the given representations of sl2 (on

11

K[x] or K[y]) has more than one Hilbert basis element of the
same weight. Each set of such Hilbert basis elements (even if
they have different degrees) can be replaced by a single element
called a token to create a simplified (but artificial) problem to be
solved by the factoring method. It is then possible to “redeem”
the token (replacing it by the original Hilbert basis elements) to
obtain the solution of the actual problem. Crucial to this re-
demption process is Theorem 11.8 of [19]. The method of tokens
has only been illustrated in specific examples, and we have not
classified all the situations that can arise. To do so is an open
problem.

6. We said in Remark 2.1 that a goal of this approach was to elim-
inate Gröbner calculations in connection with tensor product
problems involving sl2. One aspect of this goal has not yet been
achieved, and remains an open problem: Although we can pro-
duce Stanley decompositions for the seminvariants of the tensor
product representation, and we can prove that these are standard
(in the sense that they describe standard monomials of a mono-
mial ideal) we have not proved that this monomial ideal is the
monomial ideal of leading terms of relations in H using Gröbner
term orders. That is, the computation of a box product by the
factoring method depends on a choice of factoring order for cer-
tain seminvariants that we call primes, while the computation
by way of J depends on a choice of Gröbner term orders in the
variables x and y (which do not appear at all in the box product
calculation). It seems that it should be possible to match at least
some of the possible factoring orders with Gröbner term orders,
and show that these matched pairs lead to the same Stanley de-
compositions, but have made only slight and uncertain progress
in that direction. We note that Sanders, in [22, Chapter 12], has
given a method (which may well have been known classically) to
obtain relations among transvectants that are also produced by
Gröbner methods, but he has only illustrated his method rather
than stated it precisely. Sanders’ idea here would be our start-
ing point in working on this problem, together with the notion
of factoring order and the very important Theorem 11.8 of [17].

7. The work on box products in [17] does not use the idea of incom-
pressibility of a block decomposition (the central concern of the
present paper). It would be desirable to connect these further,
perhaps by finding a box product algorithm that produces an in-
compressible output decomposition SD(A) when the two inputs

12

SD(A1) and SD(A2) are incompressible. We have not worked
on this question at all. �

3. Definitions

Let K be a field of characteristic zero, and let K[x] = K[x1, . . . , xn].
Monomials xm = xm1

1 · · · xmn
n in K[x] will be represented by their ex-

ponent vectors m = (m1, . . . ,mn) in the Newton space Nn, where N is
the set of nonnegative integers. For a,b ∈ Nn, we say that a divides
b, and write a � b, if xa divides xb, that is, if ai ≤ bi for i = 1, . . . , n.
The statement a ≺ b means a � b and ai < bi for some i. Bold Ro-
man letters like m, a, b, or p are always constants, denoting particular
points in Nn. For a variable point in Nn we use µ = (µ1, . . . , µn). The
i-th direction in Nn is the direction in which µi increases. A coordi-
nate hyperplane in Nn is defined by µi = c for some constant c, and
is perpendicular to the ith direction.

Let I be a monomial ideal in K[x] and let G = {m1, . . . ,mr} be the
set of exponents of its unique minimal set of generators, so that

I = 〈xm1

, . . . ,xmr〉.

Here m` = (m`
1, . . . ,m

`
n), with ` ∈ {1, . . . , r} being an index, not an

exponent. We extend the notation 〈 〉 to Newton space by writing

(3.1) U = 〈G〉 = 〈m1, . . . ,mr〉 = (m1 + Nn) ∪ · · · ∪ (mr + Nn).

Then U is the set of exponents of monomials belonging to I, and it is
an upper set in Nn under �; that is, if p ∈ U and p � q then q ∈ U .
The complementary set

(3.2) L = Nn r U

is the set of exponents of the standard monomials for I, that is,
monomials that are not in I. This is a lower set; if q ∈ L and p � q
then p ∈ L. Throughout this paper, whenever one of the symbols G,
U , or L is defined, all three are simultaneously defined and are related
by (3.1) and (3.2). If G = ∅ then U = ∅ and L = Nn. If G1 and G2 are
two sets of generators and G = G1 ∪G2, then

(3.3) U = U1 ∪ U2 and L = L1 ∩ L2.

An interval in N is denoted [a, b] or

[
b
a

]
, with a, b ∈ N∗ = N∪{∞};

the interval is empty if b < a, or if a = ∞, and [a,∞] is understood
as [a,∞), i.e. does not include ∞. A block B ⊆ Nn is a Cartesian

13

product of n such intervals, represented by a 2× n matrix

(3.4) B =

[
b
a

]
=

[
b1 b2 · · · bn
a1 a2 · · · an

]
=

[
b1
a1

]
× · · · ×

[
bn
an

]
.

(The letter B denotes both the matrix and the set, according to con-
text.) The rows a and b of B are elements of N∗n = (N∗)n; ∞ fre-
quently occurs in b, but rarely in a, since this would make the set B
empty. If the top and bottom entries in a column of B are equal, so
that the interval represented by that column reduces to a point, the
column may be replaced by a single entry on an intermediate level
between the rows of the matrix. Two examples of this notation are[

∞ 3 7
0 3 0

]
=

[
∞ 7
0 3 0

]
and the singleton block containing the point a:

{a} =

[
a
a

]
=

[
a

]
.

3.1. Remark. It is sometimes useful to extend ≺ to N∗n in the obvious
way (making ∞ larger than any finite integer). Then we may define
U∗ as the set of points in N∗n that are divisible by (�) an element of
G, and L∗ = N∗n r U∗. This makes U∗ and L∗ into upper and lower
sets in N∗n. This usage is illustrated in Lemma 3.2 below. Any block
B ⊆ Nn defines a possibly larger block B∗ ⊆ N∗n, which (for instance)
contains its outer corner even if that corner lies at infinity. �

The dimension of a block B is the number of columns of the ma-
trix B in which the top and bottom entries are unequal. (This is the
dimension of the convex hull of B in Rn.) The bottom row a of a block
B is its inner corner, written a = IC(B), and the top row b = OC(B)
will be called the outer corner, even though b is not an actual point
of B if it has any infinite components. The intersection of two blocks
is the block given by

(3.5)

[
b
a

]
∩
[
b′

a′

]
=

[
min{b,b′}
max{a, a′}

]
,

where the minimum and maximum are taken componentwise. The
upper set generated by a single element a ∈ Nn is a block given by

〈a〉 =

[
∞
a

]
,

14

where ∞ = (∞, . . . ,∞), and we have

(3.6)

[
b
a

]
∩ 〈a′〉 =

[
b

max{a, a′}

]
.

3.2. Lemma. A nonempty block B in Nn intersects an upper set U if
and only if some element m` of G divides its outer corner b (m` � b).

Proof. Suppose first that b is a finite vector (i.e. does not have ∞ as
an entry). Then, if any point p ∈ B belongs to U , so must b, since
p � b and U is an upper set. Therefore b is divisible by an element of
G. If b is an infinite vector, the same argument applies using b ∈ U∗
(Remark 3.1). In this case any finite points in U , obtained by replacing
the infinities in b by large enough finite integers, will be divisible by
the same element of G that divides b. �

3.3. Remark. In [19] ⊂ was used for subset (⊆). Here we distinguish
these, so that ⊂ means proper subset. In particular, for two blocks
with the same inner corner a we have[

b
a

]
⊂
[
b′

a

]
if and only if b ≺ b′. �

A block in which each bi equals either ai or ∞ is called a Stanley
block. The span of a Stanley block (over K, in K[x]) is a Stanley
space in the usual sense; for instance

Span

[
∞ ∞
2 3 0

]
= K[x1, x3]x

2
1x

3
2;

the Stanley basis element is xa = x(2,3,0) = x21x
3
2, and the coefficient

ring K[x1, x3] is generated by those xi for which bi = ∞. Any block
can be written uniquely as the disjoint union of a minimal number of
Stanley blocks, and the span of the original block is the direct sum of
the associated Stanley spaces. See [19, Alg. 2.2].

Associated with any blockB there are three important sets of “faces,”
the inner faces, outer faces, and outer adjacent faces; each face is itself
a block. With B as in (3.4), the ith inner face (for i = 1, . . . , n) is
given by

(3.7) IFi(B) =

[
b1 · · · bi−1 bi+1 · · · bn
a1 · · · ai−1

ai ai+1 · · · an

]
,

the ith outer face by

(3.8) OFi(B) =

[
b1 · · · bi−1 bi+1 · · · bn
a1 · · · ai−1

bi ai+1 · · · an

]
,

15

and the ith outer adjacent face (which is not a subset of B) by

(3.9) OAFi(B) =

[
b1 · · · bi−1 bi+1 · · · bn
a1 · · · ai−1

bi + 1 ai+1 · · · an

]
.

It follows from our definition of an interval that OFi(B) and OAFi(B)
are empty if bi =∞, since this causes∞ to occur in their bottom rows.

Let h ∈ {1, . . . , n}. The hth inner edge IEh(B) starts at a and runs
along the block in direction h:

(3.10) IEh(B) =

[
bh

a1 . . . ah−1 ah
ah+1 . . . an

]
.

The inner edges will be used only in Section 12. The following lemma
is obvious from the definitions.

3.4. Lemma. The edge IEh(B) is the intersection of the inner faces
IFi(B) for i 6= h. The inner face IFi(B) is the smallest block containing
the edges IEh(B) with h 6= i.

Our main objects of study in this paper can be defined as follows,
leaving some indicated details for later. Items 1 and 2 are defined for
any T ⊆ Nn. The rest are defined only for the case T = L (a lower
set).

1. A partial block decomposition of T is a finite ordered set
Pk = (B1, . . . , Bk) of blocks in T that are pairwise disjoint.

2. A block decomposition D of T is a partial block decomposition
D = Ps = (B1, . . . , Bs) of T that is “total” in the sense that

T = B1 t · · · tBs

Associated with D there is a sequence P1, . . . ,Ps of partial block
decompositions Pk = (B1, . . . , Bk), as well as a filtration of T by
subsets

∅ = P 0 ⊂ P 1 ⊂ P 2 ⊂ · · · ⊂ P s = T.

defined, for k = 1, . . . , s, by

(3.11) P k =
⊔

Pk =
⊔

(B1, . . . , Bk) =
k⊔
j=1

Bj = B1 t · · · tBk.

3. (For lower sets only.) An inner-minimal decomposition of a
lower set L is a block decomposition of L in which each inner
corner ak of a block Bk is minimal (with respect to ≺) in the
portion of L that has not been covered by previously constructed
blocks. That is, ak is minimal in L r P k−1. See Section 6 for
details.

16

4. An organized decomposition (in the “general” sense) of L is an
inner-minimal decomposition that also satisfies an outer-maximality
condition stated in Section 7.

5. A special organized decomposition, or more specifically a (π,σ)-
organized decomposition of L is an organized decomposition
in which the inner corners are determined by a lexicographic
method described in Section 8, and the outer corners by a direc-
tional extension method described in Section 9. Here π and σ
are permutations of (1, . . . , n) which must be specified.

6. Stacked decompositions of lower sets are similar to orga-
nized decompositions but the outer-maximality conditions are
stronger. See Section 12.

