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CHAPTER 1. INTRODUCTION 

Because of its hardness, high resistance to abrasion, easiness to be finished 

smoothly, and attractive figure, oak lumber is used extensively in furniture, interior 

paneling, and flooring. Oaks are a very important part of the United States 

hardwood resources. The oak species constitute about 40% and 20% of the total 

hardwood volume grown in the Appalachian region and on southern pine sites, 

respectively (U.S. Forest Service, 1982). According to a recent U.S. Forest Service 

inventory (Brand and Walkowiak, 1992), the oak species also dominate in Iowa, 

accounting for 37% of the growing-stock volume. These resources have not been 

utilized to their full potential because of their small size and low quality. 

Furthermore, industrial use of low quality oak species for composite products has 

been inhibited by a technical difficulty in forming durable adhesive bonds. As future 

demand for wood products rises, the need for developing reliable gluing processes 

for oak will become important. 

The technical difficulty in forming durable oak adhesive bonds may be caused 

by two possible factors. The first one is the effect of high wood density on gluing. 

Infiltration of resin adhesives into cell walls has been considered essential for 

durable adhesive bonds (Nearn, 1974; Wellons, 1976). A high wood density may 

cause insufficient resin penetration into the cell wall and thus limit the bond 

strength. In addition, a high wood density requires a higher specific pressure to 
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bring the bonding surfaces into close contact to form good bond. The second factor 

is the effect of extractives on bonding. Hse and Kuo (1988) have pointed out that 

wood extractives may affect gluing in the following ways: (1) heavy deposits of 

extractives on the gluing surfaces block the reaction sites; (2) chemical 

incompatibility between the extractives and adhesives results in inferior glue bonds; 

(3) extractives influence the wettability and polarity of the wood surface so that the 

wettability-permeability relationship of a particular adhesive is changed; and (4) 

extractives affect the curing and setting characteristics of adhesives. 

Craft (1970) found that white oak grown in the Appalachian region was very 

difficult to glue with phenolic resins as indicated by low wood failure values of 

plywood panels. Roffael and Rauch (1974) found that phenolic bonded 

particleboard made from old growth white oak was inferior to boards made from 

young oaks. Kuo et al. (1984) also found that white oak grown on southern pine 

sites were very difficult to glue with phenolic resins. They attributed the difficulty to 

migration of water-soluble extractives to veneer surfaces during veneer drying. All 

these studies indicate that gluing difficulty of white oak plywood is related to 

extractives. 

The overall objective of this study was to improve the adhesive bond quality of 

white oak composite products. Specific objectives were: 

(1) To study the influence of extractives on adhesive bond properties, and 

(2) To formulate phenolic resin adhesives for improving adhesive bonds. 
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CHAPTER 2. LITERATURE REVIEW 

White Oak Extractive Content and Distribution 

The extractive content of white oak is quite variable, depending upon the age 

of trees and specific location in the stem, and sometimes also depending upon 

growing sites. According to results obtained at the U. S. Forest Products 

Laboratory, the average hot water, alcohol-benzene, and ether solubility of white 

oak wood were 4.0, 5.0, and 0.9%, respectively (Pettersen, 1984). The average 

alcohol-benzene solubles for white oaks grown on southern pine sites is 4.99% 

(Koch, 1985). Kuo et al. (1984) reported an average of 8.7% of hot water-solubles 

with a subsequent alcohol solubility of 0.8% for white oak heartwood grown on 

southern pine sites. Most of these reports on white oak wood extractive content 

made no reference to the age of trees being studied. Roffael and Rauch (1974) 

found that 20- to 30-year old white oak wood contained about 5% hot water 

solubles, while the corresponding value for old-growth trees was about 12%. 

Wood extractives, although being the non-skeletal components of wood and 

sometimes representing only a few percent of the oven-dry weight of wood, consist 

of a complex mixture of compounds. For example, Seikel et al. (1971) reported that 

Quercus rubra L. (northern red oak) contained 6.2% and 8.2% of total extractives in 

sapwood and heartwood, respectively, which included sixteen phenolic compounds. 



4 

C.-L Chen (1970) found that the heartwood of white oat< contained scopoletin, gallic 

and ellaglcacids, gallotannins and ellagitannins, sitosterol, stigmasterol, 

campesterol, stigmastanol, lignoceryl ferulate and related esters, triglycerides of 

linoleic, oleic, and palmitic acids, and coniferaldehyde. Rowe and Conner (1979) 

reported that oal< wood contained 2.7% tannins. 

The extractive content of sapwood is generally much lower than that of 

heartwood. For most species, the gross distribution of extractives within trees 

generally follows a pattern that the amount of extractives decreases with increasing 

height in a tree and increases from the pith to the heartwood-sapwood boundary. 

The gross distribution of extractives in white oak trees, however, is not available in 

the literature. 

