IOWA STATE UNIVERSITY

Digital Repository

Electrical and Computer Engineering Publications Electrical and Computer Engineering

2-2014

On the Multiple-Unicast Capacity of 3-Source,
3-Terminal Directed Acyclic Networks

Shurui Huang
Towa State University

Aditya Ramamoorthy
ITowa State University, adityar@iastate.edu

Follow this and additional works at: http://lib.dr.iastate.edu/ece pubs

b Part of the Controls and Control Theory Commons, and the Signal Processing Commons

The complete bibliographic information for this item can be found at http://lib.dr.iastate.edu/
ece_pubs/109. For information on how to cite this item, please visit http://lib.dr.iastate.edu/
howtocite.html.

This Article is brought to you for free and open access by the Electrical and Computer Engineering at Iowa State University Digital Repository. It has
been accepted for inclusion in Electrical and Computer Engineering Publications by an authorized administrator of lowa State University Digital

Repository. For more information, please contact digirep@iastate.edu.


http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fece_pubs%2F109&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fece_pubs%2F109&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/ece_pubs?utm_source=lib.dr.iastate.edu%2Fece_pubs%2F109&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/ece?utm_source=lib.dr.iastate.edu%2Fece_pubs%2F109&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/ece_pubs?utm_source=lib.dr.iastate.edu%2Fece_pubs%2F109&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/269?utm_source=lib.dr.iastate.edu%2Fece_pubs%2F109&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/275?utm_source=lib.dr.iastate.edu%2Fece_pubs%2F109&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/ece_pubs/109
http://lib.dr.iastate.edu/ece_pubs/109
http://lib.dr.iastate.edu/howtocite.html
http://lib.dr.iastate.edu/howtocite.html
mailto:digirep@iastate.edu

Copyright 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of
any copyrighted component of this work in other works.

1302.4474v1 [cs.IT] 18 Feb 2013

arXiv

On the multiple unicast capacity of 3-source,
3-terminal directed acyclic networks

Shurui HuangStudent Member, IEEBNd Aditya Ramamoorthylember, IEEE

Abstract—We consider the multiple unicast problem with three
source-terminal pairs over directed acyclic networks with unit-
capacity edges. The threes; — ¢; pairs wish to communicate
at unit-rate via network coding. The connectivity between the
si — t; pairs is quantified by means of a connectivity level
vector, [k1 k2 ks3] such that there exist k; edge-disjoint paths
betweens; and t;. In this work we attempt to classify networks
based on the connectivity level. It can be observed that unit-
rate transmission can be supported by routing ifk; > 3, for all
i =1,...,3. In this work, we consider, connectivity level vectors
such that min;—1,...3k; < 3. We present either a constructive
linear network coding scheme or an instance of a network that
cannot support the desired unit-rate requirement, for all such

of sources[[8],[[9]. Numerous works consider restricted cases
such as unicast with two sessions|[10].1[11].1[12].1[13] and

unicast with three sessions [14[, [15], [17]. We discuss the
related work in detail in Sectidnlll.

In this work we consider network coding for wired three-
source, three-terminal directed acyclic networks with unit
capacity edges. There are source-terminal pairs dengted
ti,i = 1,...,3, such that the maximum flow from; to
t; is k;. Each source contains a unit-entropy message that
needs to be communicated to the corresponding terminal. In
this work, for a given connectivity level vectdk; ko k3]

connectivity level vectors except the vectorl 2 4] (and its e attempt to either design a constructive scheme based on
permutations). The benefits of our schemes extend to networks jinear network codes or demonstrate an instance of a network
with higher and potentially different edge capacities. Specifically, h " it-rate t . S ible. O
our experimental results indicate that for networks where the W e_re S‘%PPOV Ing unit-rate ransmls_,sm_n IS IMpOSSI e.. ur
different source-terminal paths have a significant overlap, our achievability schemes use a combination of random linear
constructive unit-rate schemes can be packed along with routing network coding and appropriate precoding. Our solutions are
to provide higher throughput as compared to a pure routing pased on either scalar or vector network codes that operate
approach. over at most two time units (i.e., two network uses). This
is useful, as one can arrive at multiple unicast schemes for
arbitrary rates by packing unit-rate structures for which our

| work that ; itin| icast. th achievability schemes apply.
n a network that supports multiple unicast, there are seve@im Contributions

source terminal pairs; each source wishes to communicate with h ‘ th i i ith uni
its corresponding terminal. Multiple unicast connections form® For_t € case o t ree unlca§t Sesslons wit umt_ rates, we
bulk of the traffic over both wired and wireless networks. identify certain feasible and infeasible connectivity levels
Thus, network coding schemes that can help improve network*! ké k3]|‘, For the fea;(ablzl cases, vr\]/e _c](c)nst_rglct schemes
throughput for multiple unicasts are of considerable interest! ase_d on finear networl coding. For the in feaS| r:acars]es, V‘r’]e
However, it is well recognized that the design of constructiveP"0VId€ counter-examples, 1.e., instances ot graphs where the
network coding schemes for multiple unicasts is a hard prob—mu“!ple unicast cannot_ be supported under any (potentially
lem when compared with the case of multicast that is very We"nonllnear)_network (_:odmg scheme.
understood [1],[2],[3]. Specifically, it is known that there are ® Wg provide experlmen'FaI results that demonstrate that our
instances of networks where linear (whether scalar or vector??as'ble schemes for unit-rate are useful for networks with
network coding is insufficient[4]. igher capacity edges. Specifically, we demonstrate classes

The multiple unicast problem has been examined for bottPf Networks with higher capacity edges, wheckingour
directed acyclic networks [5].[6]. 7] 8] [9] [10] [11]L [12] unit-rate schemes allows us to achieve transmission rates that
[13], [14], [15] and undirected networks [16] in previous work. are strictly greater than those achieved by pure routing.

The work of [6], provides an information theoretic characThis paper is organized as follows. Sectioh I contains an
terization for directed acyclic networks. However, this bouriverview of related work. In SectionJIl, we introduce the
is not computable. The work of][7] proposes an outer bourigtwork coding model and problem formulation. Secfion IV
for general directed networks. However, this bound is hafiscusses infeasible instances, and Sedfipn V discusses our
to evaluate even for small networks due to the large numbghievable schemes for 3-source, 3-terminal multiple unicast
of inequalities involved. There have been attempts to fiftetworks. Sectiof YI presents simulation results on networks

constructive schemes leveraging network coding between paiigh higher capacity edges and Section]VIl concludes the
paper with a discussion of future work.

The authors are with the Dept. of Electrical & Computer Eng., lowa State
Univ., Ames, |IA 5011. The material in this paper has appeared in part at
the IEEE Information Theory and Applications Workshop (ITA 2012), San
Diego, CA, Feb. 5 - 10, 2012, and the IEEE International Conference on . . . .
Communications (ICC 2011), Kyoto, Japan, Jun. 5 - 9, 2011. This work was It 1S well-recognized that network coding for multiple
supported in part by NSF grant CCF-1018148. unicast is significantly harder than the network coding for

I. INTRODUCTION

Il. BACKGROUND AND RELATED WORK
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multicast. The work of{[l1] establishes an equivalence betwepacked into networks with higher capacity edges. Furtheemo
network coded multicast and the problem of solving systertisese schemes require vector network coding over at most two
of linear equations. In the same paper, they also point @it thime units, unlike the work of([14] and_[15], that require a
for multiple unicast, one also needs to somehow decode #ignificantly higher level of time-expansion.

intended message in the presence of undesired interference

In general, it is intractable to find network code assignment [1l. PRELIMINARIES

that simultaneously allow the intended message to be decode\e represent the network as a directed acyclic graph
while mitigating the interference. In fact, it is known thiaear (V,E). Each edge: € E has unit capacity and can transmit
codes are insufficient for the multiple unicast problém [4]. gpe symbol from a finite field of size per unit time (we are
In this work our focus is exclusively on multiple unicastree to choose; large enough). If a given edge has higher
for directed acyclic networks (seé [16] for the undirecteglapacity, it can be treated as multiple unit capacity edges.
case). Previous work in this domain includes the work Qfirected edge between nodesand; is represented as, j),
[6] that presents an information theoretic charactemratf gq thathead(e) = j and tail(e) = i. A path between two
the capacity region. However, in practice this bound is nghdes; and; is a sequence of edgés,, e, . .., e;} such that
computable due to the lack of upper bounds on the cardinalgyil(el) = i, head(e,) = j and head(e;) = tail(eis1),i =

of the alphabets of the random variables involved in thp;m’k — 1. The network contains a set af source nodes
characterization. Moreover, even for small sized netvv,ork§i andn terminal nodeg;,i = 1,...n. Each source node;
the number of inequalities involved is very large. Similaphserves a discrete integer-entropy source, that needs to b
issues exist with the outer bound dfl [7]. There have begmmunicated to terminal. Without loss of generality, we
numerous works on achievable schemes for multiple unicaggsume that the source (terminal) nodes do not have incoming
The butterfly network with two unicast sessions is an inﬂan?outgoing) edges. If this is not the case one can always
where there is clear advantage to performing network codifigroduce an artificial source (terminal) node connectethéo
over routing. Accordingly Traskov et alll[8] proceed byyiginal source (terminal) node by an edge of sufficientigéa
packing butterfly networks for general multiple unicast. éto capacity that has no incoming (outgoing) edges.
al. [9] propose an achievable region by using XOR coding we now discuss the network coding model under consider-
coupled with back-pressure algorithms. Multiple unicast iation in this paper. For the sake of understanding the model,
the presence of link faults and errors, under certain @etti syppose for now that each source has unit-entropy, denoted
(though realistic) network topologies has been studied §y x; (as will be evident, in the sequel we work with integer
[18][29]. entropy sources). In scalar linear network coding, the aign
Further progress has been made in certain restricted slassg an edgdi, j) is a linear combination of the signals on the
of problems. For instance, an improved outer bound (GN&coming edges of or the source signals afif i is a source).
bound) over the network sharing outer bound for two-unitastyye shall only be concerned with networks that are directed

proposed in[[12]. Price et al. [113] also propose an outer HouRcyclic and can therefore be treated as delay-free netviiks
for two-unicast and demonstrate a network for which theoutget y, (such thattail(e;) = k and head(e;) = [) denote the

bound is the exact capacity region. For two-unicast, Warghnal on edge; € E. Then, we have
et al. [10] (also see [20]) present a necessary and sufficient

condition for unit-rate transmission and the work [ofl[11HanYe, = > fii¥e, ® k€ V\{s1,...,sn}, and
[21] propose an achievable region for general rates. {ejlhead(e;)=k}