3.5. Remark. In [19], a block decomposition of L was defined to be the
equation L = B1t· · ·tBs rather than the ordered set D = (B1, . . . , Bs).
Thus a block decomposition was not a mathematical object with a
name, but only an equation, perhaps with an equation number. This
made it difficult to discuss several decompositions at once (for instance
D1, . . . ,D6 in Section 5) below. �

4. The unordered G-elementary decomposition of Nn

Let G be a given set of generators for an upper set U , and let
L = Nn r U as usual. For each fixed ` ∈ {1, . . . , r}, there exist n
coordinate hyperplanes {µi : µi = m`

i} (one for each i ∈ {1, . . . , n})
passing through the generator m` ∈ G. These hyperplanes, together
with the n hyperplanes µi = 0 passing through the origin, grid the
entire Newton space Nn into “elementary blocks.” But this rough def-
inition fails to specify the elementary blocks exactly, since we must
specify which faces belong to which blocks (to avoid intersections). So
we begin again more formally. (See the beginning of Example 10.5
below.)

For i = 1, . . . , n let

(4.1) Si = {0} ∪ {m`
i : ` = 1, . . . , r} ⊂ N.

Stated in words, Si is the set of ith components of generators `m in
G, with zero added in case it is not already present. For each i, the
set Si may be viewed as a set of points on the µi axis in Nn, as long
as these “points” are taken as integer scalars c and not integer vectors
cei . Although it may appear that Si has either ` or `+ 1 entries, this
need not be the case, since several generators may have the same ith
component. The set Si can be ordered by the usual order < for scalars,
and if c ∈ Si we denote its successor under this ordering by c]. If c

17

is the last element of Si, we put c] = ∞, but do not regard this as an
element of Si. Let a ∈ Nn be a point such that ai ∈ Si for i = 1, . . . , n.
Then the G-elementary block with inner corner a is the block

(4.2)

[
a]1 − 1 · · · a]n − 1
a1 · · · an

]
.

Another way to say this is that a block B =

[
b
a

]
is G-elementary if the

following two conditions are satisfied:

1. Each component ai of a belongs to Si.
2. Each component bi of b is such that bi+1 = a]i. (If bi =∞, then
bi + 1 =∞.)

It is obvious that each point of Nn belongs to one and only one
elementary block; that is, the G-elementary blocks form what we will
call the unordered G-elementary block decomposition of Nn.

4.1. Lemma. Any point in the ith inner face of any G-elementary block
has its ith component in Si.

Proof. The ith inner face of (4.2) is[
a]1 − 1 · · · · · · a]n − 1
a1 · · · ai · · · an

]
.

Any point of this set has ith component ai, which (being the ith com-
ponent of a) must belong to Si. �

4.2. Lemma. Every G-elementary block B =

[
a
b

]
belongs entirely to L

or to U . Thus the sets L and U are (disjoint) unions of G-elementary
blocks.

Proof. Suppose that someG-elementary blockB contains a point p ∈ L
and a point q ∈ U . Then some generator m` ∈ G divides q (that is,
m` � q). Therefore every component m`

i of this generator satisfies
m`
i ≤ qi. But no generator in G divides p. In particular, m` � p. This

means that for some value of i, pi < m`
i . For this choice of ` and i,

then, we have pi < m`
i ≤ qi. So qi is not the successor of pi in Si. But

then B is not an elementary block, contradicting the supposition and
proving the first statement in the Lemma. The second statement is an
immediate consequence of the first. �

The unordered G-elementary block decomposition of L is the
set of G-elementary blocks that lie in L, and similarly for U . This
decomposition for L coincides with the one produced by Algorithm 3.1

18

of [19], except that step 6 of that algorithm imposes an order on the
decomposition that was needed for a discussion on Section 5 of that
paper.

4.3. Example. ConsiderG = {(3, 9), (7, 5)}, corresponding to equation
(2.5) in [19]. An ordered G-elementary block decomposition for L,
reproduced from [19], is shown in Figure 1 below. The unordered G-
elementary block decomposition of L would delete the numbers showing
the ordering. The unordered G-elementary decomposition of Nn would
also add three G-elementary blocks lying in the upper right hand corner
of the figure; for instance, the block to the right of block 5 in Figure

1 would be

[
∞ 8
7 5

]
. The three extra blocks constitute the unordered

G-elementary block decomposition of U . �

The expression “disjoint union of G-elementary is actually redun-
dant, since any two distinct G-elementary blocks (with the same G)
are automatically disjoint.

4.4. Corollary. A block B =

[
b
a

]
is a union of (one or more) G-

elementary blocks if and only if each component ai of a belongs to Si
and each finite component bi of b satisfies bi + 1 ∈ Si.
Proof. Suppose that each ai belongs to Si and each finite bi satisfies
bi + 1 ∈ Si. The first of these is the same as item 1 in the definition
of G-elementary block (above), but the second is weaker than item 2

(which requires bi+1 = a]i). However, it is not much weaker; bi+1 must
still come after ai in the ordering < on Si. Therefore bi+1 must be one
of the integers a]i, a

]]
i , a]]]i , Therefore, in any direction i, B may

encompass more than one G-elementary block before reaching its (finite
or infinite) boundary. Conversely, if B is both a block and a union of
G-elementary blocks then a is the inner corner of the innermost of these
elementary block, and b the outer corner of the outermost elementary
block. The conditions on a and b specified in the corollary then follow
from the definition of an elementary block. �

The next corollary is trivial but plays a crucial role later.

4.5. Corollary. Let Y ⊂ X ⊂ Nn and suppose X and Y are unions
of G-elementary blocks.. Then X r Y is also a union of G-elementary
blocks. Any G-elementary block in X is entirely contained in either X
or Y .

In the sequel, when G is understood we often write “elementary
block” to mean G-elementary block.

19

u
u

1

2

3

4

5

6

Figure 1. The elementary decomposition for Example
4.3 and Section 5.

5. An example in two dimensions

Let I = 〈x3y9, x7y5〉, so that G = ((3, 9), (7, 5)). Three block decom-
positions of L were given in [19], equations (2.6)-(2.8). The elementary
decomposition, [19, (2.6)], is illustrated in Figure 1, taken from [19,
§3].

As noted in [19, §3], elementary block decompositions are gener-
ally compressible, but when forming incompressible decompositions we
“never need to consider blocks . . . that are not disjoint unions of el-
ementary blocks.” We illustrate six ways (among others) of forming
“organized” decompositions this way. The six fall into three groups, as
follows.

1. Combine 1, 4, and 6 to form B1.
a. Combine 2 and 5 to form B2 and use 3 for B3.

D1 =

([
∞ 4
0 0

]
,

[
6 8
0 5

]
,

[
2 ∞
0 9

])
.

b. Combine 2 and 3 to form B2 and use 5 for B3.

D2 =

([
∞ 4
0 0

]
,

[
2 ∞
0 5

]
,

[
6 8
3 5

])
.

This is shown in Figure 4, Section 11.
2. Combine 1, 2, 4, and 5 to form B1.

a. Take 3 for B2 and 6 for B3.

D3 =

([
6 8
0 0

]
,

[
2 ∞
0 9

]
,

[
∞ 4
7 0

])
.

b. Take 6 for B2 and 3 for B3.

D4 =

([
6 8
0 0

]
,

[
∞ 4
7 0

]
,

[
2 ∞
0 9

])
.

3. Combine 1, 2, and 3 to form B1.
20

a. Combine 4 and 5 to form B2 and take 6 for B3.

D5 =

([
2 ∞
0 0

]
,

[
6 8
3 0

]
,

[
∞ 4
7 0

])
.

b. Combine 4 and 6 to form B2 and take 5 for B3.

D6 =

([
2 ∞
0 0

]
,

[
∞ 4,
3 0

]
,

[
6 8
3 5

])
.

Decompositions D1 and D5 share a property that the others do not
have: The blocks can be build by directional extension with a fixed
order of directions. To understand this, consider B1 in D1. This block
can be constructed by a sequence of extensions B1

0 ⊂ B1
1 ⊂ B1

2 = B1

as follows:

1. Form the singleton block B1
0 = {(0, 0)} containing only the inner

corner.
2. Slide the point (0, 0) to the right along the µ1 axis as far as it can

go without entering U . In this instance it can be slid to infinity,
making B1

1 equal to the µ1 axis.
3. Now extend B1

1 upward (in the µ2 direction) by sliding the µ1

axis upward until it collides with U at the point (7, 5), one of the
generators of U . Backing off from this collision leaves the line
µ2 = 4 as the top of the extended block B1

2 .
4. There are no more directions in which the block can be extended,

so we are finished, and B1 = B1
2 .

The same process, using the directions (1,2) in the same order, also
works to construct B2 and B3 in D1. For D5, the directions must be
used in the order (2, 1), and for D3 the method fails altogether for
B1 because sliding a point along an axis will never cause it to stop at
µ1 = 6 or µ2 = 4. This makes D3 is “organized” but not “ special
organized.”

Now we turn briefly to the topic of Stanley space minimization. Each
of the decompositions D1, . . . ,D6 contains two unbounded blocks (with
∞ in the top row) and one bounded block. For instance, block B3 in D2

is bounded and has 16 points, with inner corner (3, 5) corresponding
to monomial x31x

5
2, and outer corner (5, 8) or x51x

8
2, and has 16 one-

dimensional Stanley spaces:

Span(B3) = Kx31x
5
2 ⊕ · · · ⊕Kx51x82.

But the unbounded block B2 in D2 has only three Stanley spaces, each
infinite-dimensional, namely

Span(B2) = K[x2]x
5
2 ⊕K[x2]x1x

5
2 ⊕K[x2]x

2
1x

5
2.

21

B1 B2 B3 total
D1 5 28 3 36
D2 5 3 16 24
D3 63 3 5 71
D4 63 5 3 71
D5 3 36 5 44
D6 3 5 16 24

Table 1. Stanley space count for D1 through D6.

Table 1 gives the number of Stanley spaces for each block of each de-
composition. The unbounded blocks are more efficient (that is, require
fewer Stanley spaces), since each Stanley space represents infinitely
many points of the block. The most efficient block decompositions are
D2 and D6, because these combine the bounded blocks labeled 1, 2,
and 4 in Figure 1 with the unbounded blocks 3 and 6, leaving only the
bounded block 5 with its 16 spaces (shown above as Span(B3) of D2).
These two decompositions, D2 and D6, are not built by directional
extension, showing that the algorithm we develop for (π,σ)-organized
decomposition cannot be expected to minimize the number of Stanley
spaces.

6. Inner-minimal block decompositions of lower sets L

An inner-minimal block decomposition of a lower set L has been
defined in item 3 of Section 3. To state this definition in greater detail,
a minimal point of a subset T ⊆ Nn is a point p ∈ T such that no
q ∈ T satisfies q ≺ p (or equivalently, divides p). If T has more than
one minimal point, these will be incomparable under ≺. Now let G, U ,
and L be as usual, and suppose that D = Ps is a block decomposition
of L. We say that D is an inner-minimal block decomposition of L
if for each k = 1, . . . , s, ak is a minimal point of Lr P k−1.

Since P k−1 is the part of L that has already been covered by the
blocks Bj with j < k, it is easy to apply this definition during the
construction of D. That is, suppose that Pk−1 has been constructed,

and we are ready to define Bk =

[
ak

bk

]
. Let

P (k−1) = Lr P k−1

(this is the part of L that has not yet been covered by blocks), and let

Mk−1 be the set of minimal points of P (k−1). In order that D be inner
22

minimal, we must choose

ak ∈Mk−1,

and then choose bk so that Bk does not intersect either P k−1 or U . This
rule must be applied at each stage k in the construction. In particular,
at the first stage (k = 1) we must have P k−1 = P 0 = ∅, P 0 = L,
Mk−1 = {0}, and a1 = 0.

