Effects of Tillage Practices on Dissemination and Spatial Patterns of Heterodera glycines and Soybean Yield

Thumbnail Image
Date
2007-08-01
Authors
Tylka, G. L.
Munkvold, G. P.
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Munkvold, Gary
Professor
Person
Tylka, Gregory
Morrill Professor
Research Projects
Organizational Units
Organizational Unit
Plant Pathology and Microbiology
The Department of Plant Pathology and Microbiology and the Department of Entomology officially merged as of September 1, 2022. The new department is known as the Department of Plant Pathology, Entomology, and Microbiology (PPEM). The overall mission of the Department is to benefit society through research, teaching, and extension activities that improve pest management and prevent disease. Collectively, the Department consists of about 100 faculty, staff, and students who are engaged in research, teaching, and extension activities that are central to the mission of the College of Agriculture and Life Sciences. The Department possesses state-of-the-art research and teaching facilities in the Advanced Research and Teaching Building and in Science II. In addition, research and extension activities are performed off-campus at the Field Extension Education Laboratory, the Horticulture Station, the Agriculture Engineering/Agronomy Farm, and several Research and Demonstration Farms located around the state. Furthermore, the Department houses the Plant and Insect Diagnostic Clinic, the Iowa Soybean Research Center, the Insect Zoo, and BugGuide. Several USDA-ARS scientists are also affiliated with the Department.
Journal Issue
Is Version Of
Versions
Series
Department
Plant Pathology and Microbiology
Abstract

Two field experiments were conducted in central Iowa to assess the effects of tillage on Heterodera glycines dissemination and reproduction and soybean (Glycine max) yield. Plots in both experiments were artificially infested with equivalent numbers of H. glycinescysts. In one experiment, plots were left noninfested or received aggregated or uniform infestation, and a susceptible soybean cultivar was grown for 3 years. By the end of the first growing season and through the second, H. glycines population densities were consistently greater (P ≤ 0.05) in uniformly infested plots than in plots with aggregated infestations. No differences in soybean yield among the treatments were detected. In a second experiment, a 1-m2 area of each plot was infested with H. glycines cysts, susceptible soybeans were grown for four seasons, and crop residue was managed with either ridge-, conventional-, reduced-, or no-tillage. After 1 year, nematode population densities were significantly (P ≤ 0.05) greater in conventional- and reduced-tillage treatments than in no- and ridge-tillage treatments. After 2 years, H. glycines had been disseminated 6.9 m from the infestation site in conventional- and reduced-tillage treatments but only 0.5 and 1.4 m for no-tillage and ridge-tillage treatments, respectively. After 3 years, H. glycines population densities were 10 times greater in conventional- and reduced-tillage treatments than in the no-tillage treatment; conventional-tillage was the only treatment with yield significantly lower (P ≤ 0.05) than the noninfested control. Aggregation of H. glycines eggs was greater (P ≤ 0.05) in no- and ridge-tillage treatments than in conventional- and reduced-tillage treatments. Results indicate tillage can quickly disseminate H. glycines in newly infested fields, facilitating more rapid nematode reproduction and subsequent yield loss.

Comments

This article is published as Gavassoni, W. L., G. L. Tylka, and G. P. Munkvold. "Effects of tillage practices on dissemination and spatial patterns of Heterodera glycines and soybean yield." Plant disease 91, no. 8 (2007): 973-978, doi: 10.1094/PDIS-91-8-0973. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Mon Jan 01 00:00:00 UTC 2007
Collections