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On the multiple unicast capacity of 3-source,
3-terminal directed acyclic networks
Shurui HuangStudent Member, IEEEand Aditya Ramamoorthy,Member, IEEE

Abstract—We consider the multiple unicast problem with three
source-terminal pairs over directed acyclic networks with unit-
capacity edges. The threesi − ti pairs wish to communicate
at unit-rate via network coding. The connectivity between the
si − ti pairs is quantified by means of a connectivity level
vector, [k1 k2 k3] such that there exist ki edge-disjoint paths
betweensi and ti. In this work we attempt to classify networks
based on the connectivity level. It can be observed that unit-
rate transmission can be supported by routing ifki ≥ 3, for all
i = 1, . . . , 3. In this work, we consider, connectivity level vectors
such that mini=1,...,3 ki < 3. We present either a constructive
linear network coding scheme or an instance of a network that
cannot support the desired unit-rate requirement, for all such
connectivity level vectors except the vector[1 2 4] (and its
permutations). The benefits of our schemes extend to networks
with higher and potentially different edge capacities. Specifically,
our experimental results indicate that for networks where the
different source-terminal paths have a significant overlap, our
constructive unit-rate schemes can be packed along with routing
to provide higher throughput as compared to a pure routing
approach.

I. I NTRODUCTION

In a network that supports multiple unicast, there are several
source terminal pairs; each source wishes to communicate with
its corresponding terminal. Multiple unicast connections form
bulk of the traffic over both wired and wireless networks.
Thus, network coding schemes that can help improve network
throughput for multiple unicasts are of considerable interest.
However, it is well recognized that the design of constructive
network coding schemes for multiple unicasts is a hard prob-
lem when compared with the case of multicast that is very well
understood [1], [2], [3]. Specifically, it is known that there are
instances of networks where linear (whether scalar or vector)
network coding is insufficient [4].

The multiple unicast problem has been examined for both
directed acyclic networks [5], [6], [7], [8], [9], [10], [11], [12],
[13], [14], [15] and undirected networks [16] in previous work.

The work of [6], provides an information theoretic charac-
terization for directed acyclic networks. However, this bound
is not computable. The work of [7] proposes an outer bound
for general directed networks. However, this bound is hard
to evaluate even for small networks due to the large number
of inequalities involved. There have been attempts to find
constructive schemes leveraging network coding between pairs
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of sources [8], [9]. Numerous works consider restricted cases
such as unicast with two sessions [10], [11], [12], [13] and
unicast with three sessions [14], [15], [17]. We discuss the
related work in detail in Section II.

In this work we consider network coding for wired three-
source, three-terminal directed acyclic networks with unit
capacity edges. There are source-terminal pairs denotedsi −
ti, i = 1, . . . , 3, such that the maximum flow fromsi to
ti is ki. Each source contains a unit-entropy message that
needs to be communicated to the corresponding terminal. In
this work, for a given connectivity level vector[k1 k2 k3]
we attempt to either design a constructive scheme based on
linear network codes or demonstrate an instance of a network
where supporting unit-rate transmission is impossible. Our
achievability schemes use a combination of random linear
network coding and appropriate precoding. Our solutions are
based on either scalar or vector network codes that operate
over at most two time units (i.e., two network uses). This
is useful, as one can arrive at multiple unicast schemes for
arbitrary rates by packing unit-rate structures for which our
achievability schemes apply.
Main Contributions

• For the case of three unicast sessions with unit rates, we
identify certain feasible and infeasible connectivity levels
[k1 k2 k3]. For the feasible cases, we construct schemes
based on linear network coding. For the infeasible cases, we
provide counter-examples, i.e., instances of graphs where the
multiple unicast cannot be supported under any (potentially
nonlinear) network coding scheme.
• We provide experimental results that demonstrate that our
feasible schemes for unit-rate are useful for networks with
higher capacity edges. Specifically, we demonstrate classes
of networks with higher capacity edges, wherepackingour
unit-rate schemes allows us to achieve transmission rates that
are strictly greater than those achieved by pure routing.

This paper is organized as follows. Section II contains an
overview of related work. In Section III, we introduce the
network coding model and problem formulation. Section IV
discusses infeasible instances, and Section V discusses our
achievable schemes for 3-source, 3-terminal multiple unicast
networks. Section VI presents simulation results on networks
with higher capacity edges and Section VII concludes the
paper with a discussion of future work.

II. BACKGROUND AND RELATED WORK

It is well-recognized that network coding for multiple
unicast is significantly harder than the network coding for
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multicast. The work of [1] establishes an equivalence between
network coded multicast and the problem of solving systems
of linear equations. In the same paper, they also point out that
for multiple unicast, one also needs to somehow decode the
intended message in the presence of undesired interference.
In general, it is intractable to find network code assignments
that simultaneously allow the intended message to be decoded
while mitigating the interference. In fact, it is known thatlinear
codes are insufficient for the multiple unicast problem [4].

In this work our focus is exclusively on multiple unicast
for directed acyclic networks (see [16] for the undirected
case). Previous work in this domain includes the work of
[6] that presents an information theoretic characterization of
the capacity region. However, in practice this bound is not
computable due to the lack of upper bounds on the cardinality
of the alphabets of the random variables involved in the
characterization. Moreover, even for small sized networks,
the number of inequalities involved is very large. Similar
issues exist with the outer bound of [7]. There have been
numerous works on achievable schemes for multiple unicast.
The butterfly network with two unicast sessions is an instance
where there is clear advantage to performing network coding
over routing. Accordingly Traskov et al. [8] proceed by
packing butterfly networks for general multiple unicast. Hoet
al. [9] propose an achievable region by using XOR coding
coupled with back-pressure algorithms. Multiple unicast in
the presence of link faults and errors, under certain restricted
(though realistic) network topologies has been studied in
[18][19].

Further progress has been made in certain restricted classes
of problems. For instance, an improved outer bound (GNS
bound) over the network sharing outer bound for two-unicastis
proposed in [12]. Price et al. [13] also propose an outer bound
for two-unicast and demonstrate a network for which the outer
bound is the exact capacity region. For two-unicast, Wang
et al. [10] (also see [20]) present a necessary and sufficient
condition for unit-rate transmission and the work of [11] and
[21] propose an achievable region for general rates.

Some recent work deals with the case of three unicast
sessions, which is also the focus of our work. The work of
[14] and [15] use the technique of interference alignment
(proposed in [22]) for multiple unicast. Roughly speaking
they use random linear network coding and design appropriate
precoding matrices at the source nodes that allow undesired
interference at a terminal to be aligned. However, their ap-
proach requires several algebraic conditions to be satisfied
in the network. It does not appear that these conditions can
be checked efficiently. There has been a deeper investigation
of these conditions in [17]. Our work is closest in spirit to
these papers. Specifically, we also examine network coding
for the three-unicast problem. However, the problem setting
is somewhat different. Considering networks with unit ca-
pacity edges and given the maximum-flowki between each
source (si) - terminal (ti) pair we attempt to either design
a network code that allows unit-rate communication between
each source-terminal pair, or demonstrate an instance of a
network where unit-rate communication is impossible. Our
achievability schemes for unit rate are useful since they can be

packed into networks with higher capacity edges. Furthermore,
these schemes require vector network coding over at most two
time units, unlike the work of [14] and [15], that require a
significantly higher level of time-expansion.

III. PRELIMINARIES

We represent the network as a directed acyclic graphG =
(V,E). Each edgee ∈ E has unit capacity and can transmit
one symbol from a finite field of sizeq per unit time (we are
free to chooseq large enough). If a given edge has higher
capacity, it can be treated as multiple unit capacity edges.A
directed edgee between nodesi andj is represented as(i, j),
so thathead(e) = j and tail(e) = i. A path between two
nodesi andj is a sequence of edges{e1, e2, . . . , ek} such that
tail(e1) = i, head(ek) = j and head(ei) = tail(ei+1), i =
1, . . . , k − 1. The network contains a set ofn source nodes
si andn terminal nodesti, i = 1, . . . n. Each source nodesi
observes a discrete integer-entropy source, that needs to be
communicated to terminalti. Without loss of generality, we
assume that the source (terminal) nodes do not have incoming
(outgoing) edges. If this is not the case one can always
introduce an artificial source (terminal) node connected tothe
original source (terminal) node by an edge of sufficiently large
capacity that has no incoming (outgoing) edges.

We now discuss the network coding model under consider-
ation in this paper. For the sake of understanding the model,
suppose for now that each source has unit-entropy, denoted
by Xi (as will be evident, in the sequel we work with integer
entropy sources). In scalar linear network coding, the signal
on an edge(i, j) is a linear combination of the signals on the
incoming edges ofi or the source signals ati (if i is a source).
We shall only be concerned with networks that are directed
acyclic and can therefore be treated as delay-free networks[1].
Let Yei (such thattail(ei) = k andhead(ei) = l) denote the
signal on edgeei ∈ E. Then, we have

Yei =
∑

{ej |head(ej)=k}

fj,iYej if k ∈ V \{s1, . . . , sn}, and

Yei =
n∑

j=1

aj,iXj whereaj,i = 0 if Xj is not observed atk.

The coefficientsaj,i and fj,i are from the operational field.
Note that since the graph is directed acyclic, it is equivalently
possible to expressYei for an edgeei in terms of the sources
Xj ’s. If Yei =

∑n

k=1 βei,kXk then we say that the global
coding vector of edgeei is βei

= [βei,1 · · · βei,n]. We shall
also occasionally use the term coding vector instead of global
coding vector in this paper. We say that a nodei (or edgeei)
is downstream of another nodej (or edgeej) if there exists a
path fromj (or ej) to i (or ei).