The following procedure is not fully specified (because methods are
not obvious for some of the steps) and does not always terminate. Its
purpose is to outline a strategy that will be followed (with modifica-
tions) in later procedures and algorithms for organized, special orga-
nized, and stacked decompositions.

6.1. Procedure. To create an inner-minimal block decomposition of a
lower set L ⊂ Nn:

1. Put P 0 = ∅ and M0 = {0}.
2. For k = 1, 2, . . . , do the following:

a. Choose a point ak ∈Mk−1 to be the inner corner of the next
block.

b. Create Bk by choosing its outer corner bk so that Bk does
not intersect U or any previously constructed blocks.

c. Set Pk = (B1, . . . , Bk) and P k =
⊔
Pk, as in (3.11).

d. Find Mk.
3. Stop if P k = L and set s = k. (This may not terminate; for

instance, it does not terminate if L is infinite and each bk is
chosen to equal ak, so that each block is a singleton.)

For this procedure to become an algorithm, methods must be spec-
ified for steps 2a, 2b, and 2d. These will be provided later in specific
situations. Note that item 2b implies that the procedure is (as yet) by
no means “greedy,” as promised in the introduction; there is nothing
here to force each block to be (in some sense) “as large as possible.”
This will be done in different ways for organized and stacked decom-
positions, and doing so will cause the procedure to terminate.

We begin with an attempt to address 2d. It is easy to handle the
first case, M1.

6.2. Lemma. Let B1 be any block in Nn with inner corner a1 = 0. The
set of minimal points of Nn r B1 is the set of ICOAFs (inner corners
of outer adjacent faces) of B1.

Proof. Any point of Nn that is not in an outer adjacent face of B1

cannot be minimal because one of its components can be decreased by
1 without causing the point to enter B1. Any point that lies in an

23

outer adjacent face cannot be minimal unless it is minimal in the outer
adjacent face; that is, it must be the inner corner of the outer adjacent
face. The inner corner of any OAFi(B1) is minimal, because if its ith
component is reduced by one, the point either enters B1, while if any
other component is reduced by one, that component becomes negative
and the point leaves Nn. �

6.3. Example. We give two slightly unusual examples of Lemma 6.2.

(i) A two-dimensional block in L = N3: The outer adjacent faces

of B1 =

[
5 8
0 0 0

]
are

[
8

6 0 0

]
,

[
5
0 9 0

]
, and

[
5 8
0 0 1

]
, so

M1 = {(6, 0, 0), (0, 9, 0), (0, 0, 1)}.

(ii) An unbounded block: ForB1 =

[
2 ∞ 4
0 0 0

]
there are two nonempty

OAFs, and M1 = {(3, 0, 0), (0, 0, 5)}. �
6.4. Corollary. If L is a lower set in Nn and B1 is a block in L with
inner corner a1 = 0, M1 is the set of ICOAFs of B1 that lie in L.

After the first block, things become more complicated. Example 6.5
below shows that ICOAFs still play a role in Mk, but an ICOAF that
arises at one stage k may not become minimal until a later stage. This
example also illustrates the possibility of “collisions” between blocks;
prevention of such collisions is needed for an algorithmic version of the
procedure.) Example 6.6 shows that there can exist minimal points
that are not ICOAFs. (We had conjectured for a while that this could
not happen.)

6.5. Example. Figure 2 illustrates the following partial block decom-
position of L = N2.

P6 =

([
3 11
0 0

]
,

[
7 2
4 0

]
,

[
10 5
8 0

]
,

[
7 8
4 3

]
,

[
10 13
4 9

]
,

[
13 10
11 0

])
.

The steps of the construction are as follows.

1. Initially M0 = {(0, 0)}. The first block B1 covers this point,
removing it from minimality, and replaces it with ICOAFs (0, 12)
and (4, 0) to produce M1 = {(0, 12), (4, 0)}.

2. Block B2 removes (0, 4) from minimality and replaces it with
ICOAFs (4, 3) and (8, 0). But B2 does not remove (0, 12), which
survives as a minimal point, so that M2 = {(0, 12), (4, 3), (8, 0)}.

3. Adding B3 removes (8, 0) and adds its ICOAF (11, 0) to M3, but
the ICOAF (8, 6) is not a minimal point, because (4, 3) ≺ (8, 6).
(We are not finished with (8, 6); it becomes a minimal point at
the next stage). We have M3 = {(0, 12), (4, 3), (11, 0)}.

24

B1

B2
B3

B4

B5

B6

3 4 7 8 11 13

2
3

5
6

8
9

11
12
13

t

t

t

t t
t

t
t

t
Figure 2. Diagram for Example 6.5

4. Adding B4 removes (4, 3) and replaces it by (8, 6) and (4, 9).
5. Adding B5 creates a situation in which, if a new block were to

be built on (8, 6), it could not be taken so large as to intersect
B5. After B6 is added, there is an additional constraint on the
size of block that can be built on (8, 6). See Lemma 6.8 below. �

6.6. Example. The twisted cube (Figure 3) is a compressible inner-

minimal block decomposition of the cube L =

[
1 1 1
0 0 0

]
given by

D =
([

0 0 0

]
,
[

1
1

0
0

]
,
[

1
0 1

0

]
,
[
1

0
0 1

]
,
[
1 1 1

])
(6.1)

=

({
(0, 0, 0)

}
,
{

(1, 0, 0), (1, 1, 0)
}
,
{

(0, 1, 0), (0, 1, 1)
}
,

{
(0, 1, 0), (1, 0, 1)

}
,
{

(1, 1, 1)
})

.

The generating set for U is G = {(2, 0, 0), (0, 2, 0), (0, 0, 2)}.
The first and last blocks in D are singletons, while the others contain

two points each. At stage P4, every ICOAF is contained in a block,
leaving no ICOAFs that could be minimal. Instead, the next inner
corner is a5 = (1, 1, 1), which is minimal even though it is not an
ICOAF of any block in P4. �

Motivated by Example 6.5, item 5, we now address the detection of
block intersections when creating a block decomposition. At the kth
stage, when Pk−1 and ak ∈Mk−1 are known, let bk be a trial value for

25

t t
t

u u
u

t
u

�
�
�

�
�
�

�
�
�

�
�

�

�
�

�

�
�

�

�
�

�

O (0,1,0)

(1,0,0)

(0,0,1)

Figure 3. The twisted cube. Thick lines connect the
two-point blocks. There are two singleton blocks, the
origin O and (1, 1, 1).

the outer corner of Bk. By (3.6),

(6.2) Bj ∩Bk =

[
min{bj,bk}
max{aj, ak}

]
=

[
min{bj,bk}

pjk

]
,

where

(6.3) pjk = max{aj, ak}.

Since the min and max operations are coordinate-wise, Bj ∩ Bk is
nonempty if and only if pjk � bj and pjk � bk. These two conditions
are quite different in character; the first can be checked before bk is
chosen, but the second constitutes a condition on bk. Before choosing
bk, we can determine the following set:

(6.4) Hk = {pjk : 1 ≤ j < k and pjk � bj}.

If Hk = ∅, it is not possible for any Bj with j < k to intersect (collide
with) Bk.

6.7. Lemma. It is impossible to have pjk � bj if j = 1. Therefore

(6.5) Hk =
{
pjk : j = 2, . . . , k − 1 and pjk � bj

}
.

Proof. By definition, p1k = max{a1, ak} = max{0, ak} = ak. We
cannot have ak � b1, since for k > 1, ak must lie in LrB1. �

6.8. Lemma. The proposed block Bk intersects a previous block if and
only if one or more of the points of Hk divides bk (that is, satisfies
pjk � bk).

Proof. If Bk intersects a previous block, then it intersects some Bj with
j < k. Then, as noted above, pjk � bj and pjk � bk. The first of
these says that pjk ∈ Hk, and the second says that this point divides
bk. The converse is equally obvious. �

26

Because of the parallelism between Lemma 3.2 and Lemma 6.8, we
callHk the set of temporary generators at stage k. The (permanent)
generators in G together with the temporary generators in Hk deter-
mine whether Bk is acceptable as the next block of the decomposition
being constructed. (See the algorithms in later sections.)

7. General organized decompositions

The rough definition of organized decomposition given in item 4 of
a list in Section 3 calls for an (unspecified) outer-maximality condi-
tion to be added. This condition is more complicated than the inner-
minimality condition already stated; it is not enough to require that
“bk is maximal under � in P k−1.” (See Remark 7.1.) We build up to
it through a sequence of definitions.

1. The block B′ =

[
b′

a′

]
in Nn extends the block B =

[
b
a

]
if

both blocks have the same inner corner (a = a′) and B ⊂ B′.
According to Remark 3.3, this is equivalent to
i. a = a′.

ii. b ≺ b′.
2. Let G, U , and L be as usual. At the kth stage of construction of a

block decomposition of L, suppose that Pk−1, and the next inner
corner ak, have been chosen. (For this definition only, ak need not

be inner-minimal.) Suppose that Bk =

[
bk

ak

]
⊂ P k−1 = LrP k−1

is proposed as the next block to be constructed. We say that
Bk is an outer-maximal block if any extension (Bk)′ of Bk

must intersect either U or P k−1 (that is, either U or a previously
constructed block). See Remark 7.1 below.

3. Let D be a block decomposition of L. Then D is an outer-
maximal decomposition if each block Bk is an outer-maximal
block at the stage when it is constructed.

4. Let D be a block decomposition of L. Then D is an orga-
nized decomposition if it is both inner-minimal (Section 6)
and outer-maximal (item 2 of this list).

7.1. Remark. The outer-maximality condition for blocks, in item 2
above, is equivalent to “Bk is maximal under ⊆ among all blocks con-
tained in P k−1 having the same inner corner ak,” and to “bk is maximal

under � among the set of all points p such that

[
p
ak

]
is contained in

P k−1, but is not equivalent to “bk is maximal under � among all
27

points p of P k−1.” (Under the latter condition,

[
p
ak

]
may contain a

point q 6= p with q ∈ P k−1.) �

Recall from the introduction that a block decomposition is com-
pressible ([19]) if the union of some subset of the blocks is itself a
block; such a decomposition can be simplified by performing the union,
so incompressible block decompositions are desirable. We now prove
the fundamental theorem that justifies the consideration of organized
decompositions.

7.2. Theorem. Any organized decomposition D of a lower set L is
incompressible.

Proof. Suppose that D is both compressible and organized. Since it
is compressible, there is an ordered subset (Bu1 , . . . , Buv) of D =
(B1, . . . , Bs), with v > 1 and u1 < · · · < uv, whose (disjoint) union
is a block B′:

Bu1 t · · · tBuv = B′.

Since D is organized, it is inner-minimal, and the inner corner au1 of
block Bu1 is a minimal element of P u1−1. Since au1 belongs to Bu1 ,
it belongs to B′. Since B′ is a block, its inner corner a′ is its only
minimal point. Since B′ ⊂ P u1−1, a point that is not minimal in B′

cannot be minimal in P u1−1; therefore a′ = au1 . Thus B′ is a block
that is larger than Bu1 , has the same inner corner, and is contained
in P u1−1. Therefore Bu1 is not outward maximal, contradicting the
assumption that D is organized. �

The next theorem will allow us to show that organized decompo-
sitions can be constructed by a procedure that is almost algorithmic.
Specifically, it enables us to provide methods to carry out steps 2a and
2b in Procedure 6.1, which proved problematic in Section 6.

