2-2018

Ce3-xMgxCo9: Transformation of a Pauli Paramagnet into a Strong Permanent Magnet

Tej Lamichhane
Iowa State University and Ames Laboratory, tejl@iastate.edu

Valentin Taufour
Ames Laboratory

Andriy Palasyuk
Ames Laboratory, palasyuk@iastate.edu

Qisheng Lin
Ames Laboratory, qslin@ameslab.gov

Sergey Bud’ko
Iowa State University and Ames Laboratory, budko@ameslab.gov

See next page for additional authors

Follow this and additional works at: https://lib.dr.iastate.edu/ameslab_manuscripts

Part of the [Condensed Matter Physics Commons](https://lib.dr.iastate.edu/condensed_matter_physics), and the [Materials Science and Engineering Commons](https://lib.dr.iastate.edu/materials_science_engineering)

Recommended Citation

Lamichhane, Tej; Taufour, Valentin; Palasyuk, Andriy; Lin, Qisheng; Bud’ko, Sergey; and Canfield, Paul C., "Ce3-xMgxCo9: Transformation of a Pauli Paramagnet into a Strong Permanent Magnet" (2018). *Ames Laboratory Accepted Manuscripts*. 109.
https://lib.dr.iastate.edu/ameslab_manuscripts/109

This Article is brought to you for free and open access by the Ames Laboratory at Iowa State University Digital Repository. It has been accepted for inclusion in Ames Laboratory Accepted Manuscripts by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Ce3-xMgxCo9: Transformation of a Pauli Paramagnet into a Strong Permanent Magnet

Abstract
We report on the synthesis of single-crystal and polycrystalline samples of Ce 3 – x Mg x Co 9 solid solution (0 ≤ x ≤ 1.4) and characterization of their structural and magnetic properties. The crystal structure remains rhombohedral in the whole composition range and Mg partially replaces Ce in the 6 c site of the CeCo 3 structure. Ferromagnetism is induced by Mg substitutions starting as low as x = 0.18 and reaching a Curie temperature as high as 450 K for x = 1.35. Measurements on single crystals with x = 1.34 and T_C = 440 K indicate an axial magnetic anisotropy with an anisotropy field of 6 T and a magnetization of 6 μ B / f. u. at 300 K. Coercivity is observed in the polycrystalline samples consistent with the observed axial magnetic anisotropy. Our discovery of ferromagnetism with large axial magnetic anisotropy induced by substituting a rare-earth element by Mg is a very promising result in the search of inexpensive permanent-magnet materials and suggests that other nonmagnetic phases, similar to CeCo 3, may also conceal nearby ferromagnetic phases.

Disciplines
Condensed Matter Physics | Materials Science and Engineering

Authors
Tej Lamichhane, Valentin Taufour, Andriy Palasyuk, Qisheng Lin, Sergey Bud’ko, and Paul C. Canfield

This article is available at Iowa State University Digital Repository: https://lib.dr.iastate.edu/ameslab_manuscripts/109
Ce\textsubscript{3-x}Mg\textsubscript{x}Co\textsubscript{9}: Transformation of a Pauli Paramagnet into a Strong Permanent Magnet

Tej N. Lamichhane,1,2,* Valentin Taufour,1,3 Andriy Palasyuk,1 Qisheng Lin,1 Sergey L. Bud’ko,1,2 and Paul C. Canfield2

1Ames Laboratory, U.S. DOE, Ames, Iowa 50011, USA
2Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
3Department of Physics, University of California Davis, Davis, California 95616, USA

(Received 31 October 2017; revised manuscript received 16 January 2018; published 23 February 2018)

We report on the synthesis of single-crystal and polycrystalline samples of Ce\textsubscript{3-x}Mg\textsubscript{x}Co\textsubscript{9} solid solution (0 ≤ x ≤ 1.4) and characterization of their structural and magnetic properties. The crystal structure remains rhombohedral in the whole composition range and Mg partially replaces Ce in the 6c site of the CeCo\textsubscript{3} structure. Ferromagnetism is induced by Mg substitutions starting as low as x = 0.18 and reaching a Curie temperature as high as 450 K for x = 1.35. Measurements on single crystals with x = 1.34 and $T_c = 440$ K indicate an axial magnetic anisotropy with an anisotropy field of 6 T and a magnetization of 6 μ_B/f.u. at 300 K. Coercivity is observed in the polycrystalline samples consistent with the observed axial magnetic anisotropy. Our discovery of ferromagnetism with large axial magnetic anisotropy induced by substituting a rare-earth element by Mg is a very promising result in the search of inexpensive permanent-magnet materials and suggests that other nonmagnetic phases, similar to CeCo\textsubscript{3}, may also conceal nearby ferromagnetic phases.