Vector linear network coding is a generalization of the scalar
case, where we code across the source symbols in time, and the
intermediate nodes can implement more powerful operations.
Formally, suppose that the network is used overT time units.
We treat this case as follows. Source nodesi now observes
a vector source[X(1)

i . . . X
(T )
i ]. Each edge in the original

graph is replaced byT parallel edges. In this graph, suppose
that a nodej has a set ofβinc incoming edges over which
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it receives a certain number of symbols, andβout outgoing
edges. Under vector network coding, nodej chooses a matrix
of dimensionβout×βinc. Each row of this matrix corresponds
to the local coding vector of an outgoing edge fromj.

Note that the general multiple unicast problem, where
edges have different capacities and the sources have different
entropies can be cast in the above framework by splitting
higher capacity edges into parallel unit capacity edges and
a higher entropy source into multiple, collocated unit-entropy
sources. This is the approach taken below.

An instance of the multiple unicast problem is specified by
the graphG and the source terminal pairssi−ti, i = 1, . . . , n,
and is denoted< G, {si − ti}

n
1 , {Ri}

n
1 >, where the integer

ratesRi denote the entropy of theith source. Thesi − ti
connections will be referred to as sessions that we need to
support.

Let the sources atsi be denoted asXi1, . . . , XiRi
. The in-

stance is said to have a scalar linear network coding solution if
there exist a set of linear encoding coefficients for each node in
V such that each terminalti can recoverXi1, . . . , XiRi

using
the received symbols at its input edges. Likewise, it is saidto
have a vector linear network coding solution with vector length
T if the network employs vector linear network codes and each
terminalti can recover[X(1)

i1 . . . X
(T )
i1 ], . . . , [X

(1)
iRi

. . . X
(T )
iRi

].
If the instance has either a scalar or a vector network coding
solution, we say that it is feasible.

We will also be interested in examining the existence of a
routing solution, wherever possible. In a routing solution, each
edge carries a copy of one of the sources, i.e., each coding
vector is such that at most one entry takes the value1, all
others are0. Scalar (vector) routing solutions can be defined
in a manner similar to scalar (vector) network codes. We now
define some quantities that shall be used throughout the paper.

Definition 1: Connectivity level.The connectivity level for
source-terminal pairsi−ti is said to beβ if the maximum flow
betweensi andti in G is β. The connectivity level of the set of
connectionss1 − t1, . . . , sn − tn is the vector[max-flow(s1 −
t1) max-flow(s2 − t2) . . . max-flow(sn − tn)].

In this work our aim is to characterize the feasibility of the
multiple unicast problem based on the connectivity level of
the si − ti pairs. The questions that we seek to answer are
of the following form - suppose that the connectivity level is
[k1 k2 . . . kn]. Does any instance always have a linear (scalar
or vector) network coding solution? If not, is it possible to
demonstrate a counter-example, i.e, an instance of a graphG
andsi − ti’s such that recovering thei-th source atti for all
i is impossible under linear (or nonlinear) strategies?

We conclude this section by observing that a multiple
unicast instance< G, {si− ti}n1 , {1, 1, . . . , 1} > with connec-
tivity level [n n . . . n] is always feasible. LetXi, i = 1, . . . , n
denote thei-th unit entropy source. We employ vector routing
over n time units. Sourcesi observes[X(1)

i . . . X
(n)
i ]

symbols. Each edgee in the original graphG is replaced
by n parallel edges,e1, e2, . . . , en. Let Gα represent the
subgraph of this graph consisting of edges with superscript
α. It is evident that max-flow(sα − tα) = n over Gα. Thus,
we transmitX(1)

α , . . . , X
(n)
α over Gα using routing, for all

α = 1, . . . , n. It is clear that this strategy satisfies the demands

of all the terminals. In general, though a network with the
above connectivity level may not be able to support a scalar
routing solution.

IV. N ETWORK CODING FOR THREE UNICAST SESSIONS-
INFEASIBLE INSTANCES

It is clear based on the discussion above that for three
unicast sessions if the connectivity level is[3 3 3], then a
vector routing solution always exists. We investigate counter-
examples for certain connectivity levels in this section.

Lemma 2:There exist multiple unicast instances with three
unicast sessions,< G, {si − ti}3i=1, {1, 1, 1} > such that the
connectivity levels[2 2 2] and [1 1 3] are infeasible.

Proof: The examples are shown in Figs. 1(a) and
1(b). In Fig. 1(a), the cut specified by the set of nodes
{s1, s2, s3, v1, v2} has a value of two, while it needs to support
a sum rate of three. Similarly in Fig. 1(b), the cut{s1, s2, v1}
has a value of one, but needs to support a rate of two.

s1 s2 s3

t1 t2 t3

e1 e2

v1

v4v3

v2

(a)

s1 s2

t1t2

s3

t3

e1

v2

v1

(b)

Fig. 1. (a) An example of[2 2 2] connectivity network without a network
coding solution. (b) An example of[1 1 3] connectivity network without a
network coding solution.

While the cutset bound is useful in the above cases, there
exist certain connectivity levels for which a cut set bound is
not tight enough. We now present such an instance in Fig. 2.
This instance was also presented in [11], though the authors
did not provide a formal proof of this fact.

Lemma 3:There exists a multiple unicast instance, with
two sessions< G, {s1−t1, s2−t2}, {2, 1} > with connectivity
level [2 3] that is infeasible.

Proof: The graph instance is shown in Fig. 2. As-
sume that inn time units, s1 observes two vector sources
[X

(1)
1 . . . X

(n)
1 ] and[X(1)

2 . . . X
(n)
2 ], s2 observes one vector

source [X(1)
3 . . . X

(n)
3 ]. The sources are denoted asXn

1 ,
Xn

2 and Xn
3 and are independent. Then symbols that are

transmitted over edge(i, j) are denoted byY n
ij . Suppose that

the alphabet ofXi is X . Since the entropy rates for the three
sources are the same, we assumeH(Xi) = log |X | = a. Also,
since we are interested in the feasibility of the solution, we
assume that the alphabet size ofYij is also the same asX ,
andH(Yij) ≤ log |X | = a by the capacity constraint of the
edge. At terminalt1 and t2, from Y n

11, Y n
12, Y n

21 andY n
22, we

estimateXn
1 , Xn

2 and Xn
3 . Let the estimate be denoted as

X̂n
1 , X̂n

2 andX̂n
3 . Suppose that there exist network codes and

decoding functions such thatP ((X̂n
1 , X̂

n
2 ) 6= (Xn

1 , X
n
2 )) → 0
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s1

t1

s2

t2

e11

e22

e12

e21

e20

1 2
[ , ]

n n
X X

3

n
X

Fig. 2. An example of[2 3] connectivity network, rate{2, 1} cannot be
supported.

as n → ∞. For successful decoding att1, using Fano’s
inequality, we have

H(Xn
1 , X

n
2 |X̂

n
1 , X̂

n
2 ) ≤ nǫn. (1)

where nǫn = 1 + 2nPe log(|X |), Pe = P ((X̂n
1 , X̂

n
2 ) 6=

(Xn
1 , X

n
2 )) andǫn → 0 asn → ∞. The topological structure

of the network implies that̂Xn
1 , X̂

n
2 are functions ofY n

12 and
Y n
22. Hence, we have

H(Xn
1 , X

n
2 |Y

n
12, Y

n
22) = H(Xn

1 , X
n
2 |X̂

n
1 , X̂

n
2 , Y

n
12, Y

n
22)

≤ H(Xn
1 , X

n
2 |X̂

n
1 , X̂

n
2 ) ≤ nǫn.

(2)

SinceH(Y n
12, Y

n
22) ≤ 2an, using eq. (2) and the independence

of Xn
1 , Xn

2 andXn
3 , by Claim 19 (see Appendix), we have

an− nǫn ≤ H(Xn
3 |Y

n
12, Y

n
22) ≤ an, and (3)

H(Y n
12, Y

n
22|X

n
3 ) ≥ 2an− 2nǫn. (4)

Next, we have

H(Y n
21, Y

n
22)

(a)
= H(Xn

3 , Y
n
21, Y

n
22)−H(Xn

3 |Y
n
21, Y

n
22)

(b)
= H(Xn

3 , Y
n
21)−H(Xn

3 |Y
n
21, Y

n
22)

(c)

≤ 2an−H(Xn
3 |Y

n
21, Y

n
22, Y

n
20, Y

n
12, X

n
1 , X

n
2 )

(d)
= 2an−H(Xn

3 |Y
n
22, Y

n
20, Y

n
12, X

n
1 , X

n
2 )

(e)
= 2an−H(Xn

3 |Y
n
22, X

n
1 , X

n
2 , Y

n
12)

(f)
= 2an−H(Xn

3 |Y
n
22, Y

n
12) + I(Xn

3 ;X
n
1 , X

n
2 |Y

n
22, Y

n
12)

≤ 2an−H(Xn
3 |Y

n
22, Y

n
12) +H(Xn

1 , X
n
2 |Y

n
22, Y

n
12)

(g)

≤ 2an− an+ nǫn + nǫn = an+ 2nǫn,

(5)

where (a) follows from the chain rule, (b) holds becauseY n
22

is a function ofXn
3 and Y n

21, (c) follows from the capacity
constraints and the fact that conditioning reduces entropy, (d)
follows asY n

21 is a function ofY n
12 andY n

20, (e) is due to the
fact thatY n

20 is a function ofXn
1 andXn

2 , (f) follows from
the definition of mutual information, and (g) is a consequence
of eq. (2) and eq. (3). The above inequalities indicate thate21
ande22 need to carry the same information asymptotically for
successful decoding att1.