7.3. Theorem. Let D = Ps be an organized decomposition of L. Then
each block Bk in D is a union of G-elementary blocks of Nn.

Proof. The proof is by complete induction on k. So at the k stage we
assume that each previous block Bj (for j < k) is a union of elementary
blocks. For the first case (k = 1) there are no previous blocks, and this
induction hypothesis is vacuously true. We will prove that Bk is a
union of elementary blocks, by showing that it meets the conditions of
Corollary 4.4, namely that aki ∈ Si for each i, and bki + 1 ∈ Si provided
bki 6=∞.

The induction hypothesis implies that P k−1 is a union of elemen-
tary blocks. Lemma 4.2 states that L and U are unions of elementary

28

blocks, and Lemma 4.5 then implies that P k−1 = LrP k−1 is a union of
elementary blocks. It follows easily that P k−1∪U is a union of elemen-
tary blocks; we temporarily call this the set of “bad” points (because

they are not allowed in Bk). The set P k−1 will be called the set of
“good” points. Any elementary block consists entirely of good points
or of bad points.

Since D is organized, Bk is inner-minimal in the set of good points.
Its inner corner ak belongs to a unique G-elementary block E in Nn
that consists entirely of good points. Since ak is minimal in P k−1, it
must also be minimal in E. Therefore ak is the inner corner of E. By
the definition of G-elementary block, each component aki belongs to Si,
as promised.

Again, since D is organized, Bk must be outer-maximal in the set
of good points (in the strong sense defined above; see Remark 7.1).
Let bki be any component of bk such that bki 6= ∞; we will show that
bki + 1 ∈ Si. Since bki 6=∞, the block

(Bk)′ =

[
bk + ei

ak

]
(7.1)

=

[
bk1 · · · bki + 1 · · · bkn
ak1 · · · aki · · · akn

]
=

[
bk1 · · · bki · · · bkn
ak1 · · · aki · · · akn

]
t
[
bk1 · · · · · · bkn
ak1 · · ·

bki + 1 · · · akn

]
= Bk t OAFi(Bk)

is an extension of Bk, and must contain a bad point p by the definition
of outer-maximality. Let F be the unique elementary block that con-
tains p. Since Bk contains only good points, p must lie in OAFi(Bk),
in view of equation (7.1). This fact implies that p − ei ∈ Bk, and
this in turn implies that p ∈ IFi(F). We have seen (Lemma 4.1) that
the ith component of any point in the ith inner face of an elementary
block must lie in Si; therefore pi ∈ Si. On the other hand, both p and
bk + ei belong to OAFi(Bk). It follows from (3.9) that all points in the
same ith outer adjacent face of any block have the same ith compo-
nent. Therefore bki + 1 = pi ∈ Si, as promised. In view of the strategy
outlined at the beginning, this completes the proof. �

Next we state a procedure (that is algorithmic except that it calls
for some choices, and always terminates) to produce organized block
decompositions. This procedure is not at all efficient, and is stated
primarily to show its possibility. (We will not actually use it in this
paper.) In the next few sections it will be modified into an algorithm

29

for “special organized decompositions” (a subset of general organized
decompositions) that is much more efficient. The reader is invited to
apply Procedure 7.4 to re-derive D1 through D6 in Section 5; the initial
form of the dynamic lists L and L′ needed in the procedure can be read
off from Figure 1.

7.4. Procedure. To create an organized block decomposition of a lower
set L ⊂ Nn:

1. Input the minimal set of generators of U = Nn r L.
2. Set P 0 = ∅ and M0 = {0}.
3. Find the elementary decomposition of L, either by Algorithm 3.1

of [19] or by Section 4 above.
4. Initialize a dynamic list L of the inner corners of elementary

blocks of L, and a separate list L′ of the outer corners. These
lists will be updated during the execution of the algorithm (step
5e). (The order of elements in these lists does not matter at this
time, but L will become an ordered list in later algorithms; L′

will not be used again.)
5. For k = 1, 2, . . . , do the following:

a. Choose a minimal element, under �, of the current version
of L, to be the inner corner ak of the next block. Minimality
can be determined by pairwise comparison of the elements of
L (a finite process since L is a finite list).

b. Determine the subset of points b in L′ such that

[
b
ak

]
does not

intersect any previous blocks. (This can be done by finding Hk

and using Lemma 6.8, or, much less efficiently, by computing

all of the possible blocks

[
b
ak

]
and finding the intersections of

each of these with each of the previous blocks.) From this
subset of the b, choose one that is maximal under � to be the
outer corner bk of the next block.

c. Set Bk =

[
bk

ak

]
.

d. Set Pk = (B1, . . . , Bk) and P k =
⊔
Pk, as in (3.11).

e. Remove any points from L and L′ that are contained in Bk.
(This will include ak and bk.) Repeat step 5 with the updated
lists until step 6 applies.

6. Stop when P k = L and set s = k. (This is guaranteed to occur,
because there are finitely many elementary blocks in L.) Output
D = Ps as the desired decomposition of L.

30

8. A lexicographic method for minimal points

In Procedure 7.4 for organized decompositions, two substeps (in-
cluded in step 4a) are needed to select ak: the elements of the current
list L must be compared with each other (under �) to determine which
are minimal, and then a choice (not specified algorithmically) must be
made. In this section we give a way to do both steps at once, and to
do them algorithmically. This method does not produce all possible
organized decompositions.

Suppose that � is a total order on Nn that meets two conditions:

1. � refines (or extends) the partial order ≺; that is, if a ≺ b then
a� b.

2. � is a well-order; that is, every nonempty subset T of Nn has a
(unique) least element under �.

Then the unique minimum element p (under�) of a nonempty subset
T ⊂ Nn is also a minimal element of T under ≺. (If p were not
minimal under ≺, there would exist q ≺ p in T , but then q � p and
p is not the minimum under �.) Thus, when Pk−1 is known, ak can

be chosen as the minimum point of P k−1 under � (by an algorithm
stated below). It is obvious that the successive inner corners selected
in this way satisfy

a1 � a2 � · · · � as.

To use this idea requires at least one total order that refines ≺. The
familiar lexicographic order <lex on Nn is defined as follows: Let i
be the smallest integer such that ai 6= bi. Then a <lex b if and only if
ai < bi. This is a well-order; see for instance [4, §2, Prop. 4].

8.1. Lemma. The total order <lex refines ≺.

Proof. Suppose a ≺ b. Then for all i = 1, . . . , n, ai ≤ bi, and for some
i∗, ai∗ < bi∗ . Considering the first such i∗ shows that a <lex b, as
required for a refinement. �

Now let σ = (σ1, . . . , σn) be a permutation of (1, . . . , n). Define the
total order <σ on Nn to be lexicographic order using the coordinates
µ on Nn in the order (µσ1 , . . . , µσn). That is,

a <σ b if and only if the entry with smallest i

such that aσi 6= bσi satisfies aσi < bσi .

This reduces to the standard lexicographic order if σ = ε = (1, . . . , n),
the identity permutation. By the same reasoning as in Lemma 8.1, <σ
for any σ is a refinement of ≺.

31

8.2. Remark. In the case that σ = (n, n − 1, . . . , 2, 1), <σ should
not be confused with reverse lexicographic order, frequently used in
Gröbner basis theory. �

Now we modify Procedure 7.4 as follows: Before carrying out the
algorithm, order the initial list L by one of the orders <σ. Whenever a
new block is added during the construction, delete from this ordered list
those points that are included in P k; this leaves the available corners,
which are still in order by <σ. When a new inner corner is required for
the next block, choose the first one in the list. (It will automatically
be deleted from L in step 4e.) This will be incorporated more formally
in the algorithm for the (π,σ)-organized decomposition in Section 10.

9. Constructing blocks by directional extension

It is not feasible to use a lexicographic method to select the outer
corners bk in step 4b of Procedure 7.4. Instead, we use directional
extension. To motivate this, consider first the following simplified
problem (which does not involve any decomposition of L): A single
block

B =

[
b1 · · · bh · · · bn
a1 · · · ah · · · an

]
⊂ L

is given, and it is desired to extend this block as far as possible in direc-
tion h (leaving the inner corner fixed) without intersecting U . (There
is no question here of intersecting “previous blocks.”) Replacing the
h-component bh in b by a variable t produces a vector-valued function
bh(t) = (b1, . . . , bh−1, t, bh+1, . . . bn). (The subscript h on the boldface
letter b does not indicate a component, but a new vector depending
on t.) Consider the matrix-valued function

Bh(t) =

[
bh(t)

a

]
=

[
b1 · · · t · · · bn
a1 · · · ah · · · an

]
.

Since b ∈ L, no generator m` ∈ G will divide b, but there may be gen-
erators that divide bh(t) if t > bh is large enough; this would indicate
that bh(t) has collided with U . Let Gh ⊆ G be the set of such gener-
ators; this set may also be characterized as the set of generators that
divide bh(∞), or as the set of generators that divide all components of
b except the h-component (that is, m`

i ≤ bi for i 6= h). Now define t∗

as follows:

t∗ =

{
∞ if Gh = ∅
min

{
m`
h : m` ∈ Gh

}
− 1 otherwise.

32

Then t∗ is the largest value of t such that bh(t) still belongs to L∗ (see
Remark 3.1), and Bh(t

∗) is the desired extension of B.

9.1. Remark. When we pass to the full (rather than simplified) prob-
lem, Gk will denote an enlarged set of (permanent and temporary)
generators at the kth stage, and Gk

h will be obtained from Gk in the
same way that Gh is obtained from G here. �

9.2. Example. In N2, let G = {(5, 0), (4, 1), (2, 6)} and B =

[
1 1
0 0

]
.

To extend B in direction h = 1, form b1(∞) = (∞, 1) by replacing
the 1-component of b = (1, 1) by ∞. Then observe that generators
(5, 0) and (4, 1) divide b1(∞) while (2, 6) does not. The smallest 1-
component of those that do is 4, so t∗ = 3, and the desired extension

is

[
3 1
0 0

]
. If we had chosen h = 2, none of the generators would have

divided b2(∞) = (1,∞), so t∗ would equal∞ and the extension would

be

[
1 ∞
0 0

]
. These results can be confirmed by drawing the upper set

U and the block B, and observing the (separate) extensions in the 1
and 2 directions. �

Now suppose that a partial organized block decomposition Pk−1 has
been constructed in a lower set L, and the next inner corner ak has been
selected, perhaps (but not necessarily) by the lexicographic method of
Section 8. The next step is to construct a block Bk with inner cor-
ner ak that is outer-maximal in P k−1. To apply directional extension,
we extend the block successively in the directions h = 1, . . . , n (or a
permutation π of these directions) to produce a sequence of blocks

(9.1) {ak} = Bk
0 ⊆ Bk

1 ⊆ · · · ⊆ Bk
n = Bk

beginning with the singleton block {ak} and terminating with a max-
imal block Bk that does not intersect U or P k−1. Each intermediate
block Bk

h has inner corner ak and outer corner bkh, so that

Bk
h =

[
bkh
ak

]
.

As in the simplified problem above, the subscript h on the bold symbol
bkh does not indicate a component of bk, but instead indicates a new
vector, obtained by moving the previous outer corner bkh−1 as far as
possible in direction h, but now “as far as possible” means without
causing the resulting block to intersect U or a previous block.