Some recent work deals with the case of three unicast n ) _
sessions, which is also the focus of our work. The work ofe: = Zaj-,in wherea;; = 0 if X; is not observed ak.
[14] and [15] use the technique of interference alignment j=1
(proposed in [[22]) for multiple unicast. Roughly speakindhe coefficientsa;; and f;; are from the operational field.
they use random linear network coding and design apprepri&tote that since the graph is directed acyclic, it is equiviye
precoding matrices at the source nodes that allow undesipubsible to express,, for an edgee; in terms of the sources
interference at a terminal to be aligned. However, their apé;’s. If Y., = Y;_, B, » X, then we say that the global
proach requires several algebraic conditions to be satisfieoding vector of edge; is 8., = [Be,1 -+ Be;,n]. We shall
in the network. It does not appear that these conditions calso occasionally use the term coding vector instead ofajlob
be checked efficiently. There has been a deeper investigatomding vector in this paper. We say that a neder edgee;)
of these conditions in([17]. Our work is closest in spirit tas downstream of another noge(or edgee;) if there exists a
these papers. Specifically, we also examine network codipgth fromj (or ¢;) to i (or e;).
for the three-unicast problem. However, the problem ggttin Vector linear network coding is a generalization of the acal
is somewhat different. Considering networks with unit cazase, where we code across the source symbols in time, and the
pacity edges and given the maximum-fldw between each intermediate nodes can implement more powerful operations
source §;) - terminal ¢;) pair we attempt to either designFormally, suppose that the network is used dlieime units.
a network code that allows unit-rate communication betwed&le treat this case as follows. Source negdenow observes
each source-terminal pair, or demonstrate an instance of aector souchXi(l) XZ.(T)]. Each edge in the original
network where unit-rate communication is impossible. Owgraph is replaced by’ parallel edges. In this graph, suppose
achievability schemes for unit rate are useful since theybea that a nodej has a set of3;,. incoming edges over which



it receives a certain number of symbols, afig; outgoing of all the terminals. In general, though a network with the
edges. Under vector network coding, ngdehooses a matrix above connectivity level may not be able to support a scalar
of dimensiong,,; x Bin.. Each row of this matrix correspondsrouting solution.
to the local coding vector of an outgoing edge frgm

Note that the general multiple unicast problem, wherejy NETwORK CODING FOR THREE UNICAST SESSIONS
edges have different capacities and the sources haveeiffer INEEASIBLE INSTANCES
entropies can be cast in the above framework by splitting = . | based he di ) b hat for th
higher capacity edges into parallel unit capacity edges ano‘_t IS clear based on the Iscussion above that for three
a higher entropy source into multiple, collocated unitepy unicast sessions if the connectivity level [ 3 3], then a
sources. This is the approach taken below vector routing solution always exists. We investigate ¢etn

An instance of the multiple unicast problem is specified By*@MPples for certain connectivity levels in this section.
the graph(; and the source terminal paiss—t;,i = 1,...,n Lemma 2: There exist multiple unicast instances with three
and is denoteck G, {s; — t;}7, {R;}7 >, where the integer Unicast sessionss G, {s; — ti}i—1,{1,1,1} > such that the
rates R; denote the entropy of the source. Thes; — t; connectivity levelg2 2 2] and[1 1 3] are infeasible.

connections will be referred to as sessions that we needlﬁ%] Proof: The examples are shown in Figs. 1(2) and
support, . In Fig.[I(d), the cut specified by the set of nodes

Let the sources ai; be denoted a1, ..., Xir,. The in- {s1, s2, 83,01, v2} has a_lvglue qf tvv_o, while it needs to support
stance is said to have a scalar linear network coding sliftio @ SUM rate of three. Similarly in Fifj. I{b), the ¢, s, v}
there exist a set of linear encoding coefficients for eacterind Nas @ value of one, but needs to support a rate of twom
V' such that each termina} can recoverX;, ..., X;r, using
the received symbols at its input edges. Likewise, it is said
have a vector linear network coding solution with vectoigin
T if the network employs vector linear network codes and eat
terminal¢; can recove[Xi(ll) Xffr)],...,[Xi(}%)i ngi)]-

If the instance has either a scalar or a vector network coding el
. o . el e2
solution, we say that it is feasible.

We will also be interested in examining the existence of a v2
routing solution, wherever possible. In a routing solutieach 3 va
edge carries a copy of one of the sources, i.e., each codin
vector is such that at most one entry takes the valuall M © B 2 t1 3
others are). Scalar (vector) routing solutions can be defined @) (b)
in a manner Slmlla!’ _to scalar (vector) network codes. We n%. 1. (a) An example of2 2 2] connectivity network without a network
define some quantities that shall be used throughout ther.papgting solution. (b) An example dfi 1 3] connectivity network without a

Definition 1: Connectivity levelThe connectivity level for network coding solution.
source-terminal pais; —t; is said to be3 if the maximum flow
betweens; andt; in G is 3. The connectivity level of the set of While the cutset bound is useful in the above cases, there
connectionss; —t1,...,s, —t, is the vectofmax-flow(s; — €Xist certain connectivity levels for which a cut set bousd i
t1) max-flow(sy —to) ... max-flow(s, — t,)]. not tight enough. We now present such an instance in[Fig. 2.

In this work our aim is to characterize the feasibility of thdhis instance was also presented|in|[11], though the authors
multiple unicast problem based on the connectivity level ¢fid not provide a formal proof of this fact.
the s; — t; pairs. The questions that we seek to answer areLemma 3:There exists a multiple unicast instance, with
of the following form - suppose that the connectivity level itwo sessionsc G, {s1—t1, so—t2}, {2, 1} > with connectivity
[k1 k2 ... k,]. Does any instance always have a linear (scal@vel [2 3] that is infeasible.
or vector) network coding solution? If not, is it possible to ~ Proof: The graph instance is shown in Figl 2. As-
demonstrate a counter-example, i.e, an instance of a graptsume that inn time units, s; observes two vector sources

s1 s2 s3 s1 s2 s3

v2
v1

ands; — t;'s such that recovering theth source at; for all [Xl(l) e Xl(")] and[Xg(l) e XQ(")], s2 observes one vector
1 is impossible under linear (or nonlinear) strategies? source [X?El) Xé")]. The sources are denoted &5,
We conclude this section by observing that a multiplfs and X7 and are independent. The symbols that are
unicast instance: G, {s; —#;}{,{1,1,...,1} > with connec- transmitted over edgg, j) are denoted by". Suppose that
tivity level [n n ... n] is always feasible. LeX;,i = 1,...,n the alphabet of{; is X. Since the entropy rates for the three
denote the-th unit entropy source. We employ vector routingources are the same, we assuteY;) = log | X| = a. Also,
over n time units. Sources; observes[Xi(l) XZ.(”)] since we are interested in the feasibility of the solutior, w
symbols. Each edge in the original graphG is replaced assume that the alphabet size 3§ is also the same ag’,
by n parallel edgese!,e?,...,e". Let G, represent the and H(Y;;) < log|X| = a by the capacity constraint of the

subgraph of this graph consisting of edges with superscrggdge. At terminat; andt,, from Y7}, Y5, Y57 andY33, we
a. It is evident that max-flony, — t,) = n over G,. Thus, estimateX(, X3 and XZ. Let the estimate be denoted as
we transmitX((ll), e ,Xé”) over (G, using routing, for all )A({‘, )?;1 and)A(gl. Suppose that there exist network codes and
a=1,...,n.Itis clear that this strategy satisfies the demandecoding functions such th&((X7, X¥) # (X}, X3)) = 0



ns1 ) s2
(X7, X5 ] y

Y

t2 t1
Fig. 2. An example off2 3] connectivity network, ratg2,1} cannot be
supported.

B

€22

\

asn — oo. For successful decoding &t, using Fano’s
inequality, we have
H(X{, Xp|X7, X5) < nep. (1)

where ne, = 1+ 2nP,log(|X]), P. = P((X",Xp) #

(X7, X3)) ande, — 0 asn — oo. The topological structure

of the network implies thafA({l, X% are functions oft}%, and
YJ%. Hence, we have

SRR )
< H(X7, X3X7, XD) < nep.