From the network, we know thatY n
12 is a function ofY n

11

andXn
3 . This implies that

H(Y n
11, Y

n
21, Y

n
22|X

n
3 ) = H(Y n

11, Y
n
21, Y

n
22, X

n
3 |X

n
3 )

≥ H(Y n
12, Y

n
21, Y

n
22|X

n
3 )

≥ H(Y n
22, Y

n
12|X

n
3 )

(a)

≥ 2an− 2nǫn,

(6)

where (a) is due to eq. (4). Finally, we have

H(Xn
3 |Y

n
11, Y

n
21, Y

n
22)

= H(Y n
11, Y

n
21, Y

n
22|X

n
3 ) +H(Xn

3 )−H(Y n
22, Y

n
21, Y

n
11)

(a)

≥ 2an− 2nǫn + an−H(Y n
22, Y

n
21)−H(Y n

11|Y
n
22, Y

n
21)

(b)

≥ 3an− 2nǫn − an− 2nǫn −H(Y n
11|Y

n
22, Y

n
21)

(c)

≥ 2an− 4nǫn − an = an− 4nǫn,

(7)

where (a) is due to eq. (6), (b) is because of eq. (5) and (c)
holds because of the capacity constraint onY n

11. This implies
that t2 cannot decodeXn

3 with an asymptotically vanishing
probability of error.

Corollary 4: There exists a multiple unicast instance with
three sessions, and connectivity level[2 3 2] that is infeasible.

Proof: Consider the instance< G, {s′i− t′i}
3
1, {1, 1, 1} >,

where G is the graph in Fig. 2. The sourcess′1 and s′3
are collocated ats1 (in G), and the terminalst′1 and t′3 are
collocated att1 (in G). Likewise, the sources′2 and terminal
t′2 are located ats2 and t2 in G. The three sessions have
connectivity level[2 3 2]. Based on the arguments in Lemma
3, there is no feasible solution for this instance.

The previous example can be generalized to an instance
with two unicast sessions with connectivity level[n1 n2] that
cannot support ratesR1 = n1, R2 = n2 − 3n1/2 + 1 when
n2 ≥ 3n1/2 andn1 > 1.

Theorem 5:For a directed acyclic graphG with two s− t
pairs, if the connectivity level for(s1, t1) is n1, for (s2, t2) is
n2, wheren2 ≥ 3n1/2 andn1 > 1, there exist instances that
cannot supportR1 = n1 andR2 = n2 − 3n1/2 + 1.

Proof: Provided in the supplementary documentation.

V. NETWORK CODING FOR THREE UNICAST SESSIONS-
FEASIBLE INSTANCES

It is evident that there exist instances with connectivity
level [2 2 3] (and component-wise lower) that are infeasible.
Therefore, the possible instances that are potentially feasible
are [1 3 3] and [1 2 4], or their permutations and connectivity
levels that are greater than them. In the discussion below, we
show that all the instances with the connectivity levels[1 3 3],
[2 2 4] and [1 2 5] are feasible using linear network codes.
Our work leaves out one specific connectivity level vector,
namely [1 2 4] for which we have been unable to provide
either a feasible network code or a network topology where
communicating at unit rate is impossible.

As pointed out by the work of [1], under linear network
coding, the case of multiple unicast requires (a) the transfer
matrix for each source-terminal pair to have a rank that is high
enough, and (b) the interference at each terminal to be zero.
Under random linear network coding, it is possible to assert
that the rank of any given transfer matrix from a sourcesi
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to a terminaltj has w.h.p. a rank equal to the minimum cut
betweensi andtj ; however, in general this is problematic for
satisfying the zero-interference condition.

Our strategies rely on a combination of graph-theoretic and
algebraic methods. Specifically, starting with the connectivity
level of the graph, we use graph theoretic ideas to argue that
the transfer matrices of the different terminals have certain
relationships. The identified relationships then allow us to
assert that suitable precoding matrices that allow each terminal
to be satisfied can be found. A combination of graph-theoretic
and algebraic ideas were also used in the work of [23],
where the problem of multicasting finite field sums over wired
networks was considered. However, there are some crucial
differences. Reference [23] considered a multicast situation;
thus, the issue of dealing with interference did not exist. As
will be evident, a large part of the effort in the current work
is to demonstrate that the terminals can decode their intended
message in the presence of the interfering messages.

We begin with the following definitions.
Definition 6: Minimality. Consider a multiple unicast in-

stance< G = (V,E), {si − ti}
n
1 , {1, . . . , 1} >, with

connectivity level [k1 k2 . . . kn]. The graphG is said to
be minimal if the removal of any edge fromE reduces the
connectivity level. IfG is minimal, we will also refer to the
multiple unicast instance as minimal.
Clearly, given a non-minimal instanceG = (V,E), we can
always remove the non-essential edges from it, to obtain the
minimal graphGmin. This does not affect connectivity. A
network code forGmin = (V,Emin) can be converted into
a network code forG by simply assigning the zero coding
vector to the edges inE\Emin.

Definition 7: Overlap edge.An edge e is said to be an
overlap edge for pathsPi andPj in G, if e ∈ Pi ∩ Pj .

Definition 8: Overlap segment.Consider a set of edges
Eos = {e1, . . . , el} ⊂ E that forms a path. This path is called
an overlap segment for pathsPi andPj if
(i) ∀k ∈ {1, . . . , l}, ek is an overlap edge forPi andPj ,
(ii) none of the incoming edges into tail(e1) are overlap edges

for Pi andPj , and
(iii) none of the outgoing edges leaving head(el) are overlap

edges forPi andPj .
Our solution strategy is as follows. We first convert the original
instance into anotherstructuredinstance where each internal
node has at most degree three (in-degree + out-degree). We
then convert this new instance into a minimal one, and develop
the network code assignment algorithm. This network code,
can be converted into a network code for the original instance.

Following [24] we can efficiently construct astructured
graph Ĝ = (V̂ , Ê) in which each internal nodev ∈ V̂ is
of total degree at most three with the following properties.
(a) Ĝ is acyclic.
(b) For every source (terminal) inG there is a corresponding

source (terminal) inĜ.
(c) For any two edge disjoint pathsPi andPj for one unicast

session inG, there exist twovertexdisjoint paths inĜ
for the corresponding session in̂G.

(d) Any feasible network coding solution in̂G can be effi-
ciently turned into a feasible network coding solution in

G.
In all the discussions below, we will assume that the graph
G is structured. It is clear that this is w.l.o.g. based on the
previous arguments.

A. Code Assignment Procedure For Instances With Connec-
tivity Level [1 3 3]

We begin by showing some basic results for two-unicast.
The three unicast result follows by applying vector network
coding over two time units and using the two-unicast results.

Lemma 9:A minimal multiple unicast instance< G, {s1−
t1, s2 − t2}, {1,m} > with connectivity level[1 m + 1] is
always feasible.

Proof: Denote the path froms1 to t1 asP1 = {P11}, and
the m + 1 paths froms2 to t2 as P2 = {P21, . . . , P2m+1}.
The information that needs to be transmitted froms1 is X1,
and the information that needs to be transmitted froms2 is
X21, . . . , X2m. We assume thatP11 overlaps with all paths
in P2. Otherwise, ifP11 overlaps withn paths inP2 where
0 ≤ n < m+ 1, w.l.o.g, assume they areP21, . . . , P2n. Then
X2n, . . . , X2m can be simply transmitted over the overlap free
pathsP2n+1, . . . , P2m+1, and the problem reduces to commu-
nicatingX1 andX21, . . . , X2n−1 overP11 ∪P21 ∪ · · · ∪ P2n,
which corresponds to the statement of the theorem withm
replaced byn − 1. Hence, we focus on the case thatP11

overlaps with all paths inP2.
We assume that the local coding vectors for each edge are

indeterminates for now. Sources2 uses a precoding matrix
Θ; the rows ofΘ specify the coding vectors on the outgoing
edges ofs2. The choice of the local coding vectors andΘ is
discussed below. The transmitted symbol on the outgoing edge
from s2 belonging toP2i is [θi1 · · · θim][X21 · · · X2m]T

wherei = 1, . . . ,m+1. Let θj = [θ1j · · · θ(m+1)j ]
T where

j = 1, . . . ,m.
As P11 overlaps with all paths onP2, there will be many

overlap segments onP11. LetEos1 denote the overlap segment
that is closest tot1 (under the topological order imposed by the
directed acyclic nature of the graph) alongP11 and suppose
that it is onP21. A key observation is thatEos1 is also the
overlap segment onP21 that is closest tot2. Indeed if there
is another overlap segmentE′

os1 that is closer tot2 along
P21, then it implies the existence of a cycle in the graph. Let
the coding vectors at each intermediate node be specified by
indeterminates for now.

The overall transfer matrix from the pair of sources{s1, s2}
to t1 can be expressed as

[M11 | M12] = [α1 | γ11 · · · γ1(m+1)].

Similarly, the transfer matrix from the pair of sources{s1, s2}
to t2 can be expressed as

[M21 | M22] =




α1 γ11 · · · γ1(m+1)

α2 γ21 · · · γ2(m+1)

...
...

. . .
...

αm+1 γ(m+1)1 · · · γ(m+1)(m+1)


 .

The received vector at terminal ti is therefore

[Mi1 | Mi2]

[
X1

Θ[X21 · · ·X2m]T

]
. The variables α′

is



6

and γ′
ijs in the above matrices depend on the indeterminate

local coding vectors and are therefore undetermined at this
point.

We emphasize that the first row of[M21 | M22] is the same
as [M11 | M12]. As there exists a single path betweens1
and t1, it is clear thatα1 is not identically zero. Similarly,
as there arem + 1 edge-disjoint paths betweens2 to t2, we
have thatdet(M22) is not identically zero. Now suppose that
we employ random linear network coding at all nodes. Using
the Schwartz-Zippel lemma [25], this implies thatα1 6= 0 and
det(M22) 6= 0 w.h.p. We assume thatα1 6= 0 anddet(M22) 6=
0 in the discussion below. Next we selectθij , i = 1, . . . ,m+1,
j = 1, . . . ,m such that they satisfy the following equation.

M22[θ1 · · · θm] =




0 · · · 0
a1 · · · 0
...

. . .
...

0 · · · am


 (8)

where a1, . . . , am are non-zero values. Note that such
[θ1 · · · θm] can be chosen sinceM22 is full-rank.