DOI: 10.1103/PhysRevApplied.9.024023

I. INTRODUCTION

Current rare-earth-based commercial magnets contain local-moment-bearing rare-earth elements, mainly Nd, Sm, and Dy, whose availability is, according to the U.S. Department of Energy, important to the clean-energy economy, and these magnets have an associated supply risk. Alternative to finding a long-sought rare-earth free, high-flux permanent magnet, attempts to find Ce-based permanent magnets or substituting Ce for more critical rare-earth elements could be a pragmatic strategy to address the criticality problem since Ce is a relatively more abundant rare-earth element \cite{1} with an easier extraction chemistry. Ce is relatively easy to separate from the other rare-earth elements since it can easily be oxidized to CeO\textsubscript{2} via roasting from which it can be precipitated out in acidic solutions \cite{2,3}. Ce can be, in theory as well as experiment, a substitute for critical rare-earth elements without much compromise in magnetic properties \cite{4}. Because of the volatile price of critical rare-earth elements, Ce has drawn attention for developing gap magnets which will populate the gap in energy product (in the range of 10–20 MGOe) between low-flux (alnico, ferrites) and commercial rare-earth-based magnets such as SmCo\textsubscript{5} and Nd\textsubscript{2}Fe\textsubscript{14}B. Additionally, the study of new Ce-based compounds often can reveal interesting physics; Ce exhibits diverse electronic and magnetic properties like local-moment-bearing Ce3+ ions, nonmagnetic Ce4+ ions, mixed valency, intermediate valence state, and itinerant magnetism.

Ce\textsubscript{3-x}Mg\textsubscript{x}Co\textsubscript{9} alloys are substitute derivatives of CeCo\textsubscript{3} in which Mg partially replaces Ce in the 6c position. The hydrogenation properties of the compound Ce\textsubscript{2}MgCo\textsubscript{9} (x = 1) and Nd\textsubscript{3-x}Mg\textsubscript{x}Co\textsubscript{9} alloys (x ≤ 1.5) have recently been investigated \cite{5,6}. In addition, it was shown that the substitution of Mg for Nd increases the Curie temperature from 381 K for NdCo\textsubscript{3} \cite{7} to 633 K for Nd\textsubscript{2}MgCo\textsubscript{9} \cite{6}.

In this work, we present the structural and magnetic properties of both single-crystal and polycrystalline Ce\textsubscript{3-x}Mg\textsubscript{x}Co\textsubscript{9} for 0 ≤ x ≤ 1.4. The anisotropic magnetic properties are studied for a single crystal of Ce\textsubscript{1.662(4)}Mg\textsubscript{1.338(4)}Co\textsubscript{9} (hereafter, we round off the single-crystal composition to three significant digits as Ce\textsubscript{1.66}Mg\textsubscript{1.34}Co\textsubscript{9}.) We find a remarkable transformation of Pauli paramagnet CeCo\textsubscript{3} (Ce\textsubscript{3}Co\textsubscript{9}) into the potential permanent magnet Ce\textsubscript{3-x}Mg\textsubscript{x}Co\textsubscript{9}, which develops 2.2 MJ/m3 of uniaxial anisotropy energy at 2 K for Ce\textsubscript{1.66}Mg\textsubscript{1.34}Co\textsubscript{9}.

II. EXPERIMENTAL METHODS

To establish the existence range of the solid solution Ce\textsubscript{3-x}Mg\textsubscript{x}Co\textsubscript{9}, we prepare polycrystals with various nominal compositions of 0 ≤ x ≤ 2.00 (see Table III). Ce metal from the Ames Laboratory Material Preparation Center (purity > 99.99%), Co chunks (99.95%, Alfa Aesar), and Mg (99.95%, Gallium Source) are packed in a three-capped Ta crucible \cite{8} under an Ar atmosphere. The Ta crucible is then sealed into an amorphous silica ampoule. The ampoule

*tejl@iastate.edu
is heated to 900 °C over 3 h and held there for 3 h. This step allows the reaction of Ce and Mg at low temperature and avoids the excessive boiling of Mg inside the Ta crucible. The ampoule is then heated to 1200 °C over 3 h and held there for 10 h. At this point, the ampoule is spun in a centrifuge. Similarly, CeCo3 single crystals are prepared by cooling a Ce30Co70 melt from 1200 °C to 1100 °C in 1 h and then to 1050 °C over 75 h [9].