33

In order to avoid hitting P k−1 as well as U , we form the set Hk of
temporary generators at stage k, defined by equation (6.5); accord-
ing to Lemma 6.8, a proposed block Bk intersects a previous block if
and only if its outer corner bk is divisible by an element of Hk. This
exactly parallels the fact that Bk intersects U if and only if b is divisi-
ble by a “permanent” generator from G. So we merely combine G with
Hk to form Gk = G ∪ Hk, and proceed as in the special case above.
(For another way to view this, see Remark 9.4 below.) Note that in
step 3 of the following algorithm we proceed from bkh−1 to bkh through
the intermediate steps of bkh(t) and bkh(t

∗); it is only in these interme-
diate steps that bkh is a function that takes an argument (t or t∗). The
algorithm is written for the identity permutation π = ε = (1, . . . , n) of
the extension directions; for the general case see Remark 9.5.

9.3. Algorithm. To create the unique outer-maximal extension Bk

of the singleton block {ak} in P k−1 with extension order π = ε =
(1, . . . , n):

1. Initialize Bk
0 =

[
ak
]

= {ak}, which implies bk0 = ak.

2. Determine the set Hk of temporary generators pjk at stage k
according to (6.5), and create Gk = G ∪Hk.

3. For h = 1, . . . , n, do the following:
a. Replace the h-component of bkh−1 by t and call the result bkh(t).
b. Let Gk

h be the subset of Gk consisting of permanent and tem-
porary generators that divide bkh(∞). (See Remark 9.1.)

c. Let

t∗ =

{
∞ if Gk

h = ∅
min

{
m`
h : m` ∈ Gk

h

}
− 1 otherwise.

d. Set bkh = bkh(t
∗).

e. Repeat with the next h, unless h = n.
4. Set

Bk =

[
bkn
ak

]
and output this as the desired extension of {ak}.

9.4. Remark. Another way to explain the use of Gk = G ∪ Hk is to
say that although P k is not an upper set, 〈Hk〉 is, and Lemma 6.8
implies that Bk intersects P k if and only if it intersects 〈Hk〉. By (3.3),
U ∪ 〈Hk〉 = 〈G〉 ∪ 〈Hk〉 = 〈G ∪Hk〉 = 〈Gk〉. So Bk avoids U ∪ P k−1 if
and only if it avoids 〈Gk〉. �

34

9.5. Remark. To modify Algorithm 9.3 to handle a different extension
order π = (π1, . . . , πn), change line 3 to “For i = 1, . . . , n, set h = πi
and do the following:” The rest of the algorithm needs no changes. �

The first example is easy. More examples appear in Section 10.

9.6. Example. Let U be the upper set in N3 defined by G = {(1, 1, 1)},
which is

U = 〈(1, 1, 1)〉 =

[
∞ ∞ ∞
1 1 1

]
.

The associated lower set L consists of the three coordinate planes µ1 =
0, µ2 = 0, and µ3 = 0 in N3. We will construct the first block B1 of
an organized decomposition for L with extension order π = (1, 2, 3),
by using Algorithm 9.3 with k = 1. For step 1 we have a1 = b1

0 = 0.
For step 2, Lemma 6.7 implies H1 = ∅ because k = 1 implies j = 1..
For step 3 the first time (with h = 1), we have b1

1(t) = (t, 0, 0). This
can never be divisible by (1, 1, 1), so G1

1 = ∅, t∗ = ∞, and b1
0(t
∗) =

(∞, 0, 0). For the second time (with h = 2), b1
2(t) = (∞, t, 0), t∗ =∞,

and b1
2(t
∗) = (∞,∞, 0). For the third time, b1

2(t) = (∞,∞, t). This
is divisible by (1, 1, 1) if t ≥ 1, so t∗ = 0 and b1 = b1

3 = (∞,∞, 0).
(Since G1

3 contains only the one generator (1, 1, 1), its third component
is automatically the minimum called for in step 3c.) This implies that

B1 =

[
∞ ∞
0 0 0

]
.

That is, B1 equals the “floor” of L, which is the µ1µ2 plane or the plane
µ3 = 0. The reader should see that this same result is obvious geomet-
rically without the algorithm: The singleton block can be extended to
infinity in the 1-direction and then in the 2-direction without hitting
U , but after that, cannot be pushed in the 3-direction. �

10. (π,σ)-organized decompositions

Let π and σ be two permutations of (1, . . . , n), which may or may not
be equal. The (π,σ)-organized decomposition of L is the organized
decomposition obtained by using the lexicographic method with order
<σ to determine each inner corner ak and the directional extension
method with extension order π to determine each block Bk. We now
combine Sections 8 and 9 to state the algorithm for the unique (π,σ)-
organized decomposition of L.

10.1. Remark. Since σ is used first (and only once) in the algorithm
below, why do we put π first in (π,σ)? In the first (and ultimately
unsatisfactory) version of this research, π and σ were used alternately,

35

beginning with π (since we already knew a1 = 0 without needing σ).
When we changed the approach, the notation (π,σ) was so solidly
established in all of our examples and communications between co-
authors (often with π and σ expressed numerically) that it was too
late for us to change the notation without producing total confusion. �

10.2. Algorithm. To create the (π,σ)-organized block decomposition
of a lower set L ⊂ Nn:

1. Input the minimal set G of generators of U = Nn r L and the
permutations π and σ of {1, . . . , n}.

2. Find the elementary decomposition of L, either by Algorithm 3.1
of [19] or by Section 4 above.

3. Initialize a dynamic list L of the inner corners of elementary
blocks of L, ordered (from low to high) by the total order <σ.
This list will be updated in step 5d.

4. Set P 0 = ∅.
5. For k = 1, 2, . . . do the following until L is empty:

a. Let ak be the first element of L (the list in its current form).

b. Compute the π-extension Bk of {ak} in P k−1 by Algorithm
9.3, using Remark 9.5 if π 6= ε. (This step includes finding,
and using, the temporary generators pjk for j = 2, . . . , k.)

c. Set Pk = (B1, . . . , Bk) and P k =
⊔
Pk.

d. Delete all elements of L that belong to P k. (This always
includes deleting at least ak).

e. Repeat with the updated list L unless L is empty.
6. Set s = k and output D = Ps as the desired decomposition of L.

The first example completes the calculation begun in Example 9.6.
This example requires no temporary generators, so it does not illustrate
the entire algorithm.

10.3. Example. We will construct the (ε, ε)-organized decomposition
of L for G = 〈(1, 1, 1)〉, showing that the result is

(10.1) D =

([
∞ ∞
0 0 0

]
,

[
∞ ∞
0 0 1

]
,

[
∞ ∞

0 1 1

])
.

The initial list L of inner corners of the elementary decomposition of
L, listed in lexicographic order, is

(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0).

The first block B1, with a1 = 0, has been constructed in Example 9.6,
and is the entire “floor” µ3 = 0, so removing the elements with µ3 = 0
from L leaves

(0, 0, 1), (0, 1, 1), (1, 0, 1).
36

Taking the first element of this updated list as the next inner cor-
ner gives a2 = b2

0 = (0, 0, 1). By Lemma 6.7, there is no temporary
generator p12 to include in the next calculation. (That is, B2 can-
not intersect B1.) Then b2

1(t) = (t, 0, 1), which cannot be divided by
(1, 1, 1) because of its second entry, so t∗ = ∞, b2

1(t
∗) = (∞, 0, 1),

b2
2(t) = (∞, t, 1), t∗ = 0 (since this is divisible by (1, 1, 1) for t ≥ 1),

b2
3(t) = (∞, 0, t), t∗ =∞ (since this can never be divided by (1, 1, 1)),

and b2 = b2
3 = (∞, 0,∞). Therefore

B2 =

[
b2

a2

]
=

[
∞ ∞
0 0 1

]
.

Since this contains (0, 0, 1) and (1, 0, 1), we remove these from L, which
is now reduced to the single element (0, 1, 1), which becomes a3. Again
there are no temporary generators, since p23 does not divide b1 or b2.
The reader can check that for B3, t∗ = 0 for the first time through the
loop (h = 1) and t∗ =∞ for the next two times (h = 2 and 3). These
results for the extension of the singleton blocks {a2} and {a3} can also
be observed geometrically, as in Example 9.6. �

10.4. Remark. In example 10.3, the result does not depend on the
choice of σ in (ε,σ). It can be shown that M1 = {(0, 0, 1)}, so any
choice of σ must select a2 = (0, 0, 1), and the construction of B2 will
be the same as above (since we are still using ε-extension). Again,
M2 = {a3} = {(0, 1, 1)}, so a3 = (0, 1, 1). �

The following example, again in N3, is still easy to picture geometri-
cally but illustrates all of the ideas in the algorithm, including the use
of temporary generators and the effect of changing σ.

10.5. Example. The (ε, ε)- and (ε, ε′)-organized decompositions of L
for G = {(1, 0, 9), (1, 5, 0), (7, 0, 0)}.

We first find the elementary inner corners for L (Section 4). This calls
for sets Si of ith components of generators, with repetitions deleted,
ordered numerically, with an initial zero added to each ordered set if
necessary; the result is

S1 = 0, 1, 7

S2 = 0, 5

S3 = 0, 9.

There are twelve inner corners in N3, from which we drop seven that
are in U . Arranging the remaining five in order by <ε gives the initial
list L of the algorithm as follows:

(10.2) (0, 0, 0), (0, 0, 9), (0, 5, 0), (0, 5, 9), (1, 0, 0).
37

Ordering instead by <ε′ gives L as

(10.3) (0, 0, 0), (1, 0, 0), (0, 5, 0), (0, 0, 9), (0, 5, 9).

For the (ε, ε) decomposition, (10.2) is used for L. The calculations
for B1 can be arranged in a table, listing as “relevant generator” the
generator that divides b1

i (t) if t > t∗:

relevant generator
b1
1(t) = (t, 0, 0) t∗ = 6 (7, 0, 0) b1

1(t
∗) = (6, 0, 0)

b1
2(t) = (6, t, 0) t∗ = 4 (1, 5, 0) b1

2(t
∗) = (6, 4, 0)

b1
3(t) = (6, 4, t) t∗ = 8 (1, 0, 9) b1

3(t
∗) = (6, 4, 8).

Therefore

B1 = B1
3 =

[
6 4 8
0 0 0

]
.

Since (0, 0, 0) and (1, 0, 0) are in B1, these are deleted from (10.2), and
a2 = (0, 0, 9). By Lemma 6.7, p12 does not exist, and there are no
temporary generators at this stage. The first line of the similar table
for B2 is b2

1 = (t, 0, 9), t∗ = 0, with relevant generator (1, 0, 9); the
next two lines each give t∗ =∞, and

B2 =

[
∞ ∞

0 0 9

]
.

Since (0, 0, 9) and (0, 5, 9) are in B2, these are deleted from (10.2), and
a3 = (0, 5, 0). By Lemma 6.7, p1k does not exist. However,

B2 ∩ 〈a3〉 =

[
∞ ∞

0 0 9

]
∩
[
∞ ∞ ∞
0 5 0

]
=

[
∞ ∞

0 5 9

]
,

giving p23 = (0, 5, 9) as a temporary generator, so H2 = {(0, 5, 9)} and
G2 = {(1, 0, 9), (1, 5, 0), (7, 0, 0), (0, 5, 9)}. Then the table for B3 is

relevant generator
b3
1(t) = (t, 5, 0) t∗ = 0 (1, 5, 0) b3

1(t
∗) = (6, 0, 0)

b3
2(t) = (0, t, 0) t∗ =∞ none b3

2(t
∗) = (0,∞, 0)

b3
3(t) = (0,∞, t) t∗ = 8 (0, 5, 9) b3

3(t
∗) = (0,∞, 8).