Terminal t1 can decode, sinceM12[θ1 · · · θm] = [0 · · · 0]
andα1 6= 0, and t2 can decode, sinceX1 is available att2,
and rank(M22[θ1 · · · θm]) = m (from eq. (8)). Finally, we
note that there areq − 1 choices for eachθj .
We remark that the main issue in the above argument is to
demonstrate that the choice ofΘ works simultaneously for
both t1 and t2. The observation thatEos1 is overlap segment
closest tot1 andt2 alongP11 andP21 respectively allows us
to make this argument.

The result for three unicast sessions with connectivity level
[1 3 3] now follows by using vector linear network coding
over two time units, as discussed below.

Theorem 10:A multiple unicast instance with three ses-
sions,< G, {si − ti}31, {1, 1, 1} > with connectivity level at
least[1 3 3] is feasible.

Proof: W.l.o.g. we assume that the connectivity level is
exactly[1 3 3]. We use vector linear network coding over two
time units. For facilitating the presentation we form a new
graphG∗ where each edgee ∈ E is replaced by two parallel
unit capacity edgese1 ande2 in G∗. The messages at source
nodesi are denoted[Xi1 Xi2], i = 1, . . . , 3. Let the subgraph
of G∗ induced by all edges with superscripti be denotedG∗

i .
In G∗

1, there exists a singles1−t1 path and three edge disjoint
s2 − t2 paths. Therefore, we can transmitX11 from s1 to t1
and [X21 X22] from s2 to t2 using the result of Lemma 9.
Similarly, we useG∗

2 to communicateX12 from s1 to t1 and
[X31 X32] from s3 to t3. Thus, over two time units a rate of
[1 1 1] can be supported.

B. Code Assignment Procedure For Instances With Connec-
tivity Level [2 2 4]

Our solution approach is similar in spirit to the discussion
above. In particular, we first investigate a two-unicast scenario
with connectivity level[2 4] and rate requirement{2, 1} and
use that in conjunction with vector network coding to address
the three-unicast with connectivity level[2 2 4].

Lemma 11:A minimal multiple unicast instance<
G, {s1 − t1, s2 − t2}, {2, 1} > with connectivity level[2 4]
is feasible.

Proof: Let P1 = {P11, P12} denote two edge disjoint
paths (also vertex disjoint due to the structured nature ofG)
from s1 to t1 andP2 = {P21, P22, P23, P24} denote the four
vertex disjoint paths froms2 to t2. Let the source messages
at s1 be denoted byX1 andX2, and the source message ats2
by X3. We color the edges of the graph such that each edge
on P11 is colored red, each edge onP12 is colored blue and
each edge on a path inP2 is colored black.

As the paths inP1 and P2 are vertex-disjoint, it is clear
that a node with an in-degree of two is such that its outgoing
edge has two colors (either(blue, black)or (red, black)). The
path further downstream continues to have two colors until it
reaches a node of out-degree two.

Such an overlap segment with two colors will be referred to
as amixed color overlap segment. We shall also use the terms
red or blue overlap segmentto refer to segments with colors
(red, black)and (blue, black)respectively. Note that by our
naming convention pathPij is a path that enters terminalti.
Under the topological order inG we can identify the overlap
segment onPij that is closest toti. In the discussion below
this will be referred to as the last overlap segment with respect
to pathPij . Two overlap segmentsEos1 and Eos2 are said
to be neighboring with respect toPij if there are no overlap
segments between them alongPij . An example of neighboring
overlap segments is shown in Fig. 3(a).

Claim 12: Consider two neighboring mixed color overlap
segmentsEos1 andEos2 with respect to pathP1i ∈ P1. Then
Eos1 andEos2 cannot lie on the same pathP2j ∈ P2.
proof: W.l.o.g., assume thatEos1 = {e1, . . . , ek1} andEos2 =
{e′1, . . . , e

′
k2
} are such thatek1 is upstream ofe′1. Now assume

that bothEos1 andEos2 are onP2j . Note thathead(ek1) has
two outgoing edges, one of which belongs toP1i and the
other belongs toP2j (denoted bye∗). We claim thate∗ can be
removed while the connectivity level remains the same. Thisis
becausee∗ does not belong toP1i andP2k, ∀k 6= j. Moreover,
after the removal,P2j can be modified to the path specified
aspath(s2, head(ek1)) − path(ek1 , e

′
1)− path(head(e′1), t2)

where path(ek1 , e
′
k2
) is along P1i. The newP2j is vertex

disjoint of P2k, ∀k 6= j, sinceEos1 andEos2 are neighboring
mixed color overlap segments alongP1i which means that
path(ek1 − e′1) is either purely blue or purely red. This
contradicts the minimality of the graph.

Likewise, two neighboring mixed color overlap segments
with respect toP2i, cannot lie on the same pathP1j .

To explain our coding scheme, we first denote the last red
(blue) overlap segment with respect toP11 (P12) by Er (Eb).
If there is noEr, then X1 can be transmitted alongP11.
According to Lemma 9,X2 and X3 can be transmitted to
t1 and t2 respectively. A similar argument can be applied to
the case when there is noEb. Hence, we assume that bothEr

andEb exist. Based on their locations inG, we distinguish
the following two cases.
• Case 1:Er andEb are on different paths∈ P2.
W.l.o.g. we assume thatEr andEb are on pathsP21 andP22.
If there are no mixed color overlap segments on eitherP23
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t2 t1

s1 s2

E3

E4

E2

E5

E6

E1

P12P11

P21 P22 P23

(a)

Er
(Eos1)

Eos3Eb Eos4

s2
s1

t2 t1

P21

P22 P23 P24

P11 P12

(b)

Fig. 3. (a) An instance of network where there are several pairs of
neighboring overlap segments.E1 andE3 are neighboring overlap segments
alongP21, E1 andE2 are neighboring overlap segments alongP12. E1 and
E4 are not overlap segments along any paths. (b) A network with connectivity
level [2 4] and rate{2, 1}. The coloring of the different paths helps us to
show that a linear network coding solution exists.

or P24, X3 can be transmitted tot2 through the overlap free
path, andX1, X2 can be routed tot1. Therefore, we focus on
the case that there are mixed color overlap segments on both
P23 andP24. Let Eosi denote the last mixed color overlap
segments with respect toP2i, i = 1, . . . , 4 (see Fig. 3(b)).
Our coding scheme is as follows. SymbolXi is transmitted
over the outgoing edge froms1 overP1i, i = 1, 2; symbols
θjX3 are transmitted over the outgoing edges ofs2 over
P2j , j = 1, . . . , 4 respectively. The values ofθj ∈ GF (q)
will be chosen as part of the code assignment below. Let
the coding vectors at each intermediate node be specified by
indeterminates for now. The overall transfer matrix from the
pair of sources{s1, s2} to t1 can be expressed as

[M11 | M12] =

[
α1 β1 γ11 γ12 γ13 γ14
α2 β2 γ21 γ22 γ23 γ24

]
,

such that the received vector at t1 is
[M11 | M12][X1 X2 | θ1X3 . . . θ4X3]

T . Recall that
Er andEb are the last mixed color segments with respect
to P11 and P12. Thus, they carry the same information
as the incoming edges oft1 which implies that the row
vectors of[M11 | M12] are the coding vectors onEr and
Eb respectively. Similarly, the transfer matrix from{s1, s2}
to the edge set{Er, Eb, Eos3, Eos4} can be expressed as

[M e
21 | M e

22] =




α1 β1 γ11 γ12 γ13 γ14
α2 β2 γ21 γ22 γ23 γ24
α3 β3 γ31 γ32 γ33 γ34
α4 β4 γ41 γ42 γ43 γ44




where we use the superscripte to emphasize that these
transfer matrices are to the edge set{Er, Eb, Eos3, Eos4}
and not to the terminalt2.
Note that the entries of the transfer matrices above are
functions of the choice of the local coding vectors in the
network which are indeterminate. Thus, at this point, the
Mij andM e

ij matrices are also composed of indeterminates.
As there exist two edge disjoint paths froms1 to {Er, Eb},
the determinant ofM11 is not identically zero. Similarly,

since the edgesEr, Eb, Eos3 andEos4 lie on different paths
in P2, there are four edge disjoint paths froms2 to the
edge subset{Er, Eb, Eos3, Eos4}, and the determinant of
M e

22 is not identically zero. This implies that their product is
not identically zero. Hence, by the Schwartz-Zippel lemma
[25], under random linear network coding there exists an
assignment of local coding vectors so thatrank(M11) = 2
and rank(M e

22) = 4. We assume that the local coding
vectors are chosen from a large enough fieldGF (q) so
that this is the case. For this choice of local coding vectors
we propose a choice ofθ = [θ1 θ2 θ3 θ4]

T such that the
decoding is simultaneously successful at botht1 and t2.
Decoding att1: As M11 is a square full-rank matrix, we
only need to null the interference froms2. Accordingly, we
chooseθ from the null space ofM12, i.e.,

M12θ = 0. (9)

There are at leastq2−1 such non-zero choices forθ asM12

is a 2× 4 matrix.
Decoding att2: The primary issue is that one needs to
demonstrate that the choice ofθ allows both terminals to
simultaneously decode. Indeed, it may be possible that our
choice ofθ along with a specific network topology may make
it impossible to decode att2. The key argument that this
does not happen requires us to leverage certain topological
properties of the overlap segments, that we present below.
Claim 13:In G either one or both of the following statements
hold. (i) Er is the last overlap segment w.r.t.P21. (ii) Eb is
the last overlap segment w.r.t.P22.