Elemental analysis of the samples is performed using energy-dispersive spectroscopy (EDS). Polycrystalline samples are embedded in epoxy resin and finely polished. The polished samples are examined with EDS on six to ten spots and a statistical average composition is reported. Thin, platelike single-crystal samples [see Fig. 2(a)] are mounted on a conducting carbon tape. Self-flux-grown MgCo2 and CeCo3 single crystals are used as absorption standards for the Ce-Co-Mg alloy composition analyses.

Single-crystal x-ray diffraction is carried out on a Bruker Smart APEX II diffractometer with graphite-monochromatized Mo-Kα radiation (0.710 73 Å). Reflections are gathered at room temperature by taking four sets of 360 frames with 0.5° scans in 2θ with an exposure time of 10 s. The crystal-to-detector distance is 175 mm.

Single crystals of Ce1.66Mg1.34Co9 are grown using a solution growth technique. An initial composition of Ce9Mg24Co67 (see Fig. 1) is packed in a three-capped Ta crucible [8] and heated to 1200 °C similar to the polycrystals. The ampoule is then cooled down to 1100 °C over 75 h after which crystals are separated from the flux by using a centrifuge. Similarly, CeCo3 single crystals are prepared by cooling a Ce30Co70 melt from 1200 °C to 1100 °C in 1 h and then to 1050 °C over 75 h [9].
TABLE I. Crystallographic data and refinement parameters for Ce$_{1.66}$Mg$_{1.33}$Co$_9$.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>Ce${1.66}$Mg${1.33}$Co$_9$</td>
</tr>
<tr>
<td>Formula weight</td>
<td>796.32</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>Trigonal, R-3m h</td>
</tr>
<tr>
<td>Unit-cell dimensions</td>
<td>$a = 4.9260(7)$ Å, $c = 24.019(5)$ Å</td>
</tr>
<tr>
<td>Volume</td>
<td>504.75(18) Å3</td>
</tr>
<tr>
<td>Z, calculated density</td>
<td>3, 7.859 g/cm3</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>32.577 mm$^{-1}$</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>2000 ($R_{int} = 0.0408$)</td>
</tr>
<tr>
<td>Data, restraints, parameters</td>
<td>224, 0, 18</td>
</tr>
<tr>
<td>Goodness of fit on $</td>
<td>F</td>
</tr>
<tr>
<td>Final R indices [$I > 4\sigma(I)$]</td>
<td>$R_F = 0.0204$, $wR_F = 0.0450$</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>$R_F = 0.0226$, $wR_F = 0.0455$</td>
</tr>
<tr>
<td>Largest difference peak and hole</td>
<td>1.917 and -1.747 Å$^{-3}$</td>
</tr>
</tbody>
</table>

maintained at 60 mm. The reflections are collected over a range of 3° to 62° in 2θ.

Electrical resistivity is measured on single crystals using the four-probe technique with a Linear Research ac resistance bridge (LR700, $f = 17$ Hz). The Quantum Design (QD) Magnetic Property Measurement System (MPMS) is used for temperature control. Samples are sliced into thin rectangular bars (approximately $0.9 \times 0.45 \times 0.04$ mm), and platinum wires are attached to the samples with Dupont 4929N silver paint. The contact resistances are less than 2 Ω.

Magnetization is measured using a QD-VersaLab vibrating-sample magnetometer (VSM). The standard option is used in the temperature range 50–400 K, and the oven option in the range 300–1000 K. Locite 435 and Zircar cement are used to attach the samples in the standard and oven options, respectively. Field-dependent magnetization isotherms are also measured down to 2 K in a MPMS. The details of sample mounting and the experimental determination of the demagnetization factor along the easy axis are discussed in Refs. [12,13].