Therefore

B3 =

[
∞ 8

0 5 0

]
.

Since (0, 5, 0) ∈ B3, it is removed from L, which is now empty, so
the construction is finished. The reader should observe, in a three-
dimensional plot, the collision of B3 with B2 that would occur if the
temporary generator were not not used.

For the (ε, ε′)-organized decomposition, L is given by (10.3). The
computation of B1 is the same as before, but a2 comes out as (0, 5, 0)

38

(which was formerly a3); the calculation is like the previous calculation
of B3, but without the temporary generator. The next inner corner
is a3 = (0, 0, 9), which was a2 before. The same temporary generator
arises, p23 = (0, 5, 9), but it comes from a different intersection than
before. The details are left to the reader; the final result is

(B1, B2, B3) =

([
6 4 8
0 0 0

]
,

[
0 ∞ ∞
0 5 0

]
,

[
4 ∞

0 0 9

])
.

In both cases B2 and B3 lie in the µ2µ3-plane and cover all of it that
is not in B1, but the region is partitioned differently. �

The next example is four-dimensional and will be of interest in later
sections.

10.6. Example. G = {(1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 1, 1)}.
We have computed three organized decompositions for this example,

(ε, ε), (ε′, ε′), and (ε, ε′). The last is the most interesting, as it re-
sembles both the twisted cube (Example 6.6) and the McLagan-Smith
example, and is not subprime. It does not seem that an organized
decomposition of this type exists in less than four dimensions. First
we put on record the three decompositions we found, then sketch the
computation of the interesting one. The (ε, ε) decomposition is([

∞
0 0 0 0

]
,

[
∞ ∞

0 0 0 1

]
,

[
∞ ∞

0 0 1 0

]
,(10.4) [

∞ ∞
0 0 1 1

]
,

[
∞

0 1 0 0

])
.

The (ε′, ε′) decomposition is

(10.5)
([

∞ ∞
0 0

0 0

]
,
[
∞
1

0 0 0

]
,
[

∞ ∞
0

1
0

0

]
,
[

∞ ∞
0

1 1
0

])
.

The (ε, ε′) decomposition is

(10.6)
([
∞
0

0 0 0

]
,
[

∞ ∞
0

1 0
0

]
,
[

∞ ∞
0 0

1 0

]
,
[

∞ ∞
0

0
0

1

])
.

The eight elementary inner corners in L that form the initial list L

are listed in order by <ε′ in the following table. If ak appears under one
of these points, that point becomes the inner corner ak in the (ε, ε′)
decomposition; if Bk appears instead, the point is contained in Bk and
does not become an inner corner.

(0,0,0,0) (1,0,0,0) (0,1,0,0) (0,0,1,0)
a1 B1 a2 a3

(0, 1, 1, 0) (0, 0, 0, 1) (0, 1, 0, 1) (0, 0, 1, 1)
B3 a4 B4 B3

39

For instance, B1 is built on (0, 0, 0, 0) by ε-extension; it includes (1, 0, 0, 0),
which is deleted from L, leaving a2 as (0, 1, 0, 0), and so on across the ta-
ble. After a3 has been found, the temporary generator p23 = (0, 1, 1, 0)
arises and must be used in the computation of B3, which goes as fol-
lows:

relevant generator
b3
1(t) = (t, 0, 1, 0)) t∗ = 0 m3 = (1, 0, 1, 0) b3

1(t
∗) = (0, 0, 1, 0)

b3
2(t) = (0.t.1, 0) t∗ = 0 p23 = (0, 1, 1, 0) b3

2(t
∗) = (0, 0, 1, 0)

b33(t) = (0, 0, t, 0) t∗ =∞ none b1
3(t
∗) = (0, 0,∞, 0)

b34(t) = (0, 0,∞, t) t∗ =∞ none b3
4 = (0, 0,∞,∞),

resulting in

B3 =

[
b3
4

a3

]
=

[
∞ ∞

0 0 1 0

]
.

The remaining details are left to the reader. �

11. Subprime decompositions

It is usual in the literature to speak of “Stanley decompositions that
come from prime filtrations of K[x].” In [19, §5] we called these “prime
Stanley decompositions,” discussed this idea in detail, extended it to
“subprime block decompositions,” and proved a version of Soleyman-
Jahan’s necessary and sufficient condition for a Stanley or block de-
composition to be, respectively, prime or subprime. (Our formulation
differs slightly from that of Soleyman-Jahan, since we work with or-
dered rather than unordered decompositions.) This result is restated
in three ways in Theorem 11.1 below. Then we define a directed graph
associated with any block decomposition, and re-state the Soleyman-
Jahan condition once more in terms of this graph (Theorem 11.2). The
graph makes it quite easy to determine whether a particular block de-
composition is or is not subprime, and whether it can or cannot be
re-ordered so as to become subprime. We use this to investigate the
examples of organized decompositions obtained in previous sections,
and see that some are subprime, some are not but can be re-ordered to
be subprime, and some cannot be so re-ordered. The disjoint union of
the outer adjacent faces of a block B is called its outer adjacent set:

(11.1) OAS(B) =
n⊔
i=1

OAFi(B).

40

11.1. Theorem (Soleyman-Jahan). An (ordered) block decomposition
D = (B1, . . . , Bs) of L is subprime if and only if any one of these
equivalent conditions holds:

1. For each k = 1, . . . , s, the set

Uk = (Bk tBk+1 t · · · tBs) t U
is an upper set.

2. For each k = 1, . . . , s, OAS(Bk) ⊂ Uk+1.

3. For each k = 2, . . . , s−1, the partial decomposition P k =
⊔

Pk =
B1 ∪ · · · ∪Bk is a lower set.

Proof. The first item is a restatement of [19, Thm. 5.2]. The second is
a restatement of [19, Lm. 5.3]. For the third item, we have P k−1tUk =
Nn, so Uk is an upper set if and only if P k is a lower set. �

Let D = (B1, . . . , Bs) be any block decomposition of L. Create
a directed graph Γ with s vertices labeled 1, . . . , s, and an arrow (or
directed edge) from j to k if OAS(Bj) ⊂ Bk. (Here we make an ex-
ception to the rule that j ≤ k). The calculations needed to find Γ are
illustrated in Example 11.4 below.

A re-ordering of D is a new decomposition D′ obtained from D by
permuting the blocks. (Here D is considered as the identity permuta-
tion of itself, so it counts as a re-ordering.) A cycle in Γ is a closed
path or loop through a subset of the vertices, following the arrows. It
is impossible for Γ to have a cycle containing only one or two vertices.

11.2. Theorem. An (ordered) block decomposition D can be re-ordered
so as to be subprime if and only if Γ does not contain a cycle. In
this case the graph determines all possible re-orderings of D that are
subprime.

Proof. Observe first that if no arrows originate from a particular vertex
j, then OAS(Bj) does not intersect any of the blocks Bk, and must be
contained in U . In this case, BjtU is an upper set. On the other hand,
if Bj does have an outward arrow, then OAS(Bj) intersects another
block, is not contained in U , and Bj t U is not an upper set.

If BjtU is an upper set, then LrBj = L′ is a lower set, and deleting
Bj from D gives a block decomposition D′ of L′. The graph G′ of D′

is obtained from G by deleting the vertex j and all arrows leading to
it. If this can be continued until the graph is empty, a re-ordering D∗

has been found that is subprime: the blocks of D should be permuted
into D∗ so that the blocks are added to U beginning with the last block

41

t
t

B2

B1

B3

1
�
�
���

2

@
@
@@R

3
?

Figure 4. The decomposition D2 and its graph.

of D∗ and ending with the first. If this can be done in several ways,
several subprime re-orderings have been found. If a stage is reached
in which every remaining vertex is the source of at least one outward
arrow, no additional block can be added to the upper set, and D has
no subprime re-ordering.

If the (original) graph G of D contains a cycle, every vertex in the
cycle has an outward arrow, and no block in the cycle can be added
to U (or to the growing upper set) before any other. Therefore D

has no subprime re-ordering. Conversely, suppose there is no subprime
re-ordering. Then there must come a time when (perhaps after some
deletions) every vertex has at least one outward arrow. Since every
outward arrow must point to some vertex, and there are finitely many
vertices, there must be a cycle. This cycle has to have been present in
the original graph G, since deleting vertices and arrows from G cannot
produce a cycle. �

The information contained in G may also be presented in a table.
The columns will be labeled 1, . . . , s and the entries in the jth column
are the values of k to which an arrow from j leads. If the jth column
is empty, Bj can be added to U . To iterate, erase each occurrence of j
in the table (both in the column headings and in the entries).

11.3. Example. The decomposition D2 in Section 5 is shown in the
left-hand side of Figure 4. It can be seen that OAF2(B1) intersects
both B2 and B3, while OAF1(B2) intersects B3. Therefore the graph
Γ for D2 is as shown in the right-hand side of Figure 3. The table is as
follows.

1 2 3
2 3
3

The graph and the table both show that there are no cycles, and that
B3 is the only block that can be added to U first (giving an upper set).

42

After doing this, all occurrences of 3 in the table can be deleted, and
B2 can be added to the upper set. Then 2 can be removed, and B1

can be added. Therefore D2 is subprime in the order that it is written,
but not in any other order.

On the other hand, for D3, the graph is 3 ← 1 → 2, and we can
add either B2 or B3 to U first, but must add both before adding B1.
Therefore the subprime re-orderings of D3 are either D3 itself (if B3

is added first), or else D4 (which is already a re-ordering of D3). All
of the decompositions D1, . . . ,D6 in Section 5 are subprime in one or
more rearrangements; D2 and D5 are the only ones whose graph is a
(noncyclic) triangle. �

11.4. Example. The intersection table for the twisted cube (Example
6.6, Figure 3) is

1 2 3 4 5
2 4 2 3
3 5 5 5
4

This table contains the cycle 2 → 4 → 3 → 2, so the twisted cube
cannot be re-ordered to be subprime.

The calculation to establish the “2” column in the intersection table
is as follows.

OAS(B2) = OAF1(B2) ∪ OAF2(B2) ∪ OAF3(B2)

=

[
1

2 0 0

]
∪
[
1 2 0

]
∪
[

1
1 0 1

]
.

Since no point of the unit cube has a coordinate equal to 2, the first
two blocks of OAS(B2) cannot intersect any Bk. We have, by (3.5) and
(3.9),

OAF3(B2) ∩B4 =

[
1

1 0 1

]
∩
[
1
0 0 1

]
=

[
1 0 1

]
6= ∅,

OAF3(B2) ∩B5 =

[
1

1 0 1

]
∩
[
1 1 1

]
=

[
1 1 1

]
6= ∅.

These calculations account for the presence of 4 and 5 in column 2
(or arrows 2 → 4 and 2 → 5 in the associated graph); the other
intersections are empty. Column 4 is similar. Rather than compute
the intersections, it is often quicker to show that an intersection is
nonempty by exhibiting an element, or that it is empty by exhibiting
a contradiction in the requirements for membership. �

43

11.5. Example. The McLagan-Smith decomposition of the lower set
L for G = {(1, 1, 1)} is

(11.2) D =

([
0 0 0

]
,

[
∞ ∞
1 0 0

]
,

[
∞ ∞

0 1 0

]
,

[
∞ ∞
0 0 1

])
.