Since H (Y73, Y33)
of X7, X2 and X%, by Claim[I9 (see Appendix), we have

an —ne, < H(X3|Y75,Y55) <an, and 3)
H (Y5, Yos| X3) > 2an — 2ney,. (4)
Next, we have
n ny (@) n n n niyn n

H(Y21aY22) = H(X?, aY217Y22) - H(X3 |Y21aY22)
(b) n n n n n
= H(X?, ayzl) - H(Xs |Yzlayzz)
(e)
< 2an — H(X?:l|y2qay27§ay2%vylzvX{l’X;)
(d) n|yvn n n n n
= 2“”—H(X3|Y22aY20aY127X1aX2) (5)

e) n|yn n n yn
2an — H(X3 |}/223 Xl 7X2 5Y12)
2an — H(X3|Y55, Y15) + (X5 X1, X5'[Y55,Y13)

S

<
(9)
< 2an — an + ne, + ney = an + 2ne,,

[B, there is no feasible solution for this instance.
< 2an, using eq.[(R) and the independence

From the network, we know that}} is a function ofYy;
and XZ'. This implies that

H(YT1, Yai, Yoo  X5') = H(Y{1, a1, Yo, X3'|X5)

> H(Y{, Y3, VoI X5) ©)

(a)
> H(Y35,Y15|X3) > 2an — 2ne,,
where (a) is due to ed](4). Finally, we have
H(X3 Y, Y50, Y5))
= H (Y1}, Y51, Yoo | X3') + H(X3) — H(Y35, Y51, Y1)

(a)
> 2an — 2ne, +an — H(Y53,Y3) — H(Y Y, Y8 (7)

®)

> 3an — 2ne, — an — 2ne, — H(Y{1|Y55,Y57)

(e)
> 2an — 4ne, — an = an — 4ne,,

where (a) is due to eq](6), (b) is because of Ef. (5) and (c)
holds because of the capacity constraint}@h. This implies
that to cannot decodeXy with an asymptotically vanishing
probability of error. [ |

Corollary 4: There exists a multiple unicast instance with
three sessions, and connectivity lej@B 2] that is infeasible.

Proof: Consider the instance G, {s} —t;}3,{1,1,1} >,
where G is the graph in Fig[J2. The sourced and s
are collocated at; (in G), and the terminalg] and ¢} are
collocated at; (in G). Likewise, the source}, and terminal
t, are located ats; and ¢y in G. The three sessions have
connectivity level[2 3 2]. Based on the arguments in Lemma
[ ]
The previous example can be generalized to an instance
with two unicast sessions with connectivity leyel n.] that
cannot support rate®; = ni, Re = no — 3n1/2 + 1 when
Nng > 3”1/2 andnl > 1.

Theorem 5:For a directed acyclic grapfy’ with two s — ¢
pairs, if the connectivity level fo(sy,t1) is n1, for (sq,t2) is
na, Wherens > 3n;/2 andny > 1, there exist instances that
cannot supporf?; =n; and Ry = ng — 3n1/2 + 1.

Proof: Provided in the supplementary documentatian.

V. NETWORK CODING FOR THREE UNICAST SESSIONS
FEASIBLE INSTANCES

It is evident that there exist instances with connectivity
level [2 2 3] (and component-wise lower) that are infeasible.
Therefore, the possible instances that are potentiallyiliéza
are[1 3 3] and[1 2 4], or their permutations and connectivity
levels that are greater than them. In the discussion bel@w, w
show that all the instances with the connectivity levigl8 3],

[2 2 4] and[1 2 5] are feasible using linear network codes.
Our work leaves out one specific connectivity level vector,

where (a) follows from the chain rule, (b) holds becatigge namely[1 2 4] for which we have been unable to provide
is a function of X§ and Y5;, (c) follows from the capacity either a feasible network code or a network topology where
constraints and the fact that conditioning reduces entr@)y communicating at unit rate is impossible.

follows asY} is a function ofY}4 andY3y, (e) is due to the  As pointed out by the work of [1], under linear network
fact thatY5y is a function of X7* and X7, (f) follows from coding, the case of multiple unicast requires (a) the teansf
the definition of mutual information, and (g) is a conseq@enenatrix for each source-terminal pair to have a rank thatgé hi

of eq. [2) and eq[{3). The above inequalities indicate ¢hat enough, and (b) the interference at each terminal to be zero.
andess need to carry the same information asymptotically fddnder random linear network coding, it is possible to assert
successful decoding &t. that the rank of any given transfer matrix from a sousge



to a terminalt; has w.h.p. a rank equal to the minimum cut  G.

betweens; andt;; however, in general this is problematic forn all the discussions below, we will assume that the graph
satisfying the zero-interference condition. G is structured. It is clear that this is w.l.o.g. based on the
Our strategies rely on a combination of graph-theoretic apdlevious arguments.

algebraic methods. Specifically, starting with the conimégt
level of the graph, we use graph theoretic ideas to argue tihatCode Assignment Procedure For Instances With Connec-
the transfer matrices of the different terminals have aertativity Level [1 3 3]

relationships. The identified relationships then allow os t \ye pegin by showing some basic results for two-unicast.
assert that suitable precoding matrices that allow eaafin@l  The three unicast result follows by applying vector network
to be satisfied can be found. A combination of graph-theorefisging over two time units and using the two-unicast results

and algebraic ideas were also used in the work [off [23],| emma 9:A minimal multiple unicast instance G, {s; —
where the problem of multicasting finite field sums over wireg o, ta},{1,m} > with connectivity level[l m + 1] is

networks was considered. However, there are some CruGiflays feasible.
differences. Referencé [23] considered a multicast sioat Proof: Denote the path from; to t; asP; = {P1;}, and
thus, the issue of dealing with interference did not exist. Ahe 1, + 1 paths froms, to ¢, asP, = {Po1, -, Pamg1 }-
will be evident, a large part of the effort in the current workrhe information that needs to be transmitted fremis X7,
is to demonstrate that the terminals can decode their iettnGng the information that needs to be transmitted freyis
message in the presence of the interfering messages.  x,, ... X,,. We assume thaP,; overlaps with all paths
We begin with the following definitions. _ . in P,. Otherwise, ifP;; overlaps withn paths inP, where
Definition 6: Minimality. Consider a multiple unicast in- < ;, < 1, + 1, w.l.o.g, assume they a1, ..., P»,. Then
stance< G = (V.E),{s; — ti}1, {1, ..., 1} > with ¥, canbe simply transmitted over the overlap free
connectivity level[k, ky ... kn|. The graphG'is said t0 pathsp,, ..., Py, and the problem reduces to commu-
be minimal if the removal of any edge frofi reduces the picating X, and X, . .., Xon_1 Over Piy U Py U---U P,
connectivity level. IfG: is minimal, we will also refer to the \yhich corresponds to the statement of the theorem with
multiple unicast instance as minimal. replaced byn — 1. Hence, we focus on the case thaf
Clearly, given a non-minimal instand®@ = (V, E), we can overlaps with all paths ifPs.
always remove the non-essential edges from it, to obtain thye assume that the local coding vectors for each edge are
minimal graph Giin. This does not affect connectivity. Ajndeterminates for now. Source uses a precoding matrix
network code forGmin = (V, Eimin) can be converted into g the rows ofe specify the coding vectors on the outgoing
a network code forz by simply assigning the zero codingeqges ofs,. The choice of the local coding vectors afdis

vector to the edges i\ Ein. o discussed below. The transmitted symbol on the outgoing edg
Definition 7: Overlap edgeAn edgee is said to be an fom s, belonging to P, is [0 Oim][Xor -+ Xom]T

overlap edge for path®; andP; in G, if e € P, N P;. wherei =1, ... ,m+1.Letd; = [01; -~ Omi1),]” where
Definition 8: Overlap segmentConsider a set of edges. _ 1,....m. - ! !
Eos ={e1,...,e1} C E that forms a path. This path is called a5 p, | overlaps with all paths ofP,, there will be many
an overlap segment for pattf$ and P; if overlap segments oRy;. Let E,,; denote the overlap segment
(i) Vk € {l,....1}, e is an overlap edge foP; and P;, that is closest to; (under the topological order imposed by the
(if) none of the incoming edges into tail( are overlap edges girected acyclic nature of the graph) alofy and suppose
for P, and P;, and that it is on P»;. A key observation is thaf,,; is also the
(i) none of the outgoing edges leaving heagi(are overlap yerlap segment o, that is closest td,. Indeed if there
edges forF; and P;. is another overlap segmerit, that is closer tot, along
Our solution strategy is as follows. We first converttheio@y) p,,, then it implies the existence of a cycle in the graph. Let
instance into anothestructuredinstance where each internakhe coding vectors at each intermediate node be specified by
node has at most degree three (in-degree + out-degree). Westerminates for now.
then convert this new instance into a minimal one, and d@velo The overall transfer matrix from the pair of sourdes, s2 }
the network code assignment algorithm. This network codg, ¢, can be expressed as
can be converted into a network code for the original inganc
Following [24] we can efficiently construct atructured [Mun | Miz] = [en [ 910 -+ igmen)]-
graphG = (V, E) in which each internal node € V' is Similarly, the transfer matrix from the pair of sourcgs, s-}
of total degree at most three with the following properties. to t, can be expressed as
(@) G is acyclic.