III. COMPOSITION AND STRUCTURAL PROPERTIES

A. Single crystal: Characterization and structure

A picture of as-grown Ce$_{1.66}$Mg$_{1.34}$Co$_9$ single crystals, a Laue backscattered photograph, and single-crystal surface diffracted monochromatic XRD data collected via a Rigaku MiniFlex II diffractometer with Bragg-Brentano geometry [14] are presented in Figs. 2(a), 2(b), and 2(c), respectively. Both Laue and monochromatic single-crystal XRD data confirm that the single crystals grow with a planar morphology with the c axis perpendicular to the plates.

The crystallographic data obtained from the single crystal x-ray diffraction for Ce$_{1.66}$Mg$_{1.34}$Co$_9$ grown out of a Ce$_6$Mg$_{24}$Co$_7$ initial melt are summarized in Tables I and II. Figure 2(d) shows a powder x-ray-diffraction pattern of the crushed single crystals which has some noticeable mismatch in an observed and Rietveld refined intensity of {001} families of the peaks, indicating a degree of preferred orientation in the powder sample. As mentioned above, the relatively small crystal size makes it difficult to acquire enough powder sample to obtain less noisy XRD data and better statistics in the Rietveld refinement. To reduce the intensity mismatch, a preferred orientation correction is employed in the Rietveld refinement using spherical harmonics up to 12th order and absorption correction for platelike grains in the powder sample. The Rietveld refined lattice parameters for powder XRD data of the single crystal Ce$_{1.66}$Mg$_{1.34}$Co$_9$ are $a = 4.923(1)$ Å and $c = 24.026(1)$ Å, which is in close agreement (within 2σ to 3σ) with the single-crystal XRD data as shown in Table I. The single crystal XRD composition is Ce$_{13.92}$Mg$_{11.08}$Co$_{75}$ (Ce$_{1.66}$Mg$_{1.34}$Co$_9$). Although we do not make a quantitative compositional analysis measurement on the single-crystal sample with EDS (the crystals are too thin to readily polish, and small droplets of Mg-rich flux is on their surfaces), we can detect the minor presence of Ta (up to 1 at. %), most likely caused by a slight dissolution of the inner wall surfaces of a Ta reaction container and diffusion of Ta atoms into the reaction liquid during a long-term dwelling process at a maximum temperature of 1200°C, as well as at ramping down to 1100°C over 75 h. However, an attempt to solve the crystal structure along with inclusion of Ta in any Wyckoff sites or interstitial sites is unsuccessful. We believe that Ta is distributed in our crystals in the form of nanosized precipitates rather than incorporated into interstices of the crystal structure.

The crystal structure of Ce$_{3-x}$Mg$_x$Co$_9$ is rhombohedral and belongs to the PuNi$_3$-type structure [5]. Similar to the
FIG. 3. The crystal structure for Ce_{1−x}Mg_xCo₂ showing the stacking sequence of a CaCu₃-type plane (A) and a MgCu₂-type plane (B) visualized along the [010] direction.

R_{1−x}Mg_xNi₅ series, the Co-containing structure is an intergrowth of CaCu₃-type (A) and MgCu₂-type (B) building blocks with a repeating sequence of AB'AB'A'B'A, as shown in Fig. 3. Here, A', B' and A'', B'' are introduced to show the relative translation of the growth layers with respect to the c axis during stacking. There are two independent sites for Ce atoms in this structure: one 3a site is located at the center of a face-shared antihexagonal prism defined by 18 Co atoms, and the other 6c site is surrounded by 12 Co atoms defining a truncated tetrahedron plus four capping atoms at longer distances. As expected from the polyhedra volume, the statistically distributed Ce/Mg mixtures prefer to occupy the Wyckoff 6c site, with its smaller volume.

B. Polycrystalline samples: Composition and lattice parameters

The nominal and EDS compositions of the polycrystalline samples are presented in Table III along with the Rietveld refined percentage of the majority phase in the sample. The SEM images for mixed and predominantly single-phase Ce_{1−x}Mg_xCo₂ samples are presented in Fig. 4.

![SEM images](image-url)

FIG. 4. SEM images of mixed-phase and predominantly single-phase Ce_{1−x}Mg_xCo₂ samples. (a) Nominal Ce_{2.25}Mg_{0.75}Co₂, which gives a mixture of Ce_{2.40}Mg_{0.60}Co₂ (majority phase) and Ce_{0.80}Mg_{0.20}Co₂ (minority phase demonstrated as faint small white spots along the diagonal of the black box) and large white stripes of the TaCo₃ impurity phase. (b) Predominantly single-phase Ce_{1.89}Mg_{8.11}Co₂ along with some traces of TaCo₃ impurity. The black parallel grooves in the image represent the cracks in the polished sample.

