Optical and magneto-optical investigation on electronic structure of ordered ferromagnetic Fe3Pt

Thumbnail Image
Date
2001-01-01
Authors
Kim, K. J.
Lee, S. J.
Wiener, T. A.
Lynch, David
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Research Projects
Organizational Units
Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Journal Issue
Is Version Of
Versions
Series
Department
Physics and Astronomy
Abstract

The optical and magneto-opticalproperties of ordered Fe3Pt have been investigated by spectroscopicellipsometry and magneto-opticalKerrspectroscopy. The diagonal component of the optical conductivity tensor of the compound exhibits a broad absorption peak at about 2 eV, which is shifted by about 0.5 eV to lower energies from the corresponding one in pure bcc Fe. The Kerr angle spectrum of the compound disperses quite similarly in both spectral trend and magnitude to that of pure Fe below 3.5 eV but differently above it. The lower-energy shift of the 2-eV-absorption structure of the compound is interpreted as due to the shift of the minority-spin Fe-d states toward EF through the hybridization with Pt-d states. The Kerr effect of the compound is attributable to a large spin-orbit coupling in Pt as well as the well-hybridized spin-polarized bands.

Comments

The following article appeared in Journal of Applied Physics 89 (2001): 244, and may be found at doi:10.1063/1.1331064 .

Description
Keywords
Citation
DOI
Copyright
Mon Jan 01 00:00:00 UTC 2001
Collections