. . . . aq Y11 T Y1(m+1)
(b) For every source (terminal) i there is a corresponding s o1 o ~
source (terminal) inG. [May | Mao] = ] Q(TH)
(c) For any two edge disjoint patti$ and P; for one unicast : : :
session inG, there exist twovertexdisjoint paths inG Am+1 | Vm4+1)1 " V(m41)(m+1)
for the corresponding session @i R The received vector at terminalt; is therefore
(d) Any feasible network coding solution i¥ can be effi- X5

hMin | ]\/fiQ][ The variables /s

ciently turned into a feasible network coding solution i O[Xa1 -+ Xom|T



and~;;s in the above matrices depend on the indeterminateLemma 11:A minimal multiple unicast instance<
local coding vectors and are therefore undetermined at tifis{s; — ¢1,s2 — t2}, {2,1} > with connectivity level[2 4]
point. is feasible.

We emphasize that the first row p¥/5; | Mao] is the same Proof: Let P1 = {P11, P12} denote two edge disjoint
as [My; | Mis]. As there exists a single path between paths (also vertex disjoint due to the structured naturé/of
andt,, it is clear thata; is not identically zero. Similarly, from s; to t; andPy = {Pa1, Pao, Pa3, Po4} denote the four
as there aren + 1 edge-disjoint paths between to t,, we vertex disjoint paths frons, to ¢,. Let the source messages
have thatdet(M»2) is not identically zero. Now suppose tha@ét s; be denoted byX; and X,, and the source messagesat
we employ random linear network coding at all nodes. Usiray Xs. We color the edges of the graph such that each edge
the Schwartz-Zippel lemma[25], this implies that # 0 and on Py is colored red, each edge dn, is colored blue and
det(Maz) # 0 w.h.p. We assume that; # 0 anddet(M,;) # each edge on a path iR, is colored black.

0 in the discussion below. Next we selégt, i = 1,...,m+1, As the paths inP; and P, are vertex-disjoint, it is clear
5 =1,...,m such that they satisfy the following equation. that a node with an in-degree of two is such that its outgoing
edge has two colors (eithéblue, black)or (red, black). The
0 - 0 path further downstream continues to have two colors until i
Mol 01— ap -+ 0 g reaches a node of out-degree_ two. _
22(6 0] - ) Such an overlap segment with two colors will be referred to
(') o a;n as amixed color overlap segment/e shall also use the terms
red or blue overlap segmerib refer to segments with colors
where aq,...,a, are non-zero values. Note that suclfred, black)and (blue, black)respectively. Note that by our
[0, --- 8,,] can be chosen sinckl, is full-rank. naming convention patt®;; is a path that enters termingl
Terminal¢; can decode, sincé/f3[0;, --- 6,,] =[0---0] Under the topological order it/ we can identify the overlap
anda; # 0, andt, can decode, sinc&’; is available att,, segment onP;; that is closest t@;. In the discussion below
andrank(Maz[0, --- 0,,]) = m (from eq. [8)). Finally, we this will be referred to as the last overlap segment witheesp
note that there are — 1 choices for eaclf,. m to path ;. Two overlap segment&,,; and E,s, are said

We remark that the main issue in the above argument is tobe neighboring with respect t8;; if there are no overlap

demonstrate that the choice 6f works simultaneously for segments between them aloRg. An example of neighboring

both¢, andt,. The observation thaE,,; is overlap segment overlap segments is shown in Fjg. 3(a).

closest tot; andt, along Py; and P, respectively allows us  Claim 12: Consider two neighboring mixed color overlap

to make this argument. segmentd’,s; and E,» with respect to pathP; € P;. Then
The result for three unicast sessions with connectivitgllevEos1 and Eos2 cannot lie on the same pathy; € Po.

[1 3 3] now follows by using vector linear network codingProof: W.l.o.g., assume that,s; = {e1,..., e, } andEos =

over two time units, as discussed below. {el, ... €}, } are such thaty, is upstream ot}. Now assume
Theorem 10:A multiple unicast instance with three sesthat bothE,.; and E,; are onPs;. Note thathead(ex, ) has

sions, < G, {s; — t;}3,{1,1,1} > with connectivity level at tWwo outgoing edges, one of which belongs ; and the
least[1 3 3] is feasible. other belongs td%; (denoted by*). We claim that* can be

Proof: W.l.o.g. we assume that the connectivity level jEémoved while the connectivity level remains the same. Ehis

exactly[1 3 3]. We use vector linear network coding over twdecause” does not belong té; an(_j_P%* Vk #j. Moreover,
time units. For facilitating the presentation we form a nefter the removalP; can be modified to the path specified
graphG* where each edge € E is replaced by two parallel 8 path(sz, head(ex, ) — path(ex,, 1) — path(head(ey), t2)
unit capacity edges' ande? in G*. The messages at sourcéVhere path(ex, , e}, ) 1S along P1;. The new P; is vertex
nodes; are denotedX;; X;»],i =1,...,3. Let the subgraph d'.SJO'”t of Pog, VK # j, sinceEos1 and Eos: are neighboring
of G* induced by all edges with superscripbe denotedz:. Mixed color overlap segments alorg; which means that
In G, there exists a single; —¢; path and three edge disjointP@th(ex, — ¢1) is either purely blue or purely red. This
s» — 1o paths. Therefore, we can transmit; from s; to ¢; Ccontradicts the minimality of the graph. .
and [Xa1 Xas] from s, to ¢, using the result of Lemm@ 9. _leeW|se, two ne|ghb0r|n_g mixed color overlap segments
Similarly, we useG% to communicateX;, from s; to t; and with respect toP,;, cannot lie on the same pafh;.
[X31 X32] from s3 to 5. Thus, over two time units a rate of To explain our coding spheme, we first denote the last red
[11 1] can be supported. m (blue) oyerlap segment with respect By, (Pl?) by E,. (Ey).
If there is no E,., then X; can be transmitted along.
B. Code Assignment Procedure For Instances With Conne’zat‘:(ECOrdIng o Ler_nme[IQ,X_Q z?md X3 can be transmltte(_j o
tivity Level [2 2 4] t; andt, respectlvely_. A similar argument can be applied to
the case when there is dg,. Hence, we assume that bath
Our solution approach is similar in spirit to the discussioand E, exist. Based on their locations i, we distinguish
above. In particular, we first investigate a two-unicashsci® the following two cases.
with connectivity level[2 4] and rate requiremer{2,1} and 4 Case 1:E, and E, are on different paths P-.
use that in conjunction with vector network coding to addres w.o0.g. we assume tha, andE, are on pathd%; andPs.

the three-unicast with connectivity levill 2 4]. If there are no mixed color overlap segments on either
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Fig. 3. (@) An instance of network where there are severalspaf

neighboring overlap segmentg; and E5 are neighboring overlap segments
along P»1, E; and E9 are neighboring overlap segments alahg. £ and
E,4 are not overlap segments along any paths. (b) A network witimectivity
level [2 4] and rate{2, 1}. The coloring of the different paths helps us to
show that a linear network coding solution exists.

or Po4, X3 can be transmitted tt, through the overlap free
path, andX;, X> can be routed to,. Therefore, we focus on
the case that there are mixed color overlap segments on bo
Py3 and Pyy. Let E,; denote the last mixed color overlap
segments with respect 18,;, i = 1,...,4 (see Fig[ 3(B)).
Our coding scheme is as follows. Symhb¥} is transmitted
over the outgoing edge fromy over Py;,i = 1,2; symbols

0; X3 are transmitted over the outgoing edgessefover
Py;, j =1,...,4 respectively. The values @f; € GF(q)

will be chosen as part of the code assignment below. Le

the coding vectors at each intermediate node be specified bé(longP21

indeterminates for now. The overall transfer matrix frora th
pair of sourceq sy, so} to t; can be expressed as

ar B v vz M3 M4
M Mis| = ,
My | M) [ az B2 | Y21 Vo2 Vo3 Y
such that the received vector at ¢; is

[Mll | ]\/[12][X1 X5 | 01X3 6‘4X3]T. Recall that

E, and E; are the last mixed color segments with respect

to P;; and Pi». Thus, they carry the same information
as the incoming edges afi which implies that the row
vectors of[My;, | M) are the coding vectors of, and
E, respectively. Similarly, the transfer matrix frofs;, s2}

to the edge se{E,, Ey, Eys3, Eosa} Can be expressed as

ar P71 Y2 M3 Y
az 2 | Y21 Yoz Y23 Y
Me Me —
[ 21' 22] as B3 |31 Y32 Y33 Y4
oy Ba|var Y42 Y43 Yaa

where we use the superscriptto emphasize that these
transfer matrices are to the edge $éi,., E},, Fos3, Eosa}
and not to the terminatl,.

since the edgeg,., E,, E,s3 and E,¢4 lie on different paths

in P,, there are four edge disjoint paths frosm to the
edge subse{E,, Ey, Foss3, Eosa}, and the determinant of
MS, is not identically zero. This implies that their product is
not identically zero. Hence, by the Schwartz-Zippel lemma
[25], under random linear network coding there exists an
assignment of local coding vectors so thank(M;;) = 2
and rank(MS$,) = 4. We assume that the local coding
vectors are chosen from a large enough fi€ld'(q) so
that this is the case. For this choice of local coding vectors
we propose a choice df = [0, 6, 03 04]7 such that the
decoding is simultaneously successful at batland .
Decoding att;: As M;; is a square full-rank matrix, we
only need to null the interference fros. Accordingly, we
choosef from the null space of\fys, i.e.,

M50 = 0. 9

There are at least® — 1 such non-zero choices féras M-
is a2 x 4 matrix.
Decoding atty: The primary issue is that one needs to
demonstrate that the choice 6éfallows both terminals to
simultaneously decode. Indeed, it may be possible that our
choice off along with a specific network topology may make
Wimpossible to decode at. The key argument that this
does not happen requires us to leverage certain topological
properties of the overlap segments, that we present below.
Claim 13in G either one or both of the following statements
hold. (i) E, is the last overlap segment w.ri%y;. (i) E; is
the last overlap segment w.rieys.