TABLE III. The comparison of the loaded compositions with the EDS-determined composition. A nominal presence of Ta (up to 1 at. %) is found in the homogeneous Ce_{1−x}Mg_xCo₂ samples. Some of the higher-Mg samples show traces of a TaCo₃ impurity phase, and low-Mg content samples show a TaCo₃ phase.

<table>
<thead>
<tr>
<th>Loaded composition (nominal)</th>
<th>EDS composition</th>
<th>Rietveld refinement % of majority phase: Ce<sub>1−x</sub>Mg<sub>x</sub>Co<sub>2</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>CeCo<sub>3</sub> (arc melted and annealed at 900°C for 7 d)</td>
<td>CeCo<sub>3</sub> + CeCo<sub>2</sub></td>
<td>≥88%</td>
</tr>
<tr>
<td>Ce<sub>1.75</sub>Mg<sub>0.25</sub>Co<sub>2</sub></td>
<td>Ce<sub>2.82</sub>Mg<sub>0.18</sub>Co<sub>0</sub> + Ce<sub>0.86</sub>Mg<sub>0.14</sub>Co<sub>2</sub> + TaCo<sub>2</sub></td>
<td>≥67%</td>
</tr>
<tr>
<td>Ce<sub>1.50</sub>Mg<sub>0.5</sub>Co<sub>2</sub></td>
<td>Ce<sub>2.66</sub>Mg<sub>0.34</sub>Co<sub>0</sub> + Ce<sub>0.77</sub>Mg<sub>0.23</sub>Co<sub>2</sub></td>
<td>≥76%</td>
</tr>
<tr>
<td>Ce<sub>2.25</sub>Mg<sub>0.75</sub>Co<sub>2</sub></td>
<td>Ce<sub>2.40</sub>Mg<sub>0.60</sub>Co<sub>0</sub> + Ce<sub>0.20</sub>Mg<sub>0.20</sub>Co<sub>2</sub></td>
<td>≥80%</td>
</tr>
<tr>
<td>Ce<sub>2</sub>Mg<sub>1</sub>Co<sub>0</sub></td>
<td>Ce<sub>2.18</sub>Mg<sub>0.82</sub>Co<sub>0</sub></td>
<td>Approximately single phase</td>
</tr>
<tr>
<td>Ce<sub>1.67</sub>Mg<sub>1.33</sub>Co<sub>0</sub></td>
<td>Ce<sub>1.89</sub>Mg<sub>8.11</sub>Co<sub>2</sub></td>
<td>Approximately single phase</td>
</tr>
<tr>
<td>Ce<sub>1</sub>Mg<sub>1.5</sub>Co<sub>0</sub></td>
<td>Ce<sub>1.77</sub>Mg<sub>8.23</sub>Co<sub>2</sub></td>
<td>Approximately single phase</td>
</tr>
<tr>
<td>Ce<sub>1.33</sub>Mg<sub>1.67</sub>Co<sub>0</sub></td>
<td>Ce<sub>1.65</sub>Mg<sub>8.35</sub>Co<sub>2</sub></td>
<td>Approximately single phase</td>
</tr>
<tr>
<td>CeMg<sub>2</sub>Co<sub>0</sub></td>
<td>Ce<sub>1.43</sub>Mg<sub>1.58</sub>Co<sub>0</sub> + MgCo<sub>2</sub> + Co</td>
<td>≥50%</td>
</tr>
</tbody>
</table>
Figure 4(a) shows the mixed-phase sample that forms out of a nominal composition Ce$_{2.25}$Mg$_{0.50}$Co$_9$, and Fig. 4(b) shows the predominantly single-phase sample with EDS composition Ce$_{1.89}$Mg$_{1.11}$Co$_9$. In addition, Table III summarizes a phase analysis based on powder XRD data.