Extractives in the sapwood are almost entirely located in the ray parenchyma 

cells (Hillis, 1968). In heartwood, extractives are found in ray and vertical 

parenchyma cells, tracheids of conifers, and fibers and vessels in hardwoods. In 

addition, extractives are present in large quantities in normal and traumatic resin 

canals of conifers and gum canals in hardwoods. In the heartwood region, 

extractives also may exist in the cell wall, and whether extractives are present in the 

cell wall or not depends upon the species. In some species, polymerization of 

water-soluble extractives proceeds very slowly so that these substances are able to 

spread to the entire woody tissue and into the cell wall (Bosshard, 1966, 1968). 

Because of the bulking effect, species with extractives in the cell wall are more 

dimensionally stable. For example, Kuo and Arganbright (1980) found that a large 

amount of heartwood extractives of redwood existed in the cell wall. Because of this 

characteristic, volume shrinkage of old-growth redwood from green to oven dry is 

6.8%, the least among domestic softwoods (Wood Handbook, 1987). In white oak 
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wood, some extractives also are present in the cell wall, and therefore, these 

extractives are responsible for the dimensionable stability of the wood (Shim, 1954). 

Distribution of extractives in wood products such as lumber and plywood 

veneer may be altered during processing. Anderson and Fearing (1961) found that 

the outer surface of kiln-dried redwood lumber had about five times the amount of 

water-soluble extractives as did the inner core, and that this outer layer 

accumulated over twice as much water-soluble extractives as compared with the 

corresponding region in the green lumber. Kuo et al. (1984) also found that mill 

drying of white oak veneers caused the surface to accumulate about twice as much 

water-soluble extractives as those in the interior portion due to extractive migration 

during drying. In addition, nonpolar extractives can also migrate to surface in the 

vapor form during drying at high temperatures. Swanson and Cordingly (1959) 

showed that vapor migration of resinous materials in wood pulps changes the fiber 

surface to a less polar and more of a hydrocarbon-like chemical nature. Hancock 

(1963) also found that the removal of extractives in Douglas-fir veneer prior to 

drying prevented vapor migration of nonpolar extractives. Migration of extractives to 

wood surfaces often causes deleterious effects on gluing. 

Influence of Extractives on Bonding Properties of Wood 

Extractives often change the surface characteristics of wood, affecting 

adhesion properties in many ways. Hse and Kuo (1988) summarized influences of 

extractives on wood gluing as follows; First of all, extractives may influence the 

wettability and polarity of the wood surface, changing the wettability-permeability of 

a particular adhesive. Heavy deposits of extractives on the gluing surface form a 
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physical barrier which often prevents the anchoring of adhesives. Finally, chemical 

incompatibility between extractives and adhesives affects the normal flow, curing, 

and setting characteristics of adhesives. In addition, these gluing interferences 

caused by extractives may act individually or in combinations. 

Thomas (1959) studied the gluing characteristics of determa (Ocotea rubra 

Mez.), a tropical hardwood, and found that removal of the ether- and benzene-

solubles caused a considerable increase in the gluebond quality obtained with a 

phenolic resin. The result indicated chemical incompatibility between the nonpolar 

extractives and the phenolic resin, resulting in the inability of the adhesive to wet 

the wood and to secure adequate penetration. C.-M Chen (1970) reported that 

wettability of many tropical woods could be improved by removing extractives from 

wood surfaces with various solvents. Hemingway (1969) also showed that the poor 

wettability of yellow birch wood was attributed to oxidation of linoleic acids and 

related esters on the wood surface. Hillis (1968) summarized the influence of 

nonpolar extractives on gluing by pointing out that water-repellent extractives affect 

the surface tension of wood surfaces and the application and penetration of 

adhesives, which subsequently affects bond strength. 

Plomley et al. (1976) found that dipping of hoop pine {Araucaria cunninghamii 

Hook) veneer into solutions of commercial tannins, crude wood extracts, and model 

compounds significantly reduced the bond quality of a phenol-formaldehyde resin 

adhesive. They attributed the reduced bond quality mainly to the formation of a 

physical barrier by the added compounds which prevented a good contact of the 

adhesive to the wood surface, resulting in a reduced cohesive strength of the 

adhesive. Wellons et al. (1977) examined delaminated kapur {Dryobalanops spp.) 

and keruing {Dipterocarpus spp.) plywood and found that the gluelines failed to 
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adhere to the wood surface. They attributed the "unanchored" gluelines to both 

physical blockage of extractives coated on the wood surface and to premature 

gelation of the phenolic resin caused by the extractives on the wood surface. Kuo 

et al. (1984) also found that heavy deposition of extractives on the fiber walls on 

white oak veneer surfaces was the main reason causing the failure of gluelines to 

adhere to the cell wall. 