Proof: Assume that neither statement is true. This
means that there is a blue overlap segmentE′

b below Er

alongP21, and there is a red overlap segmentE′
r belowEb

alongP22. Thus,E′
r is upstream ofEr andE′

b is upstream
of Eb. However, this means that edgesE′

r, Er, E′
b andEb

form a cycle, which is a contradiction.
In the discussion below, w.l.o.g., we assume thatEr is the
last overlap segment onP21. The argument above allows
us to identify edgesEr, Eos3 andEos4 that carry thesame
symbolsas those enteringt2. We show below that theX1 and
X2 components can be canceled by using the information on
Eos3 andEos4 while retaining theX3 component.
Let γ

i
represent the vector[γi1 γi2 γi3 γi4]

T , i = 1, . . . , 4
in the discussion below. Note that if[α3 β3] and[α4 β4] are
linearly independent, there existδ3 andδ4 such that

[α1 β1] = δ3[α3 β3] + δ4[α4 β4],

where δ3 and δ4 are not both zero. Thus,t2 can recover
[−γ

1
+ δ3γ3

+ δ4γ4
]T θX3. Note thatγT

1
θ = 0, by the

constraint onθ above, thus we only need to pickθ such
that [δ3γ3

+ δ4γ4
]T θ 6= 0. To see that this can be done,

we note thatM22 is full rank which implies that the matrix
[γ

1
γ
2
(δ3γ3

+δ4γ4
)]T is full rank. Therefore, there exist at

mostq choices forθ such that[γ
1
γ
2
(δ3γ3

+δ4γ4
)]T θ = 0.

Hence, there are at leastq2 − q − 1 > 0 non-zero choices
for θ that allow decoding att1 and t2 simultaneously.
If [α3 β3] and [α4 β4] are dependent, decoding can be
performed simply by working only with the received values
overEos3 andEos4 using a similar argument as above.
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• Case 2:Er andEb are on the same pathP2i.
W.l.o.g., assume thatEb is downstream ofEr along P21.
Then Eb will be the last overlap segment w.r.t.P21. Let
E′

b denote the blue overlap segment that is a neighbor of
Eb w.r.t. P12. Note thatE′

b cannot be onP21 according
to Claim 12. If E′

b does not exist, it implies that there is
only one blue overlap segment (namely,Eb) in the network.
Therefore, there only exist red overlap segments onP23 and
P24; using Lemma 9,X1 andX3 can be transmitted tot1
and t2 respectively overP11 ∪ P23 ∪ P24, andX2 can be
routed alongP12 to t1.
We now focus on the case when anE′

b exists and assume
(w.l.o.g.) that it is onP22. The main difference is that instead
of using random coding over the entire graph, we modify
our coding scheme such that random coding is performed
over the graph except atEb and all the edges downstream
of Eb. At Eb, deterministic coding is performed such that
Eb carries the same information as the incoming edge of it
along P12. The information onEb is further routed to all
the downstream edges ofEb. Note that by the deterministic
coding,Eb carries the same information asE′

b.
Decoding att1: Using the arguments developed in Case 1, it
is clear thatX1 andX2 can be decoded from the information
onE′

b andEr. The code assignment ensures thatEb andE′
b

carry the same information, thust1 is satisfied.
Decoding att2: In Case 1, we showed thatX3 can be
decoded from the information onEr, Eos3 and Eos4. A
similar argument can be made thatX3 can be decoded from
the information onE′

b, Eos3 andEos4. SinceEb carries the
same information asE′

b andEb is the last overlap segment
on P21, terminal t2 can decodeX3 by the information on
Eb, Eos3 andEos4.

By using the result of Lemma 11 and the idea of vector
network coding, we have the following theorem when the
connectivity level is[2 2 4].

Theorem 14:A multiple unicast instance with three ses-
sions,< G, {si − ti}31, {1, 1, 1} > with connectivity level at
least[2 2 4] is feasible.

Proof: It can be seen that the line of argument used in
the proof of Theorem 10, namely using vector network coding
over two time units and use the result of Lemma 11 gives us
the desired result.

C. Code Assignment Procedure For Instances With Connec-
tivity Level [1 2 5]

We now consider network code assignment for networks
where the connectivity level is[1 2 5]. The code assignment
in this case requires somewhat different techniques. In par-
ticular, the idea of using a two-session unicast result along
with vector network coding does not work unlike the cases
considered previously. At the top level, we still use random
network coding followed by appropriate precoding to align the
interference seen by the terminals. However, as we shall see
below, we will need to depart from a purely random linear
code in the network in certain situations.

As before, we consider a minimal structured graphG
and let Xi be the source symbol at source nodesi for

i = 1, . . . , 3 and P1 = {P11} denote the path froms1 to
t1, P2 = {P21, P22} denote the edge disjoint paths froms2
to t2, P3 = {P31, P32, P33, P34, P35} denote the edge disjoint
paths froms3 to t3.

Our scheme operates as follows:X1 is transmitted over
the outgoing edge froms1 alongP11 , ξiX2 are transmitted
over the outgoing edges ofs2 along P2i, i = 1, 2, and
θjX3 are transmitted over the outgoing edges ofs3 along
P3j , j = 1, . . . , 5 whereξ = [ξ1 ξ2]

T and θ = [θ1 . . . θ5]
T

are precoding vectors chosen from a finite field with sizeq.
Let Mi = [Mi1 | Mi2 | Mi3] denote the transfer matrix

from {s1, s2, s3} to terminalti. EachMij corresponds to the
transformation from sourcesj to terminalti, i.e., the number
of columns inMij is 1, 2 and5 for j = 1, 2 and3 respectively.
Similarly, the number of rows inMij is 1, 2 and5 for i = 1, 2
and3 respectively.

In the discussion below we will need to refer to the
individual entries ofM1 and M2. Accordingly, we express
these matrices explicitly as follows.

M1 = [M11 | M12 | M13] =
[
α1 | βT | γT

]

= [α1 | β1 β2 | γ1 γ2 γ3 γ4 γ5] ,

M2 = [M21 | M22 | M23] =

[
α′
1 β′T

1
γ′T

1

α′
2 β′T

2
γ′T

2

]

=

[
α′
1 β′

11 β′
12 γ′

11 γ′
12 γ′

13 γ′
14 γ′

15

α′
2 β′

21 β′
22 γ′

21 γ′
22 γ′

23 γ′
24 γ′

25

]
,

where the entries of the matrices above are functions of
indeterminate local coding vectors. The cut conditions imply
that det(Mii) is not identically zero fori = 1, . . . , 3, and
furthermore that their productdet(M11) det(M22) det(M33)
is not identically zero.

Our solution proceeds as follows. We first identify a mini-
mal structured subgraphG′ of G with the following properties.

(i) There exists a pathP ′
11, from s1 to t1,

(ii) vertex disjoint pathsP ′
21 andP ′

22 from s2 to t2,
(iii) path P ′

1→2 from s1 to t2 and
(iv) pathP ′

2→1 from s2 to t1.

Again, G′ is said to be minimal if the removal of any edge
from it causes one of the above properties to fail. We note that
it is possible that there do not exist any paths froms1 to t2
or from s2 to t1 in G. These situations are considered below.

Our analysis depends on the following topological proper-
ties ofG′.
Case 1:The graphG′ is such that

• there is no path froms1 to t2 in G′, i.e.,P ′
1→2 = ∅ (this

happens only if there is no path froms1 to t2 in G), or
• there is no path froms2 to t1 in G′, i.e.,P ′

2→1 = ∅ (this
happens only if there is no path froms2 to t1 in G), or

• there are pathsP ′
1→2 and P ′

2→1 in G′, and there are
overlap segments betweenP ′

11 andP ′
21 ∪ P ′

22.

Case 2:The graphG′ is such that

• there are pathsP ′
1→2 andP ′

2→1 in G′, andP ′
11 does not

overlap with eitherP ′
21 or P ′

22.

We emphasize that together Case 1 and Case 2 cover all the
possible types of subgraphs forG′. Specifically, eitherP ′

1→2 =
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∅ orP ′
2→1 = ∅. If bothP ′

1→2 andP ′
2→1 exist inG′, then either

there are overlaps betweenP ′
11 andP ′

21∪P ′
22 or there are not.

Theorem 15:A multiple unicast instance with three ses-
sions,< G, {si − ti}31, {1, 1, 1} >, with connectivity level
[1 2 5] is feasible.

P’11

s2s1

t2t1

P’21 P’22

G’

(a)

P’11

s2s1

t2t1

P’21 P’22

G’

(b)

Fig. 4. (a) SubgraphG′ whenP ′

11
overlap withP ′

21
. (b) SubgraphG′ when

P ′

11
overlap with bothP ′

21
andP ′

22
.

Proof: We break up the proof into two parts based on
type of the subgraphG′ that we can find inG.
Proof when there exists a subgraphG′ that satisfies the
conditionsof Case1
We perform random linear coding over the graphG over a
large enough field. In the discussion below, we will leverage
the fact that multivariate polynomials that are not identically
zero, evaluate to a non-zero value w.h.p. under a uniformly
random choice of the variables. This is needed at several
places. By using standard union bound techniques, we can
claim that our strategy works w.h.p.

In particular, in the discussion below, we assume that the
matricesMii, i = 1, . . . , 3 are full rank and design appropriate
precoding vectorsξ andθ.
Decoding att1: For t1 to decodeX1, we need to haveα1 6= 0
and the precoding constraints

[β1 β2]ξ = 0, and (10)

[γ1 γ2 γ3 γ4 γ5]θ = 0. (11)

There are at leastq− 1 non-zero vectorsξ andq4 − 1 non-
zero vectorsθ that can be selected from the field of sizeq
such that eq. (10) and eq. (11) are satisfied.
Decoding att2:

We begin by noting that sincerank(M22) = 2, M22ξ 6= 0,
as long asξ 6= 0. Next, we argue according to the topological
structure ofG′. The following possibilities can occur.

(i) There is no path froms1 to t2 in G′, i.e.,P ′
1→2 = ∅. This

implies thatα′
1 = α′

2 = 0 and inG, interference att2 only
exists froms3. Next, at least one component ofM22ξ will
be non-zero, based on the argument above; w.l.o.g. assume
that it is the first component. We chooseθ to satisfy

γ′T

1
θ = 0. (12)

It is evident that there are at leastq3 − 1 non-zero choices
of θ that satisfy the required constraints onθ (eqs. (11) and
(12)). Hencet2 can decode.
(ii) There exists a pathP ′

1→2 from s1 to t2, i.e.,P ′
1→2 6= ∅..