The crystallographic information file obtained from single-crystal XRD is used to perform Rietveld refinement of the powder XRD data of polycrystal samples listed in Table III. Rietveld refined XRD patterns for multiple-phase polycrystalline samples (nominal Ce$_{2.75}$Mg$_{0.25}$Co$_9$ with $R_p = 0.09$, and Ce$_{2.50}$Mg$_{0.50}$Co$_9$ with $R_p = 0.10$), and single-phase polycrystalline Ce$_{1.89}$Mg$_{1.11}$Co$_9$ (EDS composition) with $R_p = 0.08$ are presented in Figs. 5, 6, and 7, respectively. The melt-annealed nominal Ce$_{2.75}$Mg$_{0.25}$Co$_9$ sample contains approximately 67% Ce$_{2.82}$Mg$_{0.18}$Co$_9$ phase, about 23% of Ce$_{0.86}$Mg$_{0.14}$Co$_2$, and roughly 10% of TaCo$_2$ inferred from Rietveld refinement. The TaCo$_2$ phase is not observed in the nominal Ce$_{2.50}$Mg$_{0.50}$Co$_9$ and higher content of Mg, as shown in Figs. 6 and 7. An unidentified Rietveld peak is observed in the nominal Ce$_{2.50}$Mg$_{0.50}$Co$_9$ sample shown in Fig. 6; however, the TaCo$_2$ phase is almost reduced to zero in comparison to the nominal composition Ce$_{2.75}$Mg$_{0.25}$Co$_9$ shown in Fig. 5. However, traces of the TaCo$_2$ phase are observed in predominantly single-phase Ce$_{3-x}$Mg$_x$Co$_9$ samples. These results, combined with the fact that even pure Mg = 0 CeCo$_3$ remains mixed phase after 7 d of annealing, suggest that Mg assists the annealing of polycrystalline Ce$_{3-x}$Mg$_x$Co$_9$ samples.

FIG. 5. A typical example of a multiphase polycrystalline XRD pattern for a nominal Ce$_{2.75}$Mg$_{0.25}$Co$_9$ sample. The enlarged peak at the left top of the graph shows the broadening of the highest-intensity peak of Ce$_{3-x}$Mg$_x$Co$_9$ around a 2θ value of 42° due to the presence of a Mg-doped CeCo$_3$ diffraction peak. I (Obs), I (Cal), and I (Bkg) are the experimental, Rietveld refined, and instrumental background data, respectively. The lower section of the graph shows the Bragg’s-peak positions with different-colored vertical lines for phases shown in the graph and the differential x-ray diffractogram I (Obs-Cal).

For nominal values of $x = 2$ and higher, Ce$_{3-x}$Mg$_x$Co$_9$ can no longer be considered a clear majority phase with the presence of a significant amount of CoMg$_2$ and Co.

Looking at the composition of the Ce$_{3-x}$Mg$_x$Co$_9$ alloys from EDS, it seems that $x \approx 1.4$ is the maximum solid solubility. In the Nd$_{1-x}$Mg$_x$Co$_9$ alloys, the structure changes from the trigonal structure for $x \leq 1.5$ to a tetragonal structure at $x = 2$ (YIn$_2$Ni$_9$ type) [6]. The solubility range of Mg in CeCo$_3$ is therefore similar,
but we do not observe a phase corresponding with the YIn2Ni0-type structure for \(x \geq 2 \). Instead, a three-phase region of MgCo2, Ce3–xMgxCo9, and Co is observed (see Table III). The compositional range of our Ce3–xMgxCo9 samples is summarized in Fig. 1.

The variation of the polycrystalline lattice parameters and unit-cell volume as a function of the Mg content in the Ce3–xMgxCo9 phase, as determined using EDS, is shown in Fig. 8. As expected, the substitution of Mg for Ce results in a reduction of the unit-cell volume, similar to the case with Nd3–xMgxCo9 alloys [6]. Neither the \(a \) nor the \(c \) lattice parameter follows a linear relation with Mg content \(x \). The variation in the \(a \) lattice parameter shows a slight positive deviation, and the \(c \) lattice parameter shows a slight negative deviation starting in the middle of the single-phase region. The negative deviation of lattice parameter \(c \) might indicate that the covalent bonding is increased along that direction. It should be noted that the lattice parameters (\(a \), \(c \), \(v \)) and composition inferred from the single-crystal x-rays (shown as the corresponding color \(\star \) s) agree very well with what we infer from EDS measurements on the polycrystalline samples.