In a detailed study of effects of kapur extractives on phenolic resin, Nguyen 

(1975) found that alcohol-, ether-, and water-soluble extractives added to a phenolic 

resin caused premature gelation of the resin and that the added extractives also 

caused a substantial increase in the water solubility of the cured resin. Wellons et 

al. (1977) confirmed such effects of kapur extractives on phenolic resins and 

concluded that premature gelation of resins altered the flow property of phenolic 

resins and hindered their penetration into wood and that the extractives caused an 

incomplete curing of the resins resulting in a weak glue bond. 

Nguyen (1975) found that extractives in kapur made the wood sufficiently 

acidic to decrease glueline pH from 11 to 9.5 immediately after spreading of the 

adhesive, and this reduction in pH caused phenolic solids to precipitate and 

required a significant increase in press time to cure. Therefore, low acidity due to 

extractives may precipitate phenolic solids and cause the adhesive to be 

substantially less crosslinked and lower in strength. Albritton and Short (1979) 

found that water-soluble extractives of most southern hardwoods lengthened and 

the ethanol-soluble extractives shortened gel time of a urea-formaldehyde resin. 

Roffael and Rauch (1974) reported that old-growth white oak wood had a pH value 

of about 3.5 and the corresponding pH value for young-growth wood was 4.5. 

These authors attributed the difficulty of gluing old-grov^th white oak particles to its 
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high acidity due to the presence of extractives. Abe and Akimoto (1976) reported 

that a phenolic resin was changed from basic to neutral in the presence of acidic 

extractives, resulting in the formation of a large quantity of dimethylene ether 

linkages and thus requiring a prolonged curing time. Abe and Ono (1980) also 

demonstrated that the acidity of extractives reduced glueline pH and this reduction 

in pH required a significant increase in press time to properly cure the phenolic 

resins. 

Methods of Minimizing the Influence of Extractives on Wood Adhesion 

Influences of extractives on wood adhesion can be minimized or reduced by 

mechanical or chemical means. Hse and Kuo (1988) have pointed out that a light 

sanding immediately before gluing is a rapid and economical method for removing 

almost all types of surface contamination, but planing is even more effective. 

Jokerst and Stewart (1976) found that plywood made from abrasive- and knife-

planed veneers were similiar in dry shear strength, but plywood made from 

abrasive-planed veneer had inferior durability. Dougal et al. (1980) showed that a 

light knife-planing of bonding surfaces removed surface contaminants and 

simultaneously exposed the highly polar secondary cell walls to which adhesives 

bonded most effectively. Caster et al. (1985) compared the surface quality of 

abrasive- and knife-planed wood surfaces and found that abrasive-planing of wood 

produced rougher surfaces and caused more cellular damages than the knife-

planed surfaces. Although mechanical damages to the cell walls on the wood 

surfaces may increase percentage of wood failure, the rough surfaces obtained 



9 

during abrasive-sanding often produce discontinuous gluelines and thus reduce the 

durability. 

A surface treatment with sodium hydroxide (NaOH) or neutral organic solvents 

to remove surface contaminants Is also effective in improving glue bond quality. 

Hancock (1963) showed that the glue bond quality of Douglas-fir plywood could be 

improved by extracting the veneers with methanol-benzene before drying and 

gluing. C.-M Chen (1970) also found that surface treatments of veneers of eight 

tropical species with NaOH solution improved urea-formaldehyde and resorcinol-

formaldehyde adhesive joint strength. He attributed the improvement in bond 

quality to the increased pH and wettability of treated surfaces as a result of 

extractives removal. Chen (1975) improved the glue bond quality of fire-retardant-

treated plywood by treating the surfaces with an alcohol solution of NaOH and by 

pressing at a higher press temperature and longer press time. Wellons et al. (1977) 

and Dougal et al. (1980) also found that removal of water-, alcohol-, and 1% NaOH-

solubles from kapur veneer greatly improved the bond quality with phenol-

formaldehyde. 

Roffael and Rauch (1974) attributed the difficulty in bonding white oak particles 

with phenol-formaldehyde resins to low pH caused by extractives. They found that 

extraction of white oak wood particles with hot water had only a marginal 

improvement on bonding quality and that an extraction with 1N sodium carbonate 

solution greatly improved the bond quality. In addition, they found that adding extra 

amounts of NaOH to the phenolic resin also was effective in improving the bond 

quality, especially the durability, of white oak particleboard. Kuo et al. (1984) also 

reported that glue bond quality of white oak plywood could be significantly improved 

by soaking the veneers in 1% NaOH aqueous solution for 5 minutes. They 
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attributed this improvement to the removai of extractives on veneer surfaces and to 

the increase in pH as a result of the treatment. 

According to Anderson and Fearing (1960, 1961), solvent seasoning is a 

possible method of drying wood and simultaneously removing a large quantity of 

extractives. The cost of solvent seasoning, however, has been estimated to be at 

least three times more expensive than conventional drying methods, thus limiting its 

economical application to improve gluability of species rich in extractives. 