This means thatM21 is not identically zero. Here, we first
align the interference froms3 within the span of interference
from s1 by selecting an appropriateθ. We have the following
lemma.
Lemma 16:If M21 6= 0, there exist at leastq4 − 1 choices
for θ such that

M23θ = cM21 (13)

wherec is some constant.
Proof: First, w.l.o.g., we assumeα′

2 6= 0. Hence, there
exists a full rank2× 2 upper triangular matrixU such that
UM21 = [0 α′

2]
T . Next, define

[1 0]UM23 = γ̃
′T

1
(14)

and chooseθ to satisfyγ̃
′T

1
θ = 0 and setc = γ

′T

2
θ/α′

2. Upon
inspection, it can be verified that this implies thatUM23θ =
cUM21. As U is invertible, and there is only one linear
constraint onθ, we have the required conclusion.
Thus, under this choice ofθ, the interference froms3 is
aligned within the span of the interference froms1 at t2.
Let X = [X1 X2 X3]

T . The received signal att2 is

[M21 M22ξ M23θ]X = [M21 M22ξ]

[
X1 + cX3

X2

]
. (15)

The following claim concludes the decoding argument for
t2.
Claim 17:If M21 is not identically zero, under random linear
coding w.h.p., there exists aξ such thatrank[M21 M22ξ] =
2 and [β1 β2]ξ = 0.

Proof: We will show that there exists an assignment of
local coding vectors such thatdet[M21 M22ξ] 6= 0. This will
imply that w.h.p. under random linear coding, this property
continues to hold.
Suppose that there is no path froms2 to t1 in G, i.e.,P ′

2→1 =
∅ and [β1 β2] is identically zero. This does not impose any
constraint onξ. Next,M22 is full rank w.h.p. Hence, we can
choose aξ such that required condition is satisfied.
If there exists a pathP ′

2→1 from s2 to t1 in G′, [β1 β2]
is not identically zero. W.l.o.g., we assume thatβ1 is not
identically zero. By Lemma 20 (see Appendix), proving
that det[M21 M22ξ] 6= 0, is equivalent to checking that
the determinant in (22) is not identically zero. Now we
demonstrate that there exists a set of local coding vectors
such that the determinant in (22) is non-zero. We consider
the subgraphG′ = P ′

11∪P
′
21∪P

′
22∪P

′
1→2∪P

′
2→1 (identified

above) - our choice of the coding vectors on all the other
edges will be assigned to the zero vector. As bothP ′

1→2 6= ∅
andP ′

2→1 6= ∅, we only consider the case whereP ′
11 overlaps

with P ′
21 ∪ P ′

22. We distinguish the following cases.

1) P ′
11 overlaps with eitherP ′

21 or P ′
22. W.l.o.g., assume

it is P ′
21. First note that whenP ′

11 overlap with one of
P ′
21 andP ′

22 in G′, there is a path froms1 to t2 and a
path froms2 to t1 in P ′

11 ∪ P ′
21 ∪ P ′

22. Hence,G′ can
be completely represented byP ′

11 ∪P ′
21 ∪ P ′

22. This is
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shown in Fig. 4(a). It is evident that we can choose
coding coefficients such that

[β1 β2] = [1 0], and

[M21 M22] =

[
1 1 0
0 0 1

]
. (16)

By substituting them into eq. (22), the determinant of
[M21 M22ξ] is not zero.

2) P ′
11 overlaps with bothP ′

21 and P ′
22. Using a similar

argument as above,G′ can be completely represented
by P ′

11 ∪ P ′
21 ∪ P ′

22 if P ′
11 overlaps with bothP ′

21 and
P ′
22. Note that there will be one overlap betweenP ′

11

and each ofP ′
21 andP ′

22. Otherwise, assume there are
two overlaps betweenP ′

11 andP ′
21, then some edges

can be removed without contradicting the minimality
of the graphG′. This is shown in Fig. 4(b). Assume
P ′
11 overlap withP ′

21 first. We can find a set of coding
coefficients such that

[β1 β2] = [1 1] and

[M21 M22] =

[
1 1 0
1 1 1

]
. (17)

By substituting them into eq. (22), the determinant of
[M21 M22ξ] is not zero.

In both cases, therefore the required condition holds w.h.p.
under random linear coding.
Terminal t2 can decode since it can solve the system of
equations specified by in eq. (15).

Decoding att3: At t3, we need to decodeX3 in the presence
of the interference froms1 and s2. The prior constraints on
θ, namely (11) and (12) for case (i), or (11) and (13) for case
(ii) allow at leastq3 − 1 choices for it. AsM33 is full-rank,
this implies that there are at leastq3−1 corresponding distinct
M33θ vectors. Next, fort3 to decodeX3, from Lemma 21,
we need to have

M33θ /∈ span([M31 M32ξ]). (18)

Since there are at mostq2 vectors inspan([M31 M32ξ]),
there are at leastq3 − q2 − 1 > 0 choices forθ such that all
the required constraints onθ are satisfied.
Proof when there exists a subgraphG′ that satisfies the
conditionsof Case2
As before, our overall strategy will be to use random linear
network coding, however in certain cases we will need to make
modifications to the code assignment. We argue based on the
properties of the minimal structured subgraphG′. Recall that
under Case 2, pathsP ′

1→2 andP ′
2→1 exist andP ′

11 does not
overlap withP ′

21∪P
′
22. As the graph is structured, this implies

thatP ′
11, P ′

21 andP ′
22 are all vertex disjoint.

Our first goal is to show thatG′ is topologically equivalent
to one of the graphs shown in Figs. 5(a), 5(b) and 5(c).
Towards this end, we colorP ′

11 ∪ P ′
21 ∪ P ′

22 black, the
path P ′

1→2 red, and the pathP ′
2→1 blue. In this process,

certain edges will get a set of colors (which are a subset of
{red, blue, black}). Note that there cannot be any edge that
has the color{blue, red}. To see this, assume otherwise: then

one could find a new path froms1 to t1 that overlapsP ′
1→2

andP ′
2→1 and delete at least one edge fromP ′

11, contradicting
the minimality ofG′. By similar arguments,P ′

1→2 andP ′
2→1

cannot overlap onP ′
21 ∪ P ′

22. Hence, pathsP ′
1→2 andP ′

2→1

can only overlap if they also overlap withP ′
11.

Next, we identify certain special edges inG′. As there is
only one path going out ofs1, P ′

11 and P ′
1→2 will overlap.

A similar argument shows thatP ′
11 and P ′

2→1 will overlap.
Likewise, P ′

1→2 and P ′
2→1 will overlap with P ′

21 or P ′
22.

Consider, the overlap betweenP ′
11 and P ′

1→2. Using the
minimality of G′ it can be seen that there can be exactly
one overlap segment between them; we identify the edge
∈ P ′

11∩P ′
1→2 at the farthest distance froms1, such that it has

two outgoing edges belonging to exclusivelyP ′
11 andP ′

1→2,
and call it e1. Similarly, we identify the edge∈ P ′

11 ∩ P ′
2→1

that is closest tos1, and call ite3.
Next, consider the overlap betweenP ′

1→2 andP ′
21 ∪ P ′

22.
Once again, by minimality it holds that there is exactly one
contiguous overlap segment betweenP ′

1→2 andP ′
21∪P

′
22, that

can either be onP ′
21 or P ′

22. We identify e4 as the edge in
P ′
1→2 ∩ (P ′

21 ∪P ′
22) that is closest tos1. In a similar manner,

e2 is identified as the edgeP ′
2→1 ∩ (P ′

21 ∪P ′
22) that is farthest

away froms2.
We now consider the possible orders of the edgese1, . . . , e4.

As e1 ande3 belong toP ′
11, one of them has to be downstream

of the other alongP ′
11. Consider the following cases.

• e3 is downstream ofe1 along P ′
11. If edgese2 and e4

lie on the same path∈ {P ′
21, P

′
22}, we first note thate4

has to be downstream ofe2 (by minimality, otherwise the
segment betweene1 ande3 alongP ′

11 can be removed);
the graphG′ is topographically equivalent to Fig. 5(a). If
e2 ande4 lie on different paths∈ {P ′

21, P
′
22}, the graph

G′ is topographically equivalent to Fig. 5(b).
• e1 is downstream ofe3 alongP ′

11, or e1 = e3. In this case
e2 and e4 have to lie on different paths∈ {P ′

21, P
′
22}.

To see this, assume they both lie onP ′
21: if e4 is

downstream ofe2, the minimality ofG′ does not hold
(segment betweene2 ande4 alongP ′

21 can be removed),
whereas ife2 is downstream ofe4, the acyclicity ofG′

is contradicted. Therefore, the only possibility is thate2
and e4 lie on different paths∈ {P ′

21, P
′
22} and in this

caseG′ is topographically equivalent to Fig. 5(c).
With the above arguments in place, it is clear thatG′ is
topographically equivalent to one of the graphs in Fig. 5(a),
5(b) or 5(c).