Proof: Assume that neither statement is true. This
heans that there is a blue overlap segmgfitbelow E,
and there is a red overlap segmétit below E,
along P,,. Thus, E/. is upstream of£, and E; is upstream
of E,. However, this means that edg&$, E,, E; and E;
form a cycle, which is a contradiction. [ |
In the discussion below, w.l.0o.g., we assume thatis the
last overlap segment o#»;. The argument above allows
us to identify edged,., E,s3 and E, s, that carry thesame
symbolsas those entering. We show below that th&’; and
X5, components can be canceled by using the information on
E,s3 and E, 44 while retaining theX; component.
Let 7, represent the vectdri1 vie viz via]T,i = 1,...,4
in the discussion below. Note that[iis 53] and[«y (4] are
linearly independent, there exi&§ andd, such that

[a1 B1] = d3]as B3] + dalo Bal,

where d3 and 0, are not both zero. Thugy can recover
[, + d37, + d47,]70X;5. Note thaty][0 = 0, by the
constraint ond above, thus we only need to pigk such
that [037, + 5414]TQ # 0. To see that this can be done,
we note thatMs, is full rank which implies that the matrix
v, 2 (6313+6414)]T is full rank. Therefore, there exist at

Note that the entries of the transfer matrices above arénostqg choices fom such that[l1 %, (53134—5414)]%: 0.

functions of the choice of the local coding vectors in the

Hence, there are at leagt — ¢ — 1 > 0 non-zero choices

network which are indeterminate. Thus, at this point, thefor § that allow decoding at; andt; simultaneously.

M;; and M matrices are also composed of indeterminates
As there exist two edge disjoint paths fromto {E,, E,},
the determinant ofA/;; is not identically zero. Similarly,

If [as B3] and [ay B4] are dependent, decoding can be
performed simply by working only with the received values
over F,,3 and E,¢4 using a similar argument as above.



e Case 2:F, and E, are on the same pati;. i =1,...,3 andP; = {P11} denote the path frons; to
W.l.o.g., assume thak), is downstream ofF,. along P»;. t1, P2 = {P»1, P22} denote the edge disjoint paths frasm
Then E, will be the last overlap segment w.r;. Let tots, Ps = {Ps1, P32, P33, P34, P35} denote the edge disjoint
E; denote the blue overlap segment that is a neighbor péths fromss to ¢s.

E, w.rt. Pio. Note thatE; cannot be onP,; according Our scheme operates as follow&; is transmitted over
to Claim[12. If E/ does not exist, it implies that there isthe outgoing edge from; along Pi; , & X» are transmitted
only one blue overlap segment (namely,) in the network. over the outgoing edges of, along P;, i« = 1,2, and
Therefore, there only exist red overlap segment$’pnand 6; X5 are transmitted over the outgoing edgessgfalong
Py4; using LemmdB,X; and X5 can be transmitted to, Ps;, j =1,...,5 whereé = [ &]T andg = [6; ... 05]7
and t, respectively overP;; U Py3 U Poy, and X, can be are precoding vectors chosen from a finite field with sjze
routed alongP;s to t;. Let M; = [M;; | M;» | M;3] denote the transfer matrix
We now focus on the case when &ij exists and assumefrom {s, s2, s3} to terminalt;. EachM/;; corresponds to the
(w.l.o.g.) that it is onP»;. The main difference is that insteadtransformation from source; to terminalt;, i.e., the number
of using random coding over the entire graph, we modifyf columns iniZ;; is 1,2 and5 for j = 1,2 and3 respectively.
our coding scheme such that random coding is perform&imilarly, the number of rows id/;; is 1,2 and5 for i = 1,2
over the graph except df, and all the edges downstreamand 3 respectively.

of E,. At E, deterministic coding is performed such that In the discussion below we will need to refer to the
E, carries the same information as the incoming edge ofiitdividual entries ofA/; and Ms. Accordingly, we express
along P2. The information onE, is further routed to all these matrices explicitly as follows.

the downstream edges &f,. Note that by the deterministic

coding, E, carries the same information . My = [Myy | Myz | Mys] = [041 | BT |47 }

Decoding att;: Using the arguments developed in Case 1, it _

is clear tgatxl andX92 can bg decoded from?he information =lon | BuBa [ vz v a3l

T T
on E; and E,. The code assignment ensures thatand E} My = [May | Moy | Mas] = a B_IJF W_/JF
carry the same information, thus is satisfied. ay | B,

Decoding atts: In Case 1, we showed thaX; can be Q| BL Bl |y e s Y s
decoded from the information of,, E,;3 and E .. A = [ oy | Bl By | Wby Ve Vs Ve Vhs ],
similar argument can be made th¥$ can be decoded from

the information onk}, E,.; and E,.4. SinceE;, carries the where the entries of the matrices above are functions of
same information a&;, and E, is the last overlap segmentindeterminate local coding vectors. The cut conditionslymp

on Py, terminalt, can decodeX; by the information on that det(AZ;;) is not identically zero fori = 1,...,3, and
Ey, B,z and E,4. furthermore that their productet(M::1) det(Maz) det(Ms3)

m s notidentically zero.

By using the result of Lemm&lL1 and the idea of vector Our solution proceeds as follows. We first identify a mini-
network coding, we have the following theorem when th@al structured subgraph’ of G with the following properties.
connectivity level is[2 2 4]. (i) There exists a patt¥;,, from s; to ¢4,

Theorem 14:A multiple unicast instance with three ses-(ii) vertex disjoint pathsP;; and Ps, from s, to ts,
sions, < G, {s; — t;}3,{1,1,1} > with connectivity level at (iii) path P/_, from s; to ¢ and
least[2 2 4] is feasible. (iv) path P;_,; from sy to t;.

Proof: It can be seen that the line of argument used Rgain, G’ is said to be minimal if the removal of any edge
the proof of Theoreri 10, namely using vector network codifigom it causes one of the above properties to fail. We note tha
over two time units and use the result of Lemima 11 gives ySis possible that there do not exist any paths fremto

the desired result. B or from s, to ¢; in G. These situations are considered below.

. ) Our analysis depends on the following topological proper-
C. Code Assignment Procedure For Instances With Conn(-i:fé-s of &' y P g topolog prop
tivity Level[1 2 5] Case 1:The graphG’ is such that
We now consider network code assignment for networks there is no path from; to ¢, in &, i.e., Pl_., = 0 (this
o » 1E o =

yvhehr_e the connectivity level |ﬁ1 2O|5]ff The codﬁ assignment happens only if there is no path from to ¢, in G), or
in this case requires somewhat different techniques. 1A par |y o1eis no path from. to 1 in (7, i.e., P, ., = 0 (this

t|c;l1rllar, the idea ofkuswljg a S/vo—sessmn ukn|ca|§|t( rezult @lon happens only if there is no path fros to ; in G), or
wit _\(/jectodr networ ICOAmgh oes ?ot \I/vor un_ll e the cr;ses. there are paths?/_., and P}_,, in G, and there are
considered previously. At the top level, we still use random overlap segments betwedt}, and P}, U P,.

network coding followed by appropriate precoding to alige t .
interference sgen by the i/erralianalps. Hovr\)/ever, asg we sEaII %%se_Z:The graphG” is such that
below, we will need to depart from a purely random linear * there are path®(_,, andP;_,, in G, and P; does not
code in the network in certain situations. overlap with eitherP;, or P;,.

As before, we consider a minimal structured gragh We emphasize that together Case 1 and Case 2 cover all the
and let X; be the source symbol at source nodg for possible types of subgraphs f@f. Specifically, eithe®; _,, =




QorpP;y_, =0.Ifboth P{_,, andP;_,, existinG’, then either
there are overlaps betweétf, and P;, U P, or there are not.

Theorem 15:A multiple unicast instance with three ses-
sions, < G, {s; — t;}3,{1,1,1} >, with connectivity level
[1 2 5] is feasible.

@ ¢

sl s2 sl s2
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t1l t2 t1 t2

(@) (b)

Fig. 4. (a) Subgrapli:’ when P;, overlap withPj, . (b) SubgraptG’ when
P|, overlap with bothP}, and P,.

Proof: We break up the proof into two parts based on
type of the subgrapls’ that we can find inG.
Proof when there exists a subgraphG’ that satisfies the
conditionsof Casel
We perform random linear coding over the graghover a

It is evident that there are at leagt — 1 non-zero choices
of ¢ that satisfy the required constraints érfegs. [111) and
(I2)). Hencet, can decode.

(i4) There exists a pat/_,, from s, to to, i.e., P{_,, # (..
This means thafi/,; is not identically zero. Here, we first
align the interference froms within the span of interference
from s; by selecting an appropriate We have the following
lemma.

Lemma 16f M, # 0, there exist at leasj* — 1 choices

for # such that

Ma38 = cMay (13)

wherec is some constant.