Summary 

White oak heartwood may contain more than 10% extractives. The heartwood 

of older trees contain a higher extractive content than that of younger trees. The 

major extractives in white oak wood are tannins, fatty acids, and sterols. Water-

soluble extractives tend to migrate to wood surfaces during drying, and nonpolar 

extractives also can migrate to surfaces when the wood is dried at high 

temperatures. 

Accumulation of extractives on white oak wood surfaces changes the physical 

and chemical characteristics of the wood surface and adversely affects adhesion 

properties. Extractives, especially the nonpolar components, may influence the 

wettability and polarity of the wood surface, changing the wettability-permeability 

relationship of a particular adhesive. Heavy deposits of extractives form a physical 

barrier which often prevents the anchoring of adhesives. Chemical incompatibility 

between extractives and adhesives affects the normal flow and curing and setting 

characteristics of adhesives. Effects of extractives on wood adhesion can be 

minimized or reduced by mechanical or chemical treatments. Light planing is an 
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effective method to remove surface contaminants, and surface treatments with 

NaOH solution or neutral solvents has also been proven to remove surface 

contaminants and improve glue bond quality. 
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CHAPTER 3. MATERIALS AND METHODS 

Materials and Test Specimen Preparation 

One white oak {Quercus alba L.) and one hard maple {Acer saccharum L.) butt 

logs without apparent defects such as spiral grain and biological deterioration were 

purchased from Buttermore Saw Mill near Ames, Iowa. The white oak log was 20 

inches in diameter at the butt end with a growth ring count of 106, and the hard 

maple log was 15 inches in diameter at the butt end with a growth ring count of 102. 

These two logs were converted at the saw mill into 1-1/2 inches thick lumber and 

shipped to the laboratory. The white oak and hard maple lumber were air-dried in 

the laboratory to an average moisture content of 8%. After air-drying, white oak and 

hard maple lumber were machined into test specimens 1-1/8 inches in width, 1/2 

inch in thickness, and 10 inches in length. To test the effect of grain orientation on 

glue bond quality, a total of 516 pieces of white oak heartwood test specimens were 

obtained in 3 different grain orientations, radial-grained, tangential-grained, and 

mix-grained. Radial- and tangential-grained specimens were prepared to test radial 

plane to radial plane and tangential plane to tangential plane bond strength, 

respectively. The mix-grained specimens were prepared so that the adhesive 

bonding occurred neither between radial nor tangential planes. A total of 168 
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pieces of hard maple test specimens were obtained, and prepared as mix-grained 

pieces. 

Solvent Extraction of Test Specimens 

A large glass extractor capable of extracting 9 pieces of test specimens at the 

same time was made for this study to remove certain fractions of white oak 

heartwood extractives. A schematic of this extractor is shown in Figure 1. Because 

the extractor was so large, it was necessary to use a hot plate to maintain the 

solvent extraction of test specimens at 50°C. Hexane, 95% ethanol, and water were 

used as extraction solvents. Test specimens were subjected to single-, double-, 

and triple-solvent extractions. Extraction was done for 2 days in each solvent at a 

temperature of 50°C. After each extraction, specimens were air-dried before the 

subsequent extraction or further processing. No effort was made to determine the 

amount of extractives removed in each solvent extraction procedure. Hard maple 

test specimens were not subjected to any solvent extraction. 

Collection of White Oak Wood Extracts 

Four types of white oak heartwood extracts were collected. They were hexane 

extract, ethanol extract with hexane extract removed, hot-water extract with hexane 

extract removed, and hot-water extract with hexane and ethanol extracts removed. 

Extraction was done by boiling oak saw dust in a 3-liter round-bottom flask in the 

solvent for 4 hours with a reflux condenser. At the end of extraction, saw dust was 

filtered off with the aid of vacuum suction. To collect hexane extract, the solvent 
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was removed by using a rotary vacuum evaporator operated at a temperature of 

45°C. A yeilowisli and waxy hexane extract was obtained. The ethanol extract was 

collected by first removing the majority of the solvent with a rotary vacuum 

evaporator to obtain a brownish viscous material. The remaining solvent was 

evaporated off overnight in a vacuum oven at 45°C . To concentrate hot-water 

extract, the filtrate was poured into stainless steel pans and the solvent was 

evaporated off by placing these pans in an 80°C oven. The water extract so 

obtained was much darker than the ethanol extract. Because ethanol and water 

extracts were extremely hygroscopic, these dry extracts had to be stored over P2O5 

in a desiccator. 