We now present our schemes for the different possibilities
for G′. For the class ofG′ that fall in Fig. 5(a), it suffices to
use the approach in the proof of Theorem 15. Namely, we use
random linear network coding in the network and precoding at
sourcess2 ands3. As in this caseM21 6= 0, one needs to argue
that rank[M21 M22ξ] = 2. Following the line of argument
used previously, we can do this by demonstrating a choice
of local coding coefficients such that[β1 β2] = [1 0] and

[M21 M22] =

[
1 1 0
0 0 1

]
. However, such an approach does

not work when the subgraphG′ belong to the class of graphs
shown in Figs. 5(b) and 5(c). For instance, it is easy to observe
that if we use random coding on Fig. 5(b), and precoding to
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Fig. 5. Possible subgraphsG′ whenP ′

11
does not overlap with eitherP ′

21
or P ′

22
.

cancel theX2 component att1, then t2 will receive a linear
combination ofX1 andX2 w.h.p., i.e., decodingX2 at t2 will
fail. Accordingly, whenG′ looks like Fig. 5(b) or 5(c), we
require a different scheme that we now present.
Modified random coding for cases in Fig 5(b) and Fig 5(c).
It is clear that the strategy of random linear network coding
and precoding at the sources fails since the determinant of
the matrix [M21 M22ξ] is identically zero for the cases in
Fig. 5(b) and 5(c). Thus, at the top level our approach is to
modify the original graphG by removing certain edges and
identifying a special node inG that is upstream oft2. The
transfer matrix on the two incoming edges of this special node
can be expressed as[M̃21 M̃22 M̃23] such that the determinant
of [M̃21 M̃22ξ] is not identically zero. Thus, at this node it
becomes possible to remove the effect ofX1 via deterministic
coding. Accordingly, our strategy is to first perform random
linear coding at all nodes except the special node and those
that are downstream of the special node. Following this, we
perform deterministic coding at the special node to cancel
the effect ofX1, and random linear coding downstream of it.
Finally, we argue based on the precoding constraints that each
terminal can decode its desired message. In the discussion
below we outline each of the steps and the corresponding
analysis in a systematic manner.

Recall that based onG′ (which is a subgraph ofG) we
have identified pathsP ′

11, P ′
21, P ′

22 that are all vertex disjoint,
pathsP ′

1→2 and P ′
2→1 and edgese1, . . . , e4. At the outset

we demonstrate that certain structures inG, need not be
considered. In particular,

• if in G, there exists a path froms1 to t1 that has an
overlap withP ′

21∪P
′
22, it is clear that an alternate minimal

subgraphG′′ can be found that satisfies the conditions of
Case 1.

• In G, a path from s1 cannot have an overlap with
path(e2−e3). To see this note thatG′ is a subgraph ofG;
therefore if path(e2 − e3) exists in it, then it necessarily
has to belong to a pathP3i from s3 to t3. We emphasize
that the entire path includinge2 ande3 have to belong to
P3i because by assumption all nodes in the graph have
in-degree + out-degree at most 3. In a similar manner,
the path froms1 that overlaps with path(e2 − e3) also
needs to belong to pathP3j .If i = j, then it implies the

existence of a path froms1 to t1 that has an overlap with
P ′
21 ∪ P ′

22; however, this is explicitly ruled out by the
discussion in the previous bullet. Thus,i 6= j; however,
this is impossible since the pathsP3i andP3j are edge
disjoint.

Accordingly, in the discussion below, we will assume that the
above scenarios do not occur.
Graph modification procedure for original graphG:

(i) Remove all edges downstream ofe2 on P ′
21 that have no

overlap with a path from∪5
i=1P3i.

(ii) Identify an edge, denotedefirst onP ′
22, with the property

that efirst is the edge closest tos2 such that there exists
a path(s1 − efirst). Note thatefirst exists due to the
existence of pathP ′

1→2 in G.
(iii) Remove edges downstream ofefirst while maintaining

the following properties - (a) there exists a path from
efirst − t2, and (b)max− flow(s3 − t3) = 5. Rename
P ′
22 to bepath(s2 − efirst − t2). It is important to note

that after this procedure, removal of any edge downstream
of efirst would cause either property (a) or (b) to fail.

(iv) Identify edgeelast ∈ P ′
22 such that it is the edge closest

to t2 with the property that it has two incoming edges -
e′1 /∈ P ′

22 such that there existspath(s1 − e′1) and e′2 ∈
P ′
22. Again e′1 is guaranteed to exist asP ′

1→2 exists inG.

As a consequence of the modification procedure, there is
no overlap betweenpath(s1 − e′1) and P ′

22. To see this,
assume otherwise, i.e., an overlap segment, denotedEos exists
betweenpath(s1−e′1) andP ′

22. As efirst is the edge closest to
s2 such that there is a path betweens1 andefirst, it follows
that Eos is downstream ofefirst along P ′

22. However, this
contradicts the property of the modified graph after Step (iii)
in the modification procedure above.

Next, note thatpath(e2−e3) has to overlap with a path from
∪5
i=1P3i (asG is minimal) which means that the downstream

neighboring edge ofe2 alongP ′
21 cannot belong to any path

in ∪5
i=1P3i and will be removed in Step (i). Likewise the

incoming edge oft2 along P ′
21 will also be removed. At

the end of the graph modification procedure, and using the
observations made above, it is clear that we can identify a
subgraphG̃ of G that is topologically equivalent to either Fig.
6(a) or 6(b).

Next, we perform random linear coding over the modified
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graph except at edgeelast and all the edges downstream of
elast, and impose the precoding constraints[β1 β2]ξ = 0 and
γT θ = 0. This ensures thatt1 is satisfied. Furthermore, note
that there is no path fromelast to t1; therefore any code
assignment onelast and its downstream edges will not affect
decoding att1.

For t2 to decodeX2, we first demonstrate that by using
deterministic coding for edgeelast, the X1 component can
be canceled while theX2 component can be maintained on
elast. Note that e′1 and e′2 denote the incoming edges of
elast; we denote the transfer matrix to these two edges by
[M̃21 M̃22 M̃23].

Claim 18: For the network structures in Fig. 6(a) and Fig.
6(b), the determinant of[M̃21 M̃22ξ] is not identically zero
whereξ satisfies[β1 β2]ξ = 0.

Proof: Based on previous arguments, we have identified
the subgraphG̃ of G that is topologically equivalent to
either Fig. 6(a) or 6(b). By Lemma 20, proving the claim is
equivalent to showing that the determinant of eq. (22) is not
identically zero. Based oñG it is evident that local coding
vectors for the case of Fig. 6(a) can be chosen such that

[β1 β2] = [1 0], and

[M̃21 M̃22] =

[
1 0 0
0 0 1

]
. (19)

Similarly, for the case of Fig. 6(b) they can be chosen as

[β1 β2] = [1 0], and

[M̃21 M̃22] =

[
1 1 0
0 0 1

]
. (20)

Substituting the local coefficients into eq. (22) we have the
required conclusion.
We now want to argue thatt2 can be satisfied. Note that edge
e′1 must belong to a path fromP3, as the graph is minimal.
Assume that there arek paths fromP3 that overlap with
path(elast − t2); w.l.o.g. we assume that these are the paths
P31, . . . , P3k.

Next, we note that there can be at most one overlap between
a pathP3j and path(elast − t2). This is due to Step (iii) of
the graph modification procedure, where we removed edges
downstream ofefirst, (and henceelast) such that themax−
flow(s3 − t3) = 5 and there is path betweenefirst − t2. If
there are multiple overlaps betweenP3j andpath(elast − t2),
this would mean that there exists at least one edge that was not
removed by Step (iii). As depicted in Fig. 6(c), we denote the
overlap segments asEos1, . . . , Eosk, whereEosj is upstream
of Eos(j+1) for j = 1, ..., k− 1 alongP ′

22. Also note that the
first edge ofEos1 is elast.

The next step in the code assignment is to use deterministic
local coding coefficients so that the transmitted symbol on
elast does not have anX1 component. Note that it is guar-
anteed to have anX2 component by the Claim 18 above.
Following this, we again use random linear coding on edges
downstream ofelast. By the definition ofelast there is no
edge∈ P ′

22 downstream ofelast that is reachable froms1.
Thus all coding vectors alongP ′

22 downstream ofelast do not

have anX1 component. Let the coding vector on the edge

∈ Eosk closest tot2 be denoted by[0 | β̂
T
| γ̂T ], where it is

evident thatβ̂ 6= 0 w.h.p. We enforce the precoding constraint
γ̂T θ = 0. This satisfiest2.

Finally, we discuss the decoding att3. Consider the over-
lap segmentsEos1, . . . , Eosk discussed above. Each of these
overlap segments has an incoming edge that does not lie on
P ′
22 (the other has to be onP ′

22). We denote these edges
by e∗i , i = 1, . . . , k, where we emphasize thate∗1 = e′1.
Let the edges enteringt3 on pathsP3(k+1), . . . , P35 be de-
notede∗k+1, . . . , e

∗
5. Denote the transfer matrix on the edges

e∗1, . . . , e
∗
5 by [M̂31 | M̂32 | M̂33]. Note that with high

probability it holds thatrank(M̂33) = 5, since the max-flow
from s3 to these set of edges is5.

Next consider the rank of the coding vectors on edges
{elast, e∗2, e

∗
3, e

∗
4, e

∗
5}. For the sake of argument suppose that

we remove the row ofM̂33 corresponding toe∗1 and replace it
with the corresponding row ofelast. As we used a determin-
istic code assignment for edgeelast the rank of the updated
M̂33 may drop to four, however it will be no less than four
since it has four linearly independent row vectors.

It can be seen that further random linear coding downstream
of elast will therefore be such thatrank(M33) (recall that
[M31|M32|M33] is the transfer matrix tot3) is at least four
w.h.p. Moreover, it can be seen that the information onEosk

also reachest3, thust3 can decodeX2. Therefore att3 over
the other four incoming edges we have a system of equations
specified by the matrix[M̆31|M̆33] (of dimension4× 6) with
unknownsX1 and X3. Furthermorerank(M̆33) ≥ 3. The
constraints onθ thus far dictate that there areq3− 1 non-zero
choices for it. As shown in the appendix (cf. Lemma 22) this
implies that there are at leastq2 − 1 distinct values forM̆33θ.
For decodingX3 at t3, from Lemma 21, we need to have

M̆33θ /∈ span(M̆31). (21)

As there are at mostq vectors in the span ofM31, it follows
that there are at leastq2−q−1 > 0 non-zero values ofθ such
that t3 can be satisfied.