This was introduced in [14] as a Stanley decomposition that is not
prime. It is inner-minimal but not organized, since its first block is not
outer-maximal. Its intersection table is

1 2 3 4
2 4 2 3
3
4

which is the same as that of the first four blocks of the twisted cube,
that is, the table in Example 11.4 with all occurrences of 5 deleted.
To see this geometrically, expand the twisted cube decomposition (6.1)
to infinity by replacing each 1 in the top row of each block by ∞.
This gives a decomposition of N3, in which the last block is B5 =[
∞ ∞ ∞
1 1 1

]
, which is just the the upper set U for the McLagan-Smith

example. Deleting B5 yields (11.2). Since the cycle 2 → 4 → 3 → 2
in the twisted cube graph does not involve vertex 5, the same cycle
exists in the McLagan-Smith graph, so (11.2) cannot be re-ordered to
be subprime. �

It does not seem possible to find an organized decomposition in 3 di-
mensions having the same geometry as the twisted cube and McLagan-
Smith examples. Neither have we found a (π,σ)-organized decompo-
sition in higher dimensions having that geometry and also satisfying
π = σ. (We have not ruled this out, only failed to find one after a
few tries in dimensions 4 and 5). The next example shows that an
organized decomposition with this geometry does exist in dimension 4
with π 6= σ.

11.6. Example. The 4-dimensional (ε, ε′)-organized decomposition (10.6)
reduces to the McLagan-Smith decomposition (11.2) if the first column
of each block is dropped. The table for (10.6) is exactly the same,

1 2 3 4
2 4 2 3
3
4

which again contains the cycle 2→ 4→ 3→ 2, and the decomposition
cannot be re-ordered to be subprime. �

44

12. Stacked decompositions

Let D be an inner-minimal block decomposition of a lower set L ⊂
Nn. Let Bk and Bj be blocks in D, and i ∈ {1, . . . , n}. We say that
Bk is stacked on Bj in direction i if

(12.1) IFi(Bk) ⊆ OAFi(Bj).

(If the i direction is called “up,” then the “bottom” of Bk rests on the
“top” of Bj.)

12.1. Lemma. If Bk is stacked on Bj in direction i, then ak−ei ∈ Bj,
aki > 0, and j < k.

Proof. Since ak ∈ IFi(Bk), the stacked hypothesis implies ak ∈ OAFi(Bj).
This implies ak − ei ∈ Bj, which implies aki > 0. Since D is inner-
minimal, ak is minimal in L r P k−1, and ak − ei ≺ ak; it follows that
ak−ei ∈ P k−1. Of course ak−ei can only belong to one block in Pk−1,
and this must be the block Bj. Therefore the block Bj that contains
ak − ei must satisfy j < k. �

If, for a particular i, aki = 0, then Bk cannot be stacked on any block
in direction i. In this case the “bottom” of Bk (in the direction i) is
part of the “floor plane” µi = 0. (Then Bk may be loosely regarded as
“stacked on the floor,” but actually its bottom points are part of the
floor.)

At this point we may define a function j = f(k, i) that will be very
useful. Given an inner-minimal decomposition D = (B1, . . . , Bs) of a
lower set L, let k ∈ {1, . . . , s} and let i ∈ {1, . . . , n} such that αki 6= 0.
(Note that these conditions actually exclude k = 1, since a1 = 0 has
no nonzero components). Then ak − ei belongs to some unique block
Bj with j < k, and we define f(k, i) to be this value of j. Note that
f is only defined for a restricted set of (k, i), and may be regarded as
a “partial function” if desired. Now Bf(k,i) is the only block on which
Bk may (or may not) be stacked in direction i.

12.2. Lemma. The the following three conditions are equivalent:

1. Bk is stacked on Bf(k,i) in direction i;
2. for every h 6= i, IEh(Bk) ⊆ OAFi(Bf(k,i));

3. ak − ei ∈ Bf(k,i), and for every h 6= i, bkh ≤ b
f(k,i)
h .

Proof. The equivalence of items (1) and (2) is an immediate conse-
quence of Lemma 3.4. If (2) holds, then OAFi(Bj) is a block containing
these inner edges, and must contain the smallest such block, which is
IFi(Bk). The converse is trivial.

45

For item (3), Lemma 12.1 shows that the condition ak − ei ∈ Bj,
with j = f(k, i), picks out the only block Bj on which Bk might be
stacked in direction i. Since ak ∈ Bk and ak − ei ∈ Bj, it follows that
ak − ei ∈ OFi(Bj). By (3.8),

OFi(Bj) =

[
bj1 · · · bji−1 bji+1 · · · bjn
aj1 · · · aji−1

bji aji+1 · · · ajn

]
.

Therefore the components of ak satisfy

(12.2) ajh ≤ akh ≤ bjh (h 6= i) and aki − 1 = bji .

Now rewrite item (2) using (3.9) and (3.10); we cannot write out every
instance, but if i = 1 then the relevant values of h are those with h > 1,
and the result of the rewriting is[

bkhak1 ak2 . . . akh−1 akh
akh+1 . . . akn

]
⊆[

bj2 · · · bjh−1 bjh bjh+1 · · · bjn
(bj1 + 1) aj2 · · · ajh−1 ajh ajh+1 · · · ajn

]
.

This inclusion is equivalent to the inclusion of each column of the first
matrix (regarded as an interval) in the same column of the second
matrix; for instance, [akh, b

k
h] ⊆ [ajh, b

j
h], which in turn says that ajh ≤ akh

and bkh ≤ bjh. The first of these in proved in (12.2), while the second
is not, but is assumed in item (3). The information in the remaining
columns is contained in (12.2). Therefore (2) is equivalent to (3). �

Next we define what it means for an entire decomposition D to be
stacked (rather than one particular block in D being stacked on another
in a particular direction). We say that D is a stacked decomposition
of lower set L if

1. D is an inner minimal block decomposition of L, and
2. for every k ∈ {1, . . . , s} and for every i such that aki > 0, Bk is

stacked in direction i on the block Bf(k,i). As noted above, we
may assume k ≥ 2.

The following theorem “justifies” the definition of stacked decompo-
sitions (as Theorem 7.2 did for organized decompositions).

12.3. Theorem. A stacked decomposition is subprime.

Proof. Let D = Ps be stacked. By Theorem 11.1, it is sufficient to prove
that each P k, 0 ≤ k ≤ s, is a lower set. Suppose q ∈ P k and p ≺ q;
we must prove p ∈ P k. To do so we consider a sequence p1, . . . ,pv

46

beginning with p1 = q, ending with pv = p, and nonincreasing (under
division partial order ≺) by one unit at each step; that is,

q = p1 � p2 � · · · � pv = p,

with each p(u+1) = pu − ed for some direction d ∈ {1, . . . , n} (where d
may differ at each step). Such sequences always exist, usually in more
than one way, and any of these can be used in the following argument.
We then prove by induction that each pu ∈ P k. Then p = pv ∈ P k,
proving that P k is a lower set.

The first step (that p1 ∈ P k) is already known. So we assume
pu ∈ P k. So we consider p(u+1). Since pu ∈ P k, pu is in some block Bt

of Pk. Since p(u+1) = pu−ed for some d, we first ask whether this point
remains in Bt or moves to a different block. There are three possible
cases (considering all possible directions of motion d).

1. If pu does not belong to any inner face of Bt, then pu+1 remains
in Bt regardless of the direction of motion d. In this case p(u+1)

remains in P k, and the induction step is already completed.
2. If pu belongs to an inner face of Bt, then it may belong to one

or more such inner faces. (For instance the inner corner of Bt

belongs to all such inner faces.) If pu ∈ IFi(Bt) for one or more
directions i, but not for i = d (the direction of motion), then
passing to p(u+1) merely moves the point within each of its inner
faces, so again the point remains in Bt and the induction is
completed as in case 1.

3. If pu ∈ IFi(Bt) for one or more directions i, and one of these
directions is the direction of motion d, then p(u+1) is no longer

in Bt, but has exited Bt through the inner face IFd(Bt). Then
the induction can no longer be completed as in cases 1 and 2.
Instead we use (for the first time) the assumption that D is
stacked, which implies that IFd(Bt) ⊆ OAFd(Bf(t,d)). So since
pu ∈ IFd(Bt) then pu ∈ OAFd(Bf(t,d)), and since pu+1 = pu − ed
then pu+1 ∈ Bf(t,d). Since f(t, d) < t, by Lemma 12.1, and t < k,
we again have pu+1 ∈ Bk and therefore in P k, as desired.

This completes the induction for all cases. �

The next corollary shows that the issue of collisions with previous
blocks does not arise in constructing stacked decompositions.

12.4. Corollary. Let D = Ps be a stacked decomposition. Then Hk = ∅
for each k. That is, there are no temporary generators of the type
needed to prevent intersections with previous blocks.

47

Proof. Suppose that Hk is nonempty. Then there is a point in P k−1

greater than ak. It follows from the proof of Theorem 12.3 that ak ∈
P k−1 (because P k−1 is a lower set). But this contradicts the fact that

ak ∈ P k−1. �

It follows from item 3 of Lemma 12.2 that a stacked decomposition
must satisfy

(12.3) bkh ≤ b
f(k,i)
h

for each k and for each pair i, h ∈ {1, . . . , n} such that aki > 0 and
h 6= i. Now let

ckh = min{bf(k,i)h : aki > 0 and i 6= h}.

Then equation (12.3) is equivalent to bkh < ckh + 1 for each k and h.
Next let

Kk = {(ckh + 1)eh : h = 1, . . . , n}.

12.5. Lemma. The inequalities (12.3) are equivalent to the statement
that bk does not belong to the upper set 〈Kk〉 generated by Kk.

Proof. Both of these say that bk is not divisible by any element of
Kk. �

The important things to notice here are that both Hk and Kk work
in the same way to restrict the size of Bk (namely, by requiring that
bk not be divisible by an element of Hk or Kk); and that Kk imposes
stronger restrictions than Hk (since Hk = ∅ by Corollary 12.4, but Kk

need not be empty).
Recall that in Section 7 we moved from inner-minimal block decom-

positions to organized decompositions by adding an outer-maximality
condition, requiring that any extension (Bk)′ of Bk must intersect ei-
ther P k−1 or U or both. We now make a similar move for stacked
decompositions, but with a different definition of outer-maximality. In
order to avoid confusion with the definition of “outer-maximal,” we
refer to the new condition instead as “maximally-stacked.” A decom-
position D of a lower set L is a maximally-stacked decomposition if
no block Bk of D can be extended to a block (Bk)′ (having the same
inner corner) without intersecting P k−1, intersecting U , or failing to
be stacked on Bf(k,h) in some direction h with akd > 0. (The logi-
cal negation of “every i” in the definition of stacked decomposition is
“some i.”) We can immediately drop the part about intersecting P k−1,
since this is impossible, according to Corollary 12.4.

48

12.6. Lemma. If D = Ps is a maximally-stacked block decomposition
of L, each block of D is a (disjoint) union of blocks of the elementary
block decomposition of L.

Proof. The proof is similar to that of Theorem 7.3, except for the
change in the maximality condition. So there is no change in the first
part of the proof, showing that aki ∈ Si. It remains to prove that
bki + 1 ∈ Si whenever bki < ∞. The proof is by complete induction,
with induction hypothesis that Bj is a union of elementary blocks for
all j < k.

Suppose bki < ∞. Then, as before, the block (Bk
i)′ defined by (7.1)

is an extension of Bk and, because D is maximally-stacked, it must
either intersect U , or fail to be stacked on Bf(k,h) for some direction
h ∈ {1, . . . , n} of stacking.