Proof: First, w.l.o.g., we assume’, # 0. Hence, there
exists a full rank2 x 2 upper triangular matrixXy such that
UMz = [0 of)T. Next, define

[10JUMss =7," (14)
and choosé to satisfy5 6 = 0 and set: = .70/ . Upon
inspection, it can be verified that this implies tliad/,30 =
cUMos1. As U is invertible, and there is only one linear
constraint ord, we have the required conclusion. |
Thus, under this choice df, the interference fromss is
aligned within the span of the interference from at ¢,.
Let X = [X; X, X3]7. The received signal ab is

X1 +cX3

[May Maof Ma3f]X = [May Maof] { X,

} . (15)

The following claim concludes the decoding argument for
to

large enough field. In the discussion below, we will leveragec|gim 17if Mo is not identically zero, under random linear

the fact that multivariate polynomials that are not idestic

coding w.h.p., there existsgasuch thatrank[My, M| =

zero, evaluate to a non-zero value w.h.p. under a uniformly, 54 [B1 Ba)€ = 0.

random choice of the variables. This is needed at several

Proof: We will show that there exists an assignment of

places. By using standard union bound techniques, we cap g coding vectors such thdet[Ma; Moas€] # 0. This will

claim that our strategy works w.h.p.

imply that w.h.p. under random linear coding, this property

In particular, in the discussion below, we assume that the.gntinues to hold.

matricesM,;,i = 1,...,3 are full rank and design appropriate
precoding vectorg andg.

Decoding att;: For ¢, to decodeX;, we need to have; # 0
and the precoding constraints

[B1 B2]€ =0, and

(10)

(Y1 Y2 73 Y4 ¥5]0 = 0. (11)

There are at least— 1 non-zero vectorg§ and¢* — 1 non-
zero vectorsd that can be selected from the field of size
such that eq[{10) and ed.{11) are satisfied.

Decoding atts:

We begin by noting that sinceank(Maz) = 2, M2 # 0,
as long ast # 0. Next, we argue according to the topological
structure ofG’. The following possibilities can occur.

(z) There is no path from; to¢; in G', i.e., P|_,, = (. This

implies thata, = o, = 0 and inG, interference at, only

exists fromss. Next, at least one component 8f2,¢ will

be non-zero, based on the argument above; w.l.0.g. assume

that it is the first component. We choogédo satisfy

Y78=o. (12)

Suppose that there is no path fremto ¢, in G, i.e.,P;_,, =
() and[B;1 2] is identically zero. This does not impose any
constraint or¢. Next, My, is full rank w.h.p. Hence, we can
choose & such that required condition is satisfied.
If there exists a pattP;_,, from sy to ¢, in G/, [B1 S
is not identically zero. W.l.o.g., we assume tht is not
identically zero. By Lemmd_20 (see Appendix), proving
that det[Ms;  Mao€] # 0, is equivalent to checking that
the determinant in[{22) is not identically zero. Now we
demonstrate that there exists a set of local coding vectors
such that the determinant i {22) is non-zero. We consider
the subgrapltz' = P|, UPy, UP},UP|_,,UP;_,, (identified
above) - our choice of the coding vectors on all the other
edges will be assigned to the zero vector. As h8th, # )
andP;_,, # 0, we only consider the case whepg, overlaps
with Pj; U Pj,. We distinguish the following cases.

1) P{, overlaps with eitherP;, or Pj,. W.l.o.g., assume
it is PJ,. First note that wherP/; overlap with one of
P, and Py, in G, there is a path from; to ¢t and a
path fromss to ¢; in P{; U P4, U Pj,. Hence,G’ can
be completely represented B{, U Pj, U PJ,. This is
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shown in Fig[4(@). It is evident that we can choosene could find a new path fromy to ¢; that overlapsP;_,,

coding coefficients such that andPj_,, and delete at least one edge frdétfy, contradicting
the minimality of G’. By similar argumentspP;_,, and P;_,,
[B1 6] =[10], and cannot overlap onP;, U Pj,. Hence, paths® ., and P,_,,
1 1 0 can only overlap if they also overlap withj;.
(M1 Mas] = [ 0 0 1 } : (16) Next, we identify certain special edges @{. As there is

o i ) only one path going out of;, P/; and P;_,, will overlap.
By substituting them into eq[(P2), the determinant ok similar argument shows thaP;, and P,_, will overlap.
[JVII21 M3:¢] is not zero. ) _ _ . Likewise, P|_,, and P, ., will overlap with P}, or Pj,.

2) Py, overlaps with bolthP21 and Pp,. Using a similar - consider, the overlap betweeR!, and P/_,. Using the
argur/nent as abc/avg}' can be completely rep/resenteqmnima"ty of G’ it can be seen that there can be exactly
b¥ Piy U Py U Py if Ppy overlaps with both, and - gne gyerlap segment between them; we identify the edge
Ppp. Note tha/t there ‘f‘"” be one overlap betweBly  c pr np/ | at the farthest distance from, such that it has
and each o, and P22; Otherwllse, assume there argy, outgoing edges belonging to exclusivel, and P._,,,
two overlaps betweew;; and P,, then some edges 5nq call ite,. Similarly, we identify the edge P}, N P},
can be removed without contradicting the minimality,5t is closest ta,, and call ites.

Of/ the graph¢G’. T/h's_ is shown in Figl 4(b). Assume  Neyt, consider the overlap betwed?_,, and P, U Pl,.
Py, overlap with P, first. We can find a set of coding once again, by minimality it holds that there is exactly one

coefficients such that contiguous overlap segment betwe@n,, and Py, U Pj,, that
(B B2] =[1 1] and can either be orP}, or Pj,. We identify e, as the edge in
P|_,,N(Pj; UP),) that is closest ta;. In a similar manner,
(Myr My = [ 1 1 0 } 17) is identified as the edg®;_,, N (Pj;, U Ps,) that is farthest
11 away fromss.

By substituting them into eqC22), the determinant of We now conS|derthe/pOSS|bIe orders of the edges. ., e;.
[Ma1 Masé] is not zero As e; andes belong toPy;, one of them has to be downstream

. - of the other alongP/;. Consider the following cases.
In both cases, therefore the required condition holds w.h.p . 9 , g

. . o c3 is downstream ok, along Pj,. If edgese; and ey
under random linear coding. [ | . H )

: ; : lie on the same patkt {Py,, Py}, we first note thae,
Terminal t can decode since it can solve the system of - . .
equations specified by in eq_{15) has to be downstream of (by minimality, otherwise the

' segment betwees, andes along P{; can be removed);

Decodi_ng atts: At t3, we need to decodﬁ’_g in the presence the graphG” is topographically equivalent to Fig. 5(a). If
of the interference froms; and sy. The prior constraints on e; ande, lie on different pathss { P}, P},}, the graph

0, namely [(11) and.(12) for case (i), ¢r {11) abdl(13) for case v ig topographically equivalent to Fif. 5[b).

(ii) allow at leastq® — 1 choices for it. AsMs3 is full-rank, « e, is downstream of; along P/, Of ¢; = e3. In this case
this implies that there are at leagt— 1 corresponding distinct e; and e; have to lie on different paths {P,, P, 1.

M50 vectors. Next, forts to decodeXs, from Lemmal2lL, To see this, assume they both lie dj,: if c; is

we need to have downstream ofe,, the minimality of G’ does not hold

Ms30 & span([Ms, Mss)). (18) (segment_betyveeaz ande, along Py, can be. rgmoved),
- whereas ife; is downstream ot,, the acyclicity of G’
Since there are at mogt vectors inspan([Ms; Mss€]), is contradicted. Therefore, the only possibility is tkat
there are at leasf® — ¢> — 1 > 0 choices forf such that all and e, lie on different pathsc {Ps,, Py,} and in this
the required constraints ghare satisfied. caseG’ is topographically equivalent to Fify. 5(c).
Proof when there exists a subgraphG’ that satisfiesthe \with the above arguments in place, it is clear titt is
conditionsof Case?2 topographically equivalent to one of the graphs in Fig.}5(a)

As before, our overall strategy will be to use random Iine@ or[5(C).
network coding, however in certain cases we will need to makewe now present our schemes for the different possibilities
modifications to the code assignment. We argue based on f§e¢’. For the class ofY that fall in Fig.[5(a), it suffices to
properties of the minimal structured subgraph Recall that (se the approach in the proof of Theorem 15. Namely, we use
under Case 2, pathB;_,, and P;_,, exist andP[; does not random linear network coding in the network and precoding at
overlap with P5; U Ps,. As the graph is structured, this impliessourcess, ands;. As in this case\fs; # 0, one needs to argue
that P;, P;; and P;, are all vertex disjoint. that rank[Ma1 Msy€] = 2. Following the line of argument
Our first goal is to show that” is topologically equivalent ysed previously, we can do this by demonstrating a choice

to one of the graphs shown in Figs. $(f), b(b) 4nd]5(cwf local coding coefficients such thas, 3] = [1 0] and
Towards this end, we colo; U Pj; U Pj, black, the 1 10

path P/, red, and the path?, ,, blue. In this process, [May M| = 0 0 1
certain edges will get a set of colors (which are a subset wdét work when the subgrapf’ belong to the class of graphs
{red, blue,black}). Note that there cannot be any edge thahown in Figs. 5(B) and 5(c). For instance, it is easy to aleser
has the colofblue, red}. To see this, assume otherwise: thethat if we use random coding on Fi{g. §(b), and precoding to

. However, such an approach does



@ (b)

Possible subgrapls’ when P;; does not overlap with eitheP;, or Pj,.