Resin Adhesives 

Three types of resole phenol-formaldehyde resin, were used in this study. The 

first type was a commercial resin (GP 92C22) manufactured by Georgia-Pacific 

Corporation, Atlanta, GA, having a solid content of 50 %, pH of 11, and viscosity of 

300 centipoises (cps) at 25°C. The second phenolic resin was prepared in the 

laboratory, having a solid content of 50 %, pH of 11, and viscosity of 100 cps at 

25°C. This phenolic resin was prepared using a NaOH/phenol molar ratio of 0.4 

and a formaldehyde/phenol molar ratio of 1.8. In the synthesis of laboratory phenol-

formaldehyde resin, 400 grams of industrial phenol were dissolved in 247 grams of 

water. After adding 613 grams of 37.5% formaldehyde and 72 grams of NaOH 

aqueous solutions, the mixture was heated to 70°C for 2 hours. During the reaction 

at 70°C, 3 16-gram portions of 50% NaOH solution were added at 30-minute 

intervals. At the end of reacting at 70°C, the mixture was quickly heated to 95°C, 



16 

and the viscosity of the mixture was closely monitored. When the mixture reached a 

viscosity of 100 cps at 25°C, 16 more grams of 50% NaOH solution was added and 

the mixture was quickly cooled to room temperature in 5 minutes. It typically took 

about 30 minutes of heating at 95°C to reach the desired viscosity of 100 cps. The 

third type of resin was prepared by mixing equal parts of the commercial resin and 

the laboratory made resin, resulting in a mixture with a pH of 11 and viscosity of 170 

cps at 25°C. 

Experimental Design 

The experiment of studying the effect of solvent extraction on white oak 

specimens was designed with 3 experimental factors, solvent extraction treatment, 

grain orientation, and resin type. Factors considered were 8 levels of extraction 

treatment (control, hexane, ethanol, hot-water, hexane/ethanol, hexane/hot-water, 

ethanol/hot-water, and hexane/ethanol/hot-water), 3 types of grain orientation 

(radial, tangential and mixed grain), and 3 resin types (commercial phenol resin, 

lab-made resin, and the mixture of equal parts of commercial and lab resins). 

Therefore, the experiment had 72 treatment combinations, and each treatment 

combination was replicated 3 times. 

Preparation of Shear Blocks and Evaluation of Adhesive Joints 

All test shear blocks were prepared according to the standard method 

described in ASTM D905-49 (ASTM 1974) except that the dimension of shear 

blocks was reduced to that shown in Figure 2. The standard requires gluing two 



17 

pieces of wood samples of 2 inches in width, 3/4 inch in thickness, and in random 

length to obtain 2" (width) by 2" (length) by 1-1/2" (thickness) shear block test 

specimens. The modified shear block dimension was 1" (width) by 1-1/2" (length) 

by 5/8" (thickness), providing an effective joint of 1 square inch in each shear block. 

Reduction of shear block size was made to accommodate the evaluation of wet 

shear strength of the adhesive joints. Because white oak wood is impermeable, it 

was felt necessary to reduce the dimension of test shear blocks to ensure a 

thorough aging treatment of test shear blocks for the evaluation of durability of the 

adhesive joints. 

The white oak wood specimens were conditioned to 6% moisture content and 

planed to a thickness of 5/16" just before the gluing operation. The resin adhesive 

was spread onto both surfaces of the paired wood specimens at a rate of 27 lbs. per 

thousand square feet. The giue-assemblies were hot pressed in the following 

conditions: 

Assembly time: 10 minutes 

Press time: 10 minutes 

Specific pressure: 300 psi 

Platen temperature: 350°F 

After pressing, the glued assemblies were allowed to cool to room temperature and 

conditioned in an environmental chamber to 12% moisture content before cutting 

into test shear blocks as shown in Figure 2. 

Adhesive joints were evaluated for both dry and wet shear strengths and 

percentages of wood failure. For the evaluation of dry shear strength and 

percentages of wood failure, test shear blocks were conditioned to 12% moisture 

content and tested in the ambient temperature. To evaluate glue bond durability, 
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shear blocks were subjected to a 2-hour boiling in water, allowed to cool to room 

temperature, and tested wet. The shear strength was determined by compression 

loading as described in ASTM D-905-49 (ASTM 1974). To avoid sawing variation 

during shear block cutting, the critical dimension of the actual area of adhesive joint 

in each block was measured with a micrometer to obtain an accurate stress 

measurement. Percentage wood failure was visually evaluated with the aid of a 

transparent mesh grid. The percentage wood failure was determined after the test 

specimens were air-dried. 

Effects of White Oak Extractives on Curing of Phenolic Resins 

The inhibitory effect of white oak extractives on the curing of phenol-

formaldehyde resins was measured by comparing the water solubility of the resins 

cured with and without white oak extractives. White oak heartwood hexane, 

ethanol, and water extracts, and the water extract without ethanol solubles in the 

amount of 0, 0.2, 2, and 10%, based on resin solids, were added to the commercial 

phenol-formaldehyde resin and cured at 100°C and 150°C. The cured resins were 

crushed and ground with a Wiley mill to a uniform particle size that passed through 

a 40 mesh screen and was retained on a 60 mesh screen. The resin particles were 

then extracted with water in a Soxhiet extractor to measure the water solubility of 

the cured resins. 
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Effects of White Oak Extractives on Bonding Hard IVIaple 