If (Bk)′ intersects U , then its outer corner bk + ei belongs to U
because U is an upper set. Let F be the unique G-elementary block
containing bk + ei. Then F ⊂ U , since every elementary block lies
entirely in L or in U . Then bk, which is in L, does not belong to F ,
but bk + ei does, so bk + ei ∈ IFi(F). By Lemma 4.1 this implies that
bki + 1 ∈ Si, as desired.

If, instead, (Bk)′ fails to be stacked on Bf(k,h) for some h, then for
that value of h, Bk is stacked on Bf(k,h) but (Bk)′ is not. Fix h to be
such a direction.

First, we write the condition that Bk is stacked on Bf(k,h) in the
form of item 3 of Lemma 12.2, after replacing some the variables. The
stacking direction i is replaced by h (since h is the new stacking direc-
tion), and “for every h 6= i” is replaced by “for every d 6= h”. Now
item three of Lemma 12.2 reads

(12.4) ak − eh ∈ Bf(k,h), and for every d 6= h, bkd ≤ b
f(k,h)
d .

Second, (Bk)′ =

[
bk + ei

ak

]
is not stacked on Bf(k,h). Writing this

condition in the form of item 3 of Lemma 12.2, using the variable in
(12.4) and the correct logical negation, either ak−eh /∈ Bf(k,h) or there

exists d 6= h such that the d component of bk+ei is greater than b
f(k,h)
d .

But ak− eh ∈ Bf(k,h), so there exists d 6= h such that the d component

of bk + ei is greater than b
f(k,h)
d . We will now show that d = i, by

contradiction. Suppose d 6= i. Then the dth component of ei is zero,
so

(12.5) bkd > b
f(k,h)
d if d 6= i (FALSE).

49

Equations 12.4 and 12.5 give a contradiction. Therefore d = i (which
also implies i 6= h). Now use once again the fact that the d component

of bk+ei is greater than b
f(k,h)
d for d 6= h, but this time with d = i 6= h.

The ith component of ei is 1, so we no longer get a contradiction, but
instead obtain

(12.6) bki + 1 > b
f(k,h)
i .

Subtracting 1 from the left-hand side of (12.6) gives bki ≥ b
f(k,h)
i , and

combining this with (12.4) using d = i gives

(12.7) bki = b
f(k,h)
i .

Since f(k, h) < k the inductive hypothesis says that Bf(k,h) is a union of

elementary blocks, and then Corollary 4.4 implies that b
f(k,h)
i + 1 ∈ Si.

By (12.7), bki + 1 ∈ Si as desired. This completes the induction. �

The (π,σ)-stacked decomposition of L is defined to be the outer-
maximal stacked decomposition of L having inner corners chosen by
the lexicographic method using <σ, and blocks built by directional
extension using the order π, with Hk replaced by Kk. The algorithm
for this is as follows.

12.7. Algorithm. To create the (π,σ)-stacked block decomposition of
a lower set L ⊂ Nn:

1. Input the minimal set G of generators of U = Nn r L and the
desired permutations π and σ of {1, . . . , n}.

2. Find the elementary decomposition of L, either by Algorithm 3.1
of [19] or by Section 4 above.

3. Initialize a dynamic list L of the inner corners of elementary
blocks of L, ordered (from low to high) by the total order <σ.
This list will be updated in step 5e.

4. Set P 0 = ∅.
5. For k = 1, 2, . . . do the following until L is empty:

a. Let ak be the first element of L (the list in its current form).
b. Compute ak − ei for each i such that aki > 0, and deter-

mine the (already constructed) block Bf(k,i) to which it be-
longs. From the outer corners bf(k,i) of these blocks, de-

termine ckh = min{bf(k,i)h : aki > 0 and i 6= h} for each
h ∈ {1, . . . , n}, and form the set Kk of points (ckh + 1)eh.

c. Compute the π-extension Bk of {ak} in P k−1 by Algorithm
9.3, with Hk replaced by Kk. (See Remark 9.5 if π 6= ε.)

d. Set Pk = (B1, . . . , Bk) and P k =
⊔
Pk.

50

e. Delete all elements of L that belong to P k. (This always
includes deleting at least ak).

f. Repeat with the updated list L unless L is empty.
6. Set s = k and output D = Ps as the desired decomposition of L.

12.8. Example. The (ε, ε)-stacked decomposition of L for
G = {(1, 0, 9), (1, 5, 0), (7, 0, 0)}. (Compare Example 10.5.)

The first block B1 =

[
6 4 8
0 0 0

]
and the second inner corner a2 =

(0, 0, 9) are the same as in the (ε, ε)-organized case. But B2 is different.
The only positive entry in a2 is the third (i = 3). Then ak − ei = a2−
e3 = (0, 0, 9)− (0, 0, 1) = (0, 0, 8), which belongs to B1, so f(2, 3) = 1,
and this is the only value of the f function. Since b1 = (6, 4, 8), and

b
f(k,i)
h = b1h for each h 6= i (that is, for h = 1, 2), we have b11 = 6 and
b12 = 4. Since there is only one such number for each h, there is no
minimum to take, and c21 = 6 + 1 = 7, c22 = 5. Therefore

K2 = {7e1, 5e2} = {(7, 0, 0), (0, 5, 0)};

these are the points that block the extension of {a2} in the directions
1 and 2. (This is geometrically completely obvious; a2 = (0, 0, 9) rests
on B1, whereas (7, 0, 9) and (0, 5, 9) would overhang B1. With a more
complicated geometry, the algorithm would be necessary.) Taking G
into account shows that (1, 0, 9) blocks the extension of a2 in the 1
direction, so t∗ = 0 as in the organized case, and (7, 0, 0) ∈ K2 has no
effect. But in direction 2, where t∗ = ∞ for the organized decompo-
sition, (0, 5, 0) blocks the extension at t∗ = 4. There is no obstacle in

direction 3, so B2 =

[
4 ∞

0 0 9

]
.

The full (π,σ)-decomposition is given by

D =

([
6 4 8
0 0 0

]
,

[
4 ∞

0 0 9

]
,

[
∞ 9

0 5 0

]
,

[
8 ∞

0 5 10

])
.

Geometrically, this is clear; a3 = (0, 5, 0) as in the organized case, and
the extension in the 3-direction is stopped at 9 by the requirement that
B3 be stacked on B1. The elementary inner corner (0, 5, 9) in (10.2) is
not contained in the first three blocks this time, and remains to form
the inner corner of the fourth block. This stacked decomposition is not
incompressible, as the organized decompositions are, because B3 t B4

is itself a block. �
51

References

[1] Imran Anwar. Janet’s algorithm. Bull. Math. Soc. Sci. Math. Roumanie, 51:11–
19, 2008.

[2] L. J. Billera, R. Cushman, and J. A. Sanders. The stanley decomposition of the
harmonic oscillator. Nederl. Akad. Wetensch. Indag. Math, 50:375–393, 1988.

[3] Emmanuel Briand, Jean-Gabriel Luque, and Jean-Yves Thibon. A complete
set of covariants of the four qubit system. Journal of Physics A, 36:9915–9927,
2003.

[4] David Cox, John Little, and Donal O’Shea. Ideals, Varieties, and Algorithms.
Springer, New York, 1997.

[5] R. Cushman and J. A. Sanders. Nilpotent normal form in dimension 4. In S.-
N. Chow and J. K. Hale, editors, Dynamics of Infinite Dimensional Systems,
volume F37 of NATO ASI series, pages 61–66. Springer, Berlin, 1987.

[6] R. Cushman and J. A. Sanders. A survey of invariant theory applied to normal
forms of vectorfields with nilpotent linear part. In Dennis Stanton, editor,
Invariant Theory and Tableaux, pages 82–106. Springer, New York, 1990.

[7] R. Cushman, J. A. Sanders, and N. White. Normal form for the (2;n)-nilpotent
vector field, using invariant theory. Physica D, 30:399–412, 1988.

[8] Art M. Duval, Bennet Goeckner, Caroline J. Klivans, and Jeremy L. Martin.
A non-partitionable Cohen-Macauley simplicial complex. Advances in Mathe-
matics, 299:381–395, 2016.

[9] Grace Gachigua, David Malonza, and Johana Sigey. Normal form for systems
with linear part N3(n). Applied Mathematics, 3:1641–1647, 2012. Since several
journals have the same name, this one has ISSN 2152-7385 (print), 2152-7393
(online).

[10] Grace Gachigua, David Malonza, and Johana Sigey. Ring of invariants sys-
tems with linear part N3(n) . American International Journal of Contemporary
Research, 2(11):86–99, 2012.

[11] Karin Gatermann. Computer Algebra Methods for Equivariant Dynamical Sys-
tems. Number 1728 in Lecture Notes in Mathematics. Springer, New york,
2000.

[12] Bogdan Ichim, Kukas Katthan, and Julio Jose Moyano-Fernandez. Stanley
depth and the lcm-lattice. Journal of combinatorial theory Series A, 150:295–
322, 2017.

[13] David Malonza. Normal forms for coupled Takens-Bogdanov systems. Journal
of Nonlinear Mathematical Physics, 11:376–398, 2004.

[14] Diane McLagan and Greg Smith. Uniform bounds on multigraded regularity.
J. Alg. Geo., pages 137–164, 2005.

[15] James Murdock. On the structure of nilpotent normal form modules. Journal
of Differential Equations, 180:198–237, 2002. Errata in Lemma 4: s should be
the minimum weight of the two chain tops, not the minimum length of the
chains; the transvectant is undefined, not zero, when i > s.

[16] James Murdock. Normal Forms and Unfoldings for Local Dynamical Systems.
Springer, New York, 2003. Lemma 6.4.3 is occasionally incorrect, so the method
of §6.4 should be replaced by that of [18].

[17] James Murdock. Box products in nilpotent normal form theory: The factoring
method. Journal of Differential Equations, 260:1010–1077, 2016.

52

[18] James Murdock and David Malonza. An improved theory of asymptotic un-
foldings. Journal of Differential Equations, 247:685–709, 2009.

[19] James Murdock and Theodore Murdock. Block Stanley decompositions I: The
elementary and gnomon decompositions. Journal of Pure and Applied Algebra,
219:2189–2205, 2015.

[20] James Murdock and Jan A. Sanders. A new transvectant algorithm for nilpo-
tent normal forms. Journal of Differential Equations, 238:234–256, 2007.

[21] W. Plesken and D. Robertz. Janet’s approach to presentations and resolutions
for polynomials and linear pdes. Archiv der Mathematik, 84:22–37, 2005.

[22] Jan Sanders, Ferdinand Verhulst, and James Murdock. Averaging Methods in
Nonlinear Dynamical Systems. Springer, New York, 2007.

[23] Jan A. Sanders. Stanley decomposition of the joint covariants of three quadrat-
ics. Regular and Chaotic Dynamics, 12:732–735, 2007.

[24] Fritz Schwarz. Loewy decomposition of linear differential equations. Bulletin
of Mathematical Sciences, 3:19–71, 2013.

[25] Ali Soleyman-Jahan. Prime filtratins of monomial ideals and polarizations.
Journal of Algebra, 312:1011–1032, 2007.

[26] B. Sturmfels and N. White. Computing combinatorial decompositions of rings.
Combinatorica, 11:275–293, 1991.

53

	6-26-2017
	Block Stanley Deompositions II. Greedy Algorithms, Applications and Open Problems
	James Murdock
	Theodore Murdock

	tmp.1500467344.pdf.7Ze5R