Fig. 5.

cancel theX, component at;, thent, will receive a linear
combination ofX; and X, w.h.p., i.e., decodingd(, at s will
fail. Accordingly, whenG’ looks like Fig.[5(0) of5(d), we
require a different scheme that we now present.

Modified random coding for cases in Hig 5(b) and Fig 5(c).

11

existence of a path fromy to ¢; that has an overlap with
Py, U Phy; however, this is explicitly ruled out by the
discussion in the previous bullet. Thus# j; however,

this is impossible since the patlf3, and P;; are edge

disjoint.

It is clear that the strategy of random linear network codingccordingly, in the discussion below, we will assume that th
and precoding at the sources fails since the determinanta@fove scenarios do not occur.
the matrix [M; M2.{] is identically zero for the cases inGraph modification procedure for original grap®:
Fig. [5(b) and 5(d). Thus, at the top level our approach is 1y Remove all edges downstreamafon P}, that have no
modify the original graph= by removing certain edges and overlap with a path fronu?_, Ps;.
identifying a.special nodg it that is upstream of,. The o‘ii) Identify an edge, denotedfl;st on P, with the property
transfer matrix on the two incoming edges of this speciaknod * a1, . is the edge closest t, such that there exists
can be expressed al51 Moo Mys] such that the determinant a path(sy — epirst). Note thate 4 exists due to the
of [Ma1 Msys¢] is not identically zero. Thus, at this node it existence of pattP]_, in G

N - ‘nod . .
becomes possible to remove the effect\af via deterministic (i) Remove edges downstream of;,., while maintaining

c_oding. Ac;cordingly, our strategy is to first_ perform random o following properties - (a) there exists a path from
linear coding at all nodes except the special node and those efirst — t2, and (b)max — flow(ss —t3) = 5. Rename

that are downstream of the special node. Following this, we Py, 10 bepath(ss — e pivst — t2). It is important to note
Jirs .

perform deterministic coding_at the special node to can_cel that after this procedure, removal of any edge downstream
the effect of Xy, and random linear coding downstream of it. of efirst Would cause either property (a) or (b) to fail.

Finally, we argue based on the precoding constraints ticit eg;, dentify edgee.s: € P2, such that it is the edge closest
terminal can decode its desired message. In the discussion t, with the property that it has two incoming edges -
below we outline each of the steps and the corresponding ¢! ¢ P, such that there existgath(s, — ¢}) andé), €

analysis in a systematic manner. PJ,. Again ¢! is guaranteed to exist d% ., exists inG.

Re(_:all that based ,OGI ,(Wh',Ch 's a subgraph OG.) W€ As a consequence of the modification procedure, there is
have |d(/ent|f|ed pat/hi?ll, Py, Py, that are all vertex disjoint, | - overlap betweemath(s; — ¢,) and P. To see this,
paths Py_,, and P, ,; and gdgeSal, .-, eq. Al the outset assume otherwise, i.e., an overlap segment, derfgigexists
we d_emonstrate that certain structures Gf) need not be betweerpath(si—¢}) andP,. AS ¢ jirs; is the edge closest to
considered. In particular, sg such that there is a path betweenandey;,s:, it follows

o if in G, there exists a path from,; to ¢; that has an that E,, is downstream ofy;..; along P;,. However, this

overlap withP, UP},, itis clear that an alternate minimalcontradicts the property of the modified graph after Step (ii
subgraph” can be found that satisfies the conditions dfi the modification procedure above.
Case 1. Next, note thapath(ez—e3) has to overlap with a path from

« In G, a path froms; cannot have an overlap withU?_; Ps; (asG is minimal) which means that the downstream

path(es—e3). To see this note thdt’ is a subgraph of; neighboring edge oé, along P;; cannot belong to any path
therefore if pathes — e3) exists in it, then it necessarily in UJ_; P3; and will be removed in Step (i). Likewise the
has to belong to a patRs; from s3 to 3. We emphasize incoming edge oft, along Pj, will also be removed. At
that the entire path including, andes have to belong to the end of the graph modification procedure, and using the
Ps; because by assumption all nodes in the graph hagbkservations made above, it is clear that we can identify a
in-degree + out-degree at most 3. In a similar manneybgraph= of G that is topologically equivalent to either Fig.
the path froms; that overlaps with patle, — e3) also [6(a) or[6(D).

needs to belong to paths;.If i = j, then it implies the  Next, we perform random linear coding over the modified
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graph except at edge,s; and all the edges downstream ohave anX; component. Let the coding vector on the edge
¢iast, @nd impose the precoding constraififs (5] =0 and ¢ £, closest tot, be denoted byo | 3~ | 47], where it is

7"8 = 0. This ensures tha; is satisfied. Furthermore, notegyident that3 # 0 w.h.p. We enforce the precoding constraint
that there is no path froma;,s; to ¢;; therefore any code ﬁTQ: 0. This satisfies.

assignment om;,s; and its downstream edges will not affect” Finally, we discuss the decoding &t Consider the over-

decoding at; . .  lap segments?,.;, ..., E,s discussed above. Each of these
For ¢, to decodeXs, we first demonstrate that by usingoyerlap segments has an incoming edge that does not lie on
deterministic coding for edge;..;, the X; component can P}, (the other has to be oi},). We denote these edges

be canceled while th&, component can be maintained Olhy e*,i = 1 k, where we emphasize that = ¢}

_ . Z, N :
elast- Note thate; and e; denote the incoming edges ofj gt the edges entering; on pathsPs(x 11y, - - -, P35 be de-
¢lqst; We denote the transfer matrix to these two edges Bigtede;, ..., ez. Denote the transfer matrix on the edges
[M21 Mag Mas).

x .. er by [M M M;s]. Note that with high
Claim 18: For the network structures in Fif. 6(a) and Figel ¢ by [Ms | M | Myl 9

h o o k ' = probability it holds thatrank(Mss) = 5, since the max-flow
[6(B), the dgtgrmmant ofM21 Mao€] is not identically zero from s5 to these set of edges s
where{ satisfies[3; (2]§ = 0.

) ) . Next consider the rank of the coding vectors on edges
Proof: Based on previous argumer_1ts, we haye |dent|fl%last’63’636276;}_ For the sake of argument suppose that

the subgraph(; of & that is topologically equivalent 10 e remove the row ofi/s; corresponding te* and replace it

either Fig[6(d) of 6(h). By Lemmia R0, proving the claim igih the corresponding row of;,.;. As we used a determin-

equivalent to showing that the determinant of €ql (22) is NRkic code assignment for edge,.; the rank of the updated
identically zero. Based ol it is evident that local coding

’ 33 may drop to four, however it will be no less than four
vectors for the case of Fif.. 6[a) can be chosen such that gjnce it has four linearly independent row vectors.

It can be seen that further random linear coding downstream

(81 B2] =[1 0], and of €145 Will therefore be such thatank(Mss) (recall that
~ ~ 100 [Ms31]|Ms2|Mss) is the transfer matrix tds) is at least four
[May Maa] = { 00 1 } : (19) w.h.p. Moreover, it can be seen that the informationf;

also reachess, thusts can decodeX,. Therefore atts over
Similarly, for the case of Fid. 6(p) they can be chosen as the other four incoming edges we have a system of equations

B Bo] = [10], and specified by the matrix}s;|Mss] (of dimensiond x 6) with

L2 ’ unknowns X; and Xs. Furthermorerank(Mss) > 3. The

o Vool — 1 1 0 20 constraints ord thus far dictate that there agé — 1 non-zero
(Mo Mol = g g |- (20) " choices for it. As shown in the appendix (cf. Lemma 22) this

implies that there are at leagt — 1 distinct values forM30.

Substituting the local coefficients into e, {22) we have t or decodingX; at £, from Lemma2ll, we need to have

required conclusion. |
We now want to argue that can be satisfied. Note that edge M3360 ¢ span(Msy). (21)

e} must belong to a path fror®s;, as the graph is minimal. . .
Assume that there aré paths fromP; that overlap with As there are at mosf vectors in the span oy, it follows

path(eqst — t2); W...0.g. we assume that these are the pat at there are at Iga_s? —4q—1> 0non-zero values of such
P P that¢s can be satisfied. [ |

31, s 173k

Next, we note that there can be at most one overlap between
a path P3; and path(ejqst — t2). This is due to Step (iii) of VI. SIMULATION RESULTS
the graph modification procedure, where we removed edge®ur feasibility results thus far have been for the case of
downstream oty;,.s;, (and hencey,s:) such that thenax —  unit-rate transmission over networks with unit-capaciges.
flow(ss —t3) = 5 and there is path between};.s; — t2. If In this section, we present simulation results that denmatest
there are multiple overlaps betweéh; andpath(e;qst —t2), that these can also be used for networks with higher edge
this would mean that there exists at least one edge that was cepacities, that can potentially support higher rates far t
removed by Step (iii). As depicted in Fig. (c), we denote theonnections. The main idea is to pack multiple basic feasibl

overlap segments a1, .. ., Eys, WhereE,; is upstream solutions along with fractional routing solutions to acitea
of E,g41) for j =1,...,k — 1 along P;,. Also note that the higher throughput. The packing can be achieved by formulat-
first edge ofF,s1 IS €jqst- ing appropriate integer linear programs. We compared these