![FIG. 8. Variation of the lattice parameters (\(a \),\(c \)) and the unit-cell volume (\(v \)) of polycrystalline Ce3–xMgxCo9 with Mg content inferred from EDS. Cubic Ce3–xMgxCo2-type impurity phases are obtained for \(x \leq 0.6 \), and predominantly single-phase Ce3–xMgxCo9 is obtained for 0.6 < \(x \) ≤ 1.4. The lattice parameters for single-crystal Ce3.66Mg1.34Co9 are presented with corresponding color stars. The uncertainty in the refined lattice parameters is less than 0.01% of the reported lattice parameters and is too small to clearly show as an error bar in the diagram.](image)

IV. MAGNETIC PROPERTIES

Previously reported data do not agree on the magnetic properties of the parent compound, CeCo3. Lemaire reported on CeCo3 as a ferromagnetic material with Curie temperature 78 K [15]. Buschow identified it as a Pauli-paramagnetic phase; however, he left room for further investigation by mentioning that CeCo3 could be ferromagnetic below 10 K [16]. To clarify this issue, we measure the temperature-dependent magnetization and electric resistivity of our single-crystal samples down to 2 K, as shown in Fig. 9. The magnetization data show no signature of a phase transition, and they are only weakly temperature dependent and are consistent with a Pauli paramagnet and an impurity tail below 20 K. Assuming the Curie tail is because of the Ce3+ magnetic ions in the single-crystal CeCo3 sample, magnetic susceptibility is fitted to the Curie-Weiss law up to 150 K as

\[
\chi(T) = \chi_0 + \frac{C}{T - \theta}
\]

where \(\chi_0 \) is the high-temperature asymptotic susceptibility, \(C \) is the Curie constant, and \(\theta \) is the Curie-Weiss temperature. The concentration of Ce3+ ions is estimated to be approximately 20% (with \(\theta = 3.8 \) K) using the spin-only moment of 2.54\(\mu_B \) per Ce3+ ion. The electrical resistivity does not show any signature of a loss of spin-disorder scattering, which would be anticipated for a magnetic phase transition.

The temperature dependences of the magnetization data of the single-phase Ce3–xMgxCo9 polycrystalline samples are shown in Fig. 10. A rapid increase of the magnetization upon cooling below the Curie temperature is observed for \(x \approx 0.82 – 1.35 \), indicating the appearance of ferromagnetism upon Mg substitution.

The Curie temperature \(T_C \) is estimated as the cross-point of linear extrapolations of two tangents to the magnetization curve around the point of inflection, as indicated on the curves \(x = 1.11 \) and \(x = 1.23 \) in Fig. 10. The variation of \(T_C \) with Mg substitution is shown in the inset. The Curie temperature increases with Mg concentration and reaches as high as 450 K for \(x = 1.35 \).

The substitution of Mg for Ce changes a Pauli paramagnet (CeCo3) into a ferromagnet that has \(T_C \) increase...
The fact that the as-cast samples show coercivity is associated with valency and band filling. In CeCo$_3$, the Ce is essentially nonmoment bearing, which implies a Ce$^{4+}$ valency. As Mg$^{2+}$ is added, there is a clear change in band filling that most likely leads to Stoner-type magnetism associated with the Co 3d bands. Further work, both computational and experimental, will be needed to better appreciate the origin of the observed ferromagnetism.

Figure 11 shows the magnetic hysteresis curves of various polycrystals along with the observed coercivity fields at 50 K (see the inset). The coercivity field increases with Mg content, becomes maximal (about 0.35 T) for $x = 0.82$, then decreases. The observation of coercivity is consistent with the axial nature of the magnetic anisotropy, as detailed below. The abruptly increased coercivity for $x = 0.82$ and the spontaneous magnetization for $x = 1.11$ magnesium-containing phases are reproduced in multiple samples. It should be noted that differing saturation values for differing x values are most likely due to the nonrandom distribution of grains in these as-cast samples. In addition, the nonsaturating behavior of the $x = 1.35$ sample indicates either the presence of the preferred orientations of the grains with their hard axis along the applied field or the presence of some anisotropic magnetic impurity in the sample. The former argument can be easily visualized in the $M(T)$ data, as the $x = 1.35$ polycrystalline sample and the single-crystal Ce$_{1.66}$Mg$_{1.34}$Co$_9$ $M(T)$ data along the hard axis are almost identical in nature, as shown in Fig. 10. The fact that the as-cast samples show coercivity is promising for the development of permanent magnets out of this system.