VI. SIMULATION RESULTS

Our feasibility results thus far have been for the case of
unit-rate transmission over networks with unit-capacity edges.
In this section, we present simulation results that demonstrate
that these can also be used for networks with higher edge
capacities, that can potentially support higher rates for the
connections. The main idea is to pack multiple basic feasible
solutions along with fractional routing solutions to achieve a
higher throughput. The packing can be achieved by formulat-
ing appropriate integer linear programs. We compared these
results to the case of solutions that can be achieved via pure
fractional routing.

We applied our technique to several classes of networks. We
did not see a benefit in the case of networks generated using
random geometric graphs (this is consistent with previous
results [8]). We have found that our techniques are most pow-
erful for networks where the paths between the varioussi− ti
pairs have significant overlap. Accordingly, we experimented
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Fig. 6. Figures (a) and (b) denote possible subgraphsG̃ obtained after the graph modification procedure forG. Figure (c) shows an example of the overlap
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Fig. 7. a) Level-1 network. b) Level-2 network. c) Level-3 network. d) Level-4 network.

with four classes of networks (shown in Fig. 7) with varying
levels of overlap between the different source-terminal pairs.
The level-1 network (Fig. 7(a)) has the maximum overlap
between thes1 − t1 paths and the other paths; the overlap
decreases with an increase in the level number of the network.
The edge capacities in the networks were chosen randomly
and independently with distributions as explained below. We
conducted two sets of simulations.

• Simulation 1.Let C denote the edge capacity. For the
level-1 network for the black edges we choseP (C =
1) = 0.25, P (C = 2) = 0.4, P (C = 3) = 0.35;
for the other edges,P (C = 1) = 0.15, P (C = 2) =
0.6, P (C = 3) = 0.25. In the other networks we chose
P (C = 1) = 0.15, P (C = 2) = 0.6, P (C = 3) = 0.25 for
all the edges. Thus in this set of simulations, the maximum
edge capacity is three. We generated 300 networks from
these distributions and compared the performance of our
schemes with pure fractional routing. The results shown in
the first row of Table I indicate that the level-1 network
has the maximum number of instances where a difference
in the throughput was observed; both[1 2 5] and [2 2 4]
structures appear here. For the other networks, the[2 2 4]
structure appeared most often. The second row of Table I

records the average performance improvement when there
was a difference between our scheme and routing; it varies
between 4.9% to 5.59%.
• Simulation 2.In this set of simulations we increased the
average edge capacity. For the level-1 network for the black
edges we choseP (C = 5) = 0.25, P (C = 6) = 0.4, P (C =
7) = 0.35; for the other edges,P (C = 5) = 0.15, P (C =
6) = 0.6, P (C = 7) = 0.25. In the other networks we chose
P (C = 5) = 0.15, P (C = 6) = 0.6, P (C = 7) = 0.25 for
all the edges. Again, we generated 300 networks from these
distributions and compared the performance of our schemes
with pure fractional routing. The results shown in the third
row of Table I indicate that in this higher capacity simulation,
the number of networks where our schemes outperform pure
routing is significantly higher. For instance for the level-2
and level-3 networks more than 50% of the networks showed
an increase in the throughput using our methods. Another
interesting point, is that one observes an increased gap for
level-3 networks compared to the other cases. The fourth
row of Table I records the average performance improve-
ment when there was a difference between our scheme and
routing; it varies between 0.45% to 1.16%.

We found that though there were instances of all the
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TABLE I
PROPORTIONS OF NETWORKS WITH DIFFERENCES AND PERFORMANCE

IMPROVEMENT

Network Level-1 Level-2 Level-3 Level-4

Simulation 1 proportions 5.33% 2.33% 1% 0

Performance improvement 5.59% 5.06% 4.90% -

Simulation 2 proportions 47% 53% 80.67% 2.33%

Performance improvement 1.16% 1.31% 1.36% 0.45%

structures being packed by the ILP, the majority were[2 2 4]
structures. For the level-4 network, since[2 2 4] structure
cannot be packed effectively, there is a significant drop in the
proportions of networks that exhibit a difference with respect
to routing as compared to the level-3 and level-4 networks.
There were significant advantages in our approach for the case
of networks with higher edge capacities as in these networks
the chance of packing our basic feasible structures is higher.
The average performance improvement obtained when there
was a difference between our schemes and routing is not
very high. We remark that the complexity of running the ILP
increases with higher edge capacities and that was a limiting
factor in our experiments; the performance improvement may
be higher for large scale examples. Overall, our results indicate
that there is a benefit to using our techniques even for networks
with higher capacities, where the different source-terminal
paths have a large overlap.

VII. C ONCLUSIONS ANDFUTURE WORK

In this work we considered the three-source, three-terminal
multiple unicast problem for directed acyclic networks with
unit capacity edges. Our focus was on characterizing the
feasibility of achieving unit-rate transmission for each session
based on the knowledge of the connectivity level vector. For
the infeasible instances we have demonstrated specific network
topologies where communicating at unit-rate is impossible,
while for the feasible instances we have designed constructive
linear network coding schemes that satisfy the demands of
each terminal. Our schemes are non-asymptotic and require
vector network coding over at most two time units. Our work
leaves out one specific connectivity level vector, namely[1 2 4]
for which we have been unable to provide either a feasible
network code or a network topology where communicating at
unit rate is impossible. Our experimental results indicatethat
there are benefits to using our techniques even for networks
where the edges have higher and potentially different capac-
ities. Specifically, our basic feasible solutions can be packed
along with routing to obtain a higher throughput. Future work
would include a study of real-world networks where these
techniques are most useful.

APPENDIX

Claim 19: For two independent random variablesX1 and
X2 with H(X1) = a and H(X2) = b, if H(X1|Y ) ≤ ǫn
whereY is another random variable withH(Y ) ≤ a, then
b− ǫn ≤ H(X2|Y ) ≤ b, H(Y |X2) ≥ a− 2ǫn.

Proof: SinceH(X1) = a andH(X1|Y ) ≤ ǫn, we have

H(Y ) = H(X1, Y )−H(X1|Y ) ≥ H(X1)−H(X1|Y ) ≥ a−ǫn.

Next H(Y ) ≤ a implies that

H(Y |X1) = H(X1|Y )+H(Y )−H(X1) ≤ ǫn+ a− a = ǫn.

As X1 andX2 are independent andH(X2) = b, we have

b = H(X2) = H(X2|X1) ≤ H(X2|X1, Y ) +H(Y |X1)

≤ H(X2|X1, Y ) + ǫn ≤ H(X2|Y ) + ǫn ≤ b+ ǫn.

Thus, b− ǫn ≤ H(X2|Y ) ≤ b.

Finally, we obtain

H(Y |X2) = H(Y )− I(Y ;X2) = H(Y ) +H(X2|Y )−H(X2)

≥ a− ǫn + b− ǫn − b = a− 2ǫn

Lemma 20:If β1 6= 0, det([M21 M22ξ]) can be repre-
sented by

ξ2
β1

det

[
α′
1 −β2β

′
11 + β1β

′
12

α′
2 −β2β

′
21 + β1β

′
22

]
. (22)

whereξ satisfies[β1 β2]ξ = 0.
Proof: Becauseξ satisfies[β1 β2]ξ = 0, we can haveξ1 =

−β2ξ2/β1. Note ξ2 can be selected to be nonzero, regardless
of the value ofβ2. By substitutingξ1 into [M21 M22ξ], the
determinant of[M21 M22ξ] becomes

det

[
M21 M22

[
−β2ξ2

β1

ξ2

]]
=

ξ2
β1

det

[
α′
1 −β2β

′
11 + β1β

′
12

α′
2 −β2β

′
21 + β1β

′
22

]
,

(23)

whereξ2/β1 is nonzero.
Lemma 21:Consider a system of equationsZ = H1X1 +

H2X2, whereX1 is a vector of lengthl1 andX2 is a vector
of length l2 andZ ∈ span([H1 H2])

1. The matrixH1 has
dimensionzt × l1, and rankl1 − σ, where 0 ≤ σ ≤ l1.
The matrix H2 is full rank and has dimensionzt × l2
where zt ≥ (l1 + l2 − σ). Furthermore, the column spans
of H1 and H2 intersect only in the all-zeros vectors, i.e.
span(H1) ∩ span(H2) = {0}. Then there exists a unique
solution forX2.

Proof: SinceZ ∈ span([H1 H2]), there existsX1 and
X2 such thatZ = H1X1 + H2X2. Now assume there is
another set ofX ′

1 and X ′
2 such thatZ = H1X

′
1 + H2X

′
2.

Then we will have

H1(X1 −X ′
1) = H2(X2 −X ′

2). (24)

Becausespan(H1)∩span(H2) = {0}, both sides of eq. 24 are
zero. Furthermore, sinceH2 is a full rank matrix,X2 = X ′

2.
The solution ofX2 is unique.

Lemma 22:There are at leastq2 − 1 distinct values for
M̆33θ when there areq3 − 1 distinct values forθ.

Proof: Since M̆33 is a 4 × 5 matrix with rank at least
3, we can find two vectors̆γ

1
and γ̆

2
such that the matrix

M̆ ′
33 = [M̆T

33 | γ̆
1
| γ̆

2
]T and rank(M̆ ′

33) = 5. This implies

that there areq3 − 1 distinct values forM̆ ′
33θ. Next note that

1span(A) refers to the column span ofA.
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sincerank(M33) ≥ 4, γ̆
1

can be selected as the coding vector

for θX3 onEosk so thatrank[M̆T
33 | γ̆

1
]T ≥ 4. The precoding

constraint implies that̆γT

1
θ = 0. Hence, by removinğγ

1
θ from

M̆ ′
33θ, there continue to beq3−1 distinct vectors. If we further

removeγ̆
2
θ from M̆ ′

33θ, there will be at leastq2 − 1 distinct
values, i.e., there areq2 − 1 distinct values forM̆33θ.
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