The next step in the code assignment is to use determinigésults to the case of solutions that can be achieved via pure
local coding coefficients so that the transmitted symbol dractional routing.
elast does not have arX; component. Note that it is guar- We applied our technique to several classes of networks. We
anteed to have arX,; component by the Clairhi 18 abovedid not see a benefit in the case of networks generated using
Following this, we again use random linear coding on edgesndom geometric graphs (this is consistent with previous
downstream ofe;,s;. By the definition ofe;,s; there is no results[8]). We have found that our techniques are most pow-
edgee Pj, downstream ofe,,s; that is reachable froms;. erful for networks where the paths between the varigust;
Thus all coding vectors along;, downstream o#;,;: do not pairs have significant overlap. Accordingly, we experineeint
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@) (b) (©

Fig. 6. Figures (a) and (b) denote possible subgra@tebtained after the graph modification procedure @orFigure (c) shows an example of the overlap
between the reds — t3 paths andP,.

s1 s3 s2 s3 s1 s2 s3 sl s2 s3 s1
o %
t3 t1 12 t3 t1t2 t3 112 t3 112

@ (b) (© (d)
Fig. 7. a) Level-1 network. b) Level-2 network. c) Level-3twerk. d) Level-4 network.

with four classes of networks (shown in Fid. 7) with varying records the average performance improvement when there
levels of overlap between the different source-terminaispa was a difference between our scheme and routing; it varies
The level-1 network (Fig[d7(a)) has the maximum overlapbetween 4.9% to 5.59%.
between thes; — ¢; paths and the other paths; the overlap e Simulation 2.In this set of simulations we increased the
decreases with an increase in the level number of the networlaverage edge capacity. For the level-1 network for the black
The edge capacities in the networks were chosen randomlgdges we chosB(C' = 5) = 0.25, P(C' = 6) = 0.4, P(C =
and independently with distributions as explained below. W 7) = 0.35; for the other edgesP(C = 5) = 0.15, P(C =
conducted two sets of simulations. 6) = 0.6, P(C = 7) = 0.25. In the other networks we chose
P(C =5)=0.15,P(C =6) =0.6,P(C =7)=0.25 for
e Simulation 1.Let C' denote the edge capacity. For the || the edges. Again, we generated 300 networks from these

level-1 network for the black edges we chos&C' =  (istributions and compared the performance of our schemes
1) = 025, P(C = 2) = 04,P(C = 3) = 035  with pure fractional routing. The results shown in the third
for the other edgesP(C = 1) = 0.15,P(C = 2) =  row of Tabld] indicate that in this higher capacity simusatj

0.6, P(C = 3) = 0.25. In the other networks we chose the number of networks where our schemes outperform pure
P(C=1)=0.15P(C =2)=06,P(C=3)=025fr routing is significantly higher. For instance for the leZel-

all the edges. Thus in this set of simulations, the maximumand |evel-3 networks more than 50% of the networks showed

edge capacity is three. We generated 300 networks fromn increase in the throughput using our methods. Another
these distributions and compared the performance of oujnteresting point, is that one observes an increased gap for
schemes with pure fractional routing. The results shown inevel-3 networks compared to the other cases. The fourth
the first row of TabIeEII indicate that the level-1 network row of Tab|e|:| records the average performance improve-

has the maximum number of instances where a differencenent when there was a difference between our scheme and
in the throughput was observed; bath2 5] and [2 2 4] routing; it varies between 0.45% to 1.16%.

structures appear here. For the other networks,[2h2 4]

structure appeared most often. The second row of Tdble IWe found that though there were instances of all the
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TABLE | .
PROPORTIONS OF NETWORKS WITH DIFFERENCES AND PERFORMANCE Proof: Since H(X1) = a and H(X1]Y) < e,, we have

IMPROVEMENT
H(Y)=H(X1,Y)-H(X1|Y) > H(X;)-H(X1]Y) > a—e,.
Network Level-1 Level-2 Level-3 Level-4 Next H(Y) < a implies that
Simulation 1 proportions | 5.33% 2.33% 1% 0 H(Y|X1) — H(X1|Y) + H(Y) _ H(Xl) <eée,+a—a=ce,.

Performance improvemenf 5.59% 5.06% 4.90%

As X; and X, are independent anH (X») = b, we have
b=H(X2)=H(X2|X1) < H(X3|X1,Y)+ H(Y|X1)
Performance improvement 1.16% 1.31% 1.36% 0.45% < H(X2|X1 Y) +e, < H(X2|Y) Ye, <b+e,.

Thus,

Simulation 2 proportions 47% 53% 80.67% 2.33%

structures being packed by the ILP, the majority wire 4] b—e, < H(Xo|Y) <.
structures. For the level-4 network, sin¢® 2 4] structure
cannot be packed effectively, there is a significant droghen t
proportions of networks that exhibit a difference with resp H (Y [X2) = H(Y) — I(Y; X2) = H(Y) + H(X2|Y) — H(X2)
to routing as compared to the level-3 and level-4 networks. >Sa—¢€,+b—€, —b=a—2¢,
There were significant advantages in our approach for thee cas

Finally, we obtain

of networks with higher edge capacities as in these netvvorksi_ -
the chance of packing our basic feasible structures is highéeen?;;n;a 20:F By # 0, det([Mz1 Maog]) can be repre-
The average performance improvement obtained when there y & oy =Py + BiBy

was a difference between our schemes and routing is not Edet oy —Bafhy + BifBhy | (22)

very high. We remark that the complexity of running the ILP -

increases with higher edge capacities and that was a IgnitiWhereé satisfies|: 4 2]§. — 0.

factor in our experiments; the performance improvement may T00f: Becausé satisfies5; f.)¢ = 0, we can have, =

be higher for large scale examples. Overall, our resultsatel —P282/P1. Note &, can be selected to be nonzero, regardless

that there is a benefit to using our techniques even for néswoP! the value off;. By substitutingé, into [My, Mzqg], the

with higher capacities, where the different source-teghnindeterminant of i/ M2:¢] becomes

paths have a large overlap. det| Moy Mo _5;? _ g—zdet Oé:1 _ﬂQﬂél + 515# |
) b1 ay =285 + P15
VIl. CONCLUSIONS ANDFUTURE WORK (23)

In this work we considered the three-source, three-ter’mi%\here52/B1 is nonzero -
multiple unicast problem for directed acyclic networkstwit | oo 21'Consider.a system of equatiotls= H; X, +

unit capacity edges. Our focus was on characterizing t@gXQ’ where X, is a vector of length; and X, is a vector
feasibility of achieving unit-rate transmission for eagsson of lengthls and Z € span([H, Hz])ﬁ. The matrix H, has
based on the knowledge of the connectivity level vector. Fafmensionzt « 15, and rankl, — o, where0 < o < I,.
the infeasible instances we have demonstrated specificmietvv-l-he matrix H, is full rank and has dimengion:t_x I
topologies where communicating at unit-rate is impossibl&lhere % > (I + ls — o). Furthermore, the column spans
while for the feasible instances we have designed consteuct ¢ H, and H, intersect only in the all-zeros vectors, i.e.
linear network coding schemes that satisfy the demandss%n(Hl) N span(Hs) = {0}. Then there exists a unique
each terminal. Our schemes are non-asymptotic and reql%?ution for Xo.

vector network coding over at most two time units. Our work Proof: Since Z € span([H, Hs)), there existsX; and
leaves out one specific connectivity level vector, nanieB/4] X, such thatZ = H,X, + H»X,. Now assume there is

for which we have been unable to provide either a feasible Ju o et ofx’ and X’ such thatZ — H\ X! + Hy X!
network code or a network topology where communicating #hen we will ha\lle 2 ! -

unit rate is impossible. Our experimental results indidhtg
there are benefits to using our techniques even for networks Hi(X; — X)) = Ho(Xo — XJ). (24)

where the edges have higher and potentially different Gap%cecause;pan(Hl)mspan(HQ) — {0}, both sides of e§24 are
ities. Specifically, our basic feasible solutions can bekpec . . ’ ; ,
zero. Furthermore, sincH is a full rank matrix,X. = X3.

along with routing to obtain a higher throughput. Future kvor’ . . .
. The solution ofX5 is unique. [ |
would include a study of real-world networks where these . 9 -
technigues are most useful _Lemma 22:There are at I_ea_sqz — 1 distinct values for
’ M350 when there arg® — 1 distinct values for.
Proof: Since M3z is a4 x 5 matrix with rank at least
APPENDIX 3, we can find two vector§  and ¥, such that the matrix
Claim 19: For two independent random variablég and A7%, = [MZ | 3, 1 4,)7 andrank(Mjs) = 5. This implies
Xo with H(X1) = a and H(Xz) = b, if H(X1]Y) < € that there are® — 1 distinct values fordZ,0. Next note that
whereY is another random variable with/ (Y') < a, then
b—e, < H(X:|Y)<b, HY|X2) > a— 2e,. Lspan(A) refers to the column span of.



sincerank(Mss) > 4, 11 can be selected as the coding vectge3] A. Ramamoorthy and M.

for X5 on E,, so thatrank[MZ | jl]T > 4. The precoding

constraintimplies tha‘q‘z?Q = 0. Hence, by removinglgfrom [24]

M},0, there continue to be* —1 distinct vectors. If we further

removey, 0 from 1\2/§3Q, there will be at least> — 1 distinct [25]

values, i.e., there ar¢Z — 1 distinct values forMs36. [ |
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