Our single-crystal sample can provide further insight into this system’s promise as a permanent-magnet material. Figure 12 shows the temperature dependence of the magnetization parallel and perpendicular to the c axis of the single crystal of Ce$_{1.66}$Mg$_{1.34}$Co$_9$ up to 550 K. The c axis is the easy axis of magnetization, and the saturation magnetization at low temperature is $8 \mu_B$/f.u.. The spontaneous-magnetization data points for Ce$_{1.66}$Mg$_{1.34}$Co$_9$,
FIG. 14. Anisotropic field-dependent magnetization of
\(\text{Ce}_{1.66}\text{Mg}_{1.34}\text{Co}_9 \) at 50 K (\(H_a \approx 10 \) T) and 300 K (\(H_a \approx 6 \) T), where \(H_{\text{app}} \) is the applied field, \(N \) is the demagnetization factor which is experimentally determined along the easy axis (\(N_c = 0.78 \)) \[12,13\], and \(M \) is the magnetization. The Arrott curves are not linear, indicating that \(\text{Ce}_{1.66}\text{Mg}_{1.34}\text{Co}_9 \) does not follow the mean-field theory. The Curie temperature is comparable to the values of \(T_C \) obtained from polycrystals of similar composition (see the inset of Fig. 10).

The magnetocrystalline anisotropy field is determined to be about 10 T \((T = 2 \) K\) and approximately 6 T \((T = 300 \) K\) for a \(\text{Ce}_{1.66}\text{Mg}_{1.34}\text{Co}_9 \) single-crystal sample, as shown in Fig. 14. The anisotropy field is determined by a linear extrapolation of the observed moment along the plane up to the saturation moment.

The anisotropy energy is quantified by using a Sucksmith-Thompson plot for field-dependent magnetization data along the plane, as shown in Fig. 15. In the Sucksmith-Thompson plot, the ratio of the magnetizing field with hard-axis magnetization data is related to the anisotropy constants \(K_1 \) and \(K_2 \), the saturation magnetization \(M_s \), and the hard-axis magnetization \(M_{\perp} \) as shown in the following equation \[17,18\]:

\[
\frac{\mu_0 H}{M_{\perp}} = \frac{2K_1}{M_s^2} + \frac{4K_2}{M_s^4} M_{\perp}^2.
\]

The intercept of the Sucksmith-Thompson plot gives the anisotropy constant \(K_1 \), and the slope gives the anisotropy
constant K_2. Figure 16 shows the temperature variation of the measured anisotropy constants. There is a slight mismatch ($<2\%$) in the anisotropy data above and below the 300-K value obtained from the VSM and MPMS data. The VSM data are scaled to the MPMS data at 300 K since the slope of the Sucksmith-Thompson plot is better determined with a higher applied field. Here, the total anisotropy energy of Ce$_{1.66}$Mg$_{1.34}$Co$_9$ is determined to be 2.2 MJ/m3. Such high anisotropy energy density makes Ce$_{1.66}$Mg$_{1.34}$Co$_9$ a potential candidate for permanent-magnet applications.

V. CONCLUSIONS

In this paper, we investigate the effect of Mg substitution into the Ce$_2$Co$_9$ (e.g., CeCo$_9$) binary phase where Mg partially replaces the Ce atom on the 6c crystallographic site, giving rise to the Ce$_{2-x}$Mg$_x$Co$_9$ solid solution for $0 \leq x \lesssim 1.4$. The substituted Mg induces ferromagnetism; the Curie temperature of the solid solution increases with a higher content of Mg and becomes maximal (450 K) at Mg content $x = 1.35$. The magnetic anisotropy is determined for a self-flux-grown Ce$_{1.66}$Mg$_{1.34}$Co$_9$ single crystal. The uniaxial-anisotropy field is determined to be approximately 10 T at 2 K and about 6 T at 300 K. The anisotropy energy density is determined to be 2.2 MJ/m3 at 2 K. With these observed magnetic properties, the Ce$_{3-x}$Mg$_x$Co$_9$ solution shows the potential to be used as a permanent magnet.

ACKNOWLEDGMENTS

We would like to thank Dr. T. Kong for the useful discussions. Dr. Warren Straszheim is acknowledged for doing SEM on various samples. This research was supported by the Critical Materials Institute, an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office. Q.L. is supported by the office of Basic Energy Sciences, Materials Sciences Division, U.S. DOE. This work was performed at the Ames Laboratory, operated for the DOE by Iowa State University under Contract No. DE-AC02-07CH11358.

using a powder diffractometer, Philos. Mag. 96, 2115 (2016).