Hard maple, a diffuse porous species containing very few extractives, is used 

in the ASTM method as a standard substrate for evaluating gluebond quality of 

different adhesives. In this experiment, hard maple test specimens were coated 

with various amounts of white oak heartwood extracts to verify the deleterious effect 

of extractives on bonding with phenolic resins. Types of extracts and amounts of 

these extracts applied on wood surfaces are listed as follows; 

Extracts Grams per 10 grams of PF solid 

Hexane 0.1 and 0.5 grams 

95% ethanol 0.1 and 0.5 grams 

Hot-water 0.1 and 0.5 grams 

Hot-water(ethanol extract removed) 0.1 and 0.5 grams 

The extract was dissolved in respective solvent and applied to specimen surfaces 

with a brush. After conditioning to 6% moisture content, these hard maple test 

specimens containing white oak extractives were bonded with the commercial 

phenolic resins, and the adhesive bond quality was evaluated as previously 

indicated. 
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CHAPTER 4. RESULTS AND DISCUSSION 

Extractive Content of White Oak Heartwood 

Table 1 shows the extractive content of white oak heartwood. The average 

amount of hexane-solubles was 0.36%, and this fraction of extractives consisted of 

mostly fatty materials, waxes, oils, and resin acids (Sjôstrôm, 1981). The 95% 

ethanol extractives of white oak heartwood was found to be 11.56%. Most of the 

materials that are soluble in hexane, except waxes, also are soluble in ethanol. But 

ethanol also can dissolve simple phenols, polymerized phenols such as tannins and 

phlobaphenes, and low molecular weight saccharides (Sjôstrôm, 1981). Because 

there were only 0.36% hexane-solubles in white oak heartwood, most of the 11.56% 

of ethanol-solubles must be phenolics and saccharides. There was no increase in 

the 95% ethanol solubility proceeded by a hexane extraction. 

The average hot water solubility of white oak heartwood was 13.69%. 

Materials that are soluble in water are simple phenols, tannins (but not 

phlobaphenes), and low molecular weight and polymeric carbohydrates such as 

arabinogalactans (Sjôstrôm, 1981). Therefore, there was a large overlap between 

the ethanol and hot water solubility of white oak heartwood. The main difference is 

most likely that the hot water extract contains more polymeric carbohydrates than 

the ethanol extract. 
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Table 1. Average extractive content of white oal< heartwood 

Solvent Extractive content (%) 

Hexane 0.36 

Ethanol 11.56 

Water 13.69 

Hexane/Ethanol 11.71 

Ethanol/Water 14.67 

Hexane/Ethanol/Water 15.03 
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The white oak tree contained a total of 15.03% heartwood extractives. This 

value is much higher than values reported by others (Pettersen, 1984; Kuo et al., 

1984; and Koch, 1985). The water and 95% ethanol solubility of the heartwood of 

this tree is about 4% to 8% higher than those values reported elsewhere. A major 

reason for this difference is that a 24-hour extraction time was used in this study. 

Other factors such as the age of the tree and site differences also may influence the 

extractive content determination. 

Influence of Extractives on Curing of Phenolic Resins 

In the study of effects of extractives on resin curing, extractives were added to 

the resin in the form of solutions by dissolving in various solvents. Therefore the 

effect of solvent on resin curing was first studied. Table 2 shows the effect of 

diluting the phenol resin with water, 95% ethanol, and hexane. When the phenol 

resin was cured at 100°C, dilution of the resin with 40%, either ethanol or water, 

based on resin solids, had an effect on it's curing, whereas dilution of the resin with 

hexane did not affect the curing. Although water and ethanol only caused a slight 

increase in the solubility of cured resin, there was a significant inhibitory effect of 

these 2 solvents on curing the resin at 100°C. When the resin was cured at 150°C, 

however, dilution of the resin with solvents did not affect curing. In addition, the 

phenol resin was more efficiently cured at 150°C than at 100°C as indicated by a 

much lower water solubility of the 150°C-cured resin. 

Table 3 also shows effects on curing of various amounts of different fractions 

of white oak heartwood extractives mixed in the resin. When the resin was cured at 

100°C, the water solubility of cured resin increased with increasing amount 
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Table 2. Effect of solvents on curing of phenol-formaldehyde resin 

Solubility(%)= of PF-resin*^ cured for 24 hrs. 

Solvent(40%)' None Hexane Ethanol Water 

Cured at 100°C 

Duncan grouping 

21.38(0.19)^ 21.23(0.04) 24.17(0.52) 22.86(0.45) 

C C A B 

Cured at 150°C 

Duncan grouping 

16.35(0.84) 17.25(0.45) 17.00(0.11) 17.06(0.22) 

A A A A 

^Solubility of cured resin determined by a 2-hour water extraction. 

''A commercial phenol-formaldehyde resin; 50% solid content, pHII, Viscosity 
295 cps at 25°C. 

^Percentage based on resin solids. 

^Numbers in parentheses are standard deviations. 
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Table 3. Inhibitory effect of white oak heartwood extractives on curing of phenol-
formaldehyde resin 

Solubllity(%)^ of PF-resIn*^ cured at 100°C for 24 hrs. 

Heartwood extractive None Hexane Ethanoi Water Wtr(w/o EtOH) 

10%° 21.38(0.19)'' 24.05(0,16) 24.21(0.04) 24.61(0.31) 24.40(0.26) 

Duncan grouping C® B(A)' AB(A) A(A) AB(A) 

2% 21.38(0.19) 22.75(0.28) 21.75(0.75) 23.10(0.42) 21.92(0.06) 

Duncan grouping B A(B) B(B) A(B) B(B) 

0.2% 21.38(0.19) 21.77(0.06) 21.58(0.19) 22.43(0.47) 21.92(0.45) 

Duncan grouping B B(C) B(B) A(C) AB(B) 

Soiubility(%) of PF-resin cured at 150°C for 24 hrs. 

Heartwood extractive None Hexane Ethanoi Water Wtr(w/o EtOH) 

10% 16.35(0.84) 17.68(0.12) 21.07(0.10) 21.28(0.06) 21.54(0.30) 

Duncan grouping C B(A) A(A) A(A) A(A) 

2% 16.35(0.84) 16.88(0.36) 19.67(0.14) 20.79(0.27) 21.32(0.19) 

Duncan grouping C C(B) B(B) A(A) A(A) 

0.2% 16.35(0.84) 16.70(0.03) 19.43(0.09) 20.75(0.38) 21.15(0.29) 

Duncan grouping C C(B) B(B) A(A) A(A) 

^Solubility of cured resin determined by a 2-hour vi/ater extraction. 

''A commercial phenol-formaldehyde resin; 50% solid content, pH11, Viscosity 
295 cps at 25°C. 

"Extractive concentration (based on resin solids) added as solutions in various 
solvents. 

^Numbers in parentheses are standard deviations. 

^Letters represent Duncan's grouping at 0.05 level. 

'Letters in parentheses are from Duncan group for effect of extractive 
concentration. 
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of extractives. Tine effect of the concentration of extractives on resin curing, 

however, was generally diminished when the resin was cured at 150°C. This result 

can be explained by the fact that phenolic resins are more efficiently cured at higher 

temperatures. When the effect of different fractions of white oak heartwood 

extractives on the curing of resin was examined, it was found that all extractives had 

some degree of inhibitory effect on resin curing. In general, ethanol and water 

extracts and water extracts without ethanol-solubles had about the same level of 

effect, but the hexane extract had the least but a significant effect at high 

concentrations. Because of relatively low concentrations of extractives added to the 

phenol resin, this experiment was not able to identify which fraction of white oak 

heartwood extractives had the most inhibitory effect on resin curing. 

Effect of Solvent Extraction on White Oak Bond Quality 

Table 4 summarizes the effects of solvent extraction on bond quality of mix-

grained white oak specimens when a commercial phenol-formaldehyde resin is used. 

These results also are shown in Figures 3, and 4. 

Results showed that, in general, various solvent extraction treatments of the 

test specimens gave no significant improvement in either dry or wet shear strengths. 

In fact, there is a tendency for solvent extraction of test specimens to decrease both 

dry and wet bond strengths. For example, water and hexane/ethanol/water extracted 

specimens showed significant deleterious effects on dry and wet bond shear 

strengths. Decrease in gluebond strength is unlikely due to the removal of 

extractives. Rather, decrease in gluebond strength is probably due to physical 

changes of test specimens such as warping as a result of solvent extraction. This 
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Table 4 Effect of solvent extraction of white oak mix-grained specimens on bonding 
quality using a commercial phenol-formaldehyde resin 

Treatment^ C H E W HE HW EW HEW 

Dry shear strength 2910 2630 2746 2499 2826 2763 2731 2517 

(psi) (261)'' (355) (341) (210) (179) (312) (169) (251) 

Duncan grouping A° AB AB B A AB AB B 

Wet shear strength 1304 1247 1297 1239 1303 1182 1242 1142 

(psi) (176) (123) (95) (166) (94) (153) (122) (214) 

Duncan grouping A AB AB AB A AB AB B 

Dry wood failure 61 69 72 77 73 78 73 58 

(%) (25) (31) (22) (25) (18) (17) (19) (22) 

Duncan grouping A A A A A A A A 

Wet wood failure 31 40 47 60 49 50 50 38 

(%) (12) (30) (30) (21) (25) (15) (30) (13) 

Duncan grouping B AB AB A AB AB AB AB 

^Treatment: C=Control; H=Hexane; E=Ethanol; W=Water: 
H/E=Hexane/Ethanol; H/W=Hexane/Water; E/W=Ethanol/Water; 
H/E/W=Hexane/Ethanol/Water. 

''Numbers in parentheses are standard deviations. 

"Letters represent Duncan's grouping at 0.05 level. 
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H/E H/W E/W H/E/W 

Extraction treatment 

Dry shear strength • Wet shear strength 

*None=Not extracted; H=Hexane: E=Ethanol; W=Water: H/E=Hexane/Ethanol: 
H/W=Hexane/Water; E/W=Ethanol/Water; H/E/W=Hexane/Ethanol/Water 

Figure 3. Effect of solvent extraction on shear strength of CPF-bonded, mix-
grained white oak specimens 
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Figure 4. Effect of solvent extraction on wood failure of CPF-bonded, mix-grained 
white oak specimens 
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rationale is supported by the fact that a specific pressure of 300 psi was not enough 

to bring some of the glue assemblies to a close during hot pressing. 

Solvent extraction treatments of the test specimens, however, showed some 

improvement for both dry and wet wood failure. For example a hexane/water 

extraction of test specimens improved dry wood failure as much as 28% compared 

to the non-extracted specimens. Another example is that a hexane/water extraction 

of test specimens improved wet wood failure as much as 61%. These 

improvements, however, were not statistically significant because there was 

substantial variation of wood failure during tests. One possible source of this 

variation may come from warpage of test specimens during the drying process of 

the extracted specimens. Warping of the test specimens in turn causes a non­

uniform contact between the two bonding wood surfaces. 

In general, this experiment was not successful in measuring whether extraction 

of test specimens with various solvents improves the gluebond quality of white oak. 

These results, however, do not necessary imply that there is no deleterious effect of 

extractives on bonding. Kuo et al. (1984) showed that extractives migrating to 

veneer surfaces and that this was one of the factors causing white oak plywood to 

have a very low wood failure value. When the extractives which accumulated on 

the veneer surfaces were removed with a NaOH solution treatment, the wet wood 

failure was improved from below 20% to 35%. In the present study, the test 

specimens were prepared after the 2-inch thick lumber had been air-dried and, 

therefore, there was no extractive migration to the bond surfaces. In addition, 

planing of test specimens just before gluing exposed fresh cell wall materials which 

undoubtedly would enhance bonding. The combined effect of lack of extractive 

migration and planing of bond surfaces is reflected in a substantially higher average 
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dry and wet wood failure, 61% and 31%, respectively, as compared to below 20% 

for white oak plywood. 

Effect of Applying White Oak Extracts on Wood Surfaces to Bonding Quality 

Because the experiment of solvent extraction of white oak specimens failed to 

show the effect of extractives on bonding quality due to lack of extractive migration 

and to the manner the specimens were prepared, a different experimental approach 

was tried. In this experiment, the effect of white oak heartwood extractives was 

studied by applying different amounts of white oak extractives onto hard maple 

wood surfaces before gluing. Hard maple, a diffuse porous species containing very 

few extractives, is used in the ASTM method as a standard substrate for evaluating 

gluebond quality of different adhesives. 

Table 5 shows results of the influence of applying 2% and 10% white oak 

extracts, based on resin solids, on the adhesive bond quality of hard maple. These 

results also are illustrated in Figures 5 and 6. Results clearly show the deleterious 

effect of all white oak heartwood extracts on hard maple adhesive bond quality, 

especially the aged gluebonds. Application onto hard maple surfaces of 2% ethanol 

and water extracts and the water extract with the ethanol fraction removed did not 

affect dry gluebond shear strength and dry wood failure. But an application of 10% 

of these extracts significantly reduced both dry shear strength and dry wood failure. 

The hexane extract reduced all dry and wet gluebond properties at both levels of 

extractive application. 

Application of 2% of all white oak heartwood extracts, with the exception of the 

ethanol extract, significantly reduced wet gluebond shear strength and wet wood 



Table 5. Effect of white oak extractives on adhesive bond quality of hard maple® 

Treatment Control Hexane Ethanol Water Water(w/o EtOH) 

Concentration'' 0% 2% 10% 2% 10% 2% 10% 2% 10% 

Dry shear 3514 3065 2751 3446 3351 3431 3289 3380 3211 

strength E F AB BC ABC CD ABC D 

Wet shear 1261 1112 820 1225 1009 978 346 796 0 

strength A B D A C C E D F 

Dry wood 93 72 46 92 86 89 68 83 65 

failure A BCD E A ABC AB CD ABCD D 

Wet wood 63 37 3 26 11 15 0 14 0 

failure A B E C DE CD E CD E 

^Hard maple specimens were bonded with a commercial PF resin. 

''Concentration of extractives based on resin solids. 

^Letters represent Duncan's grouping at 0.05 level. 
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CPF-bonded hard maple 
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CPF-bonded hard maple 
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failure. Application of 10% of these extracts reduced the aged gluebond quality 

even further. These results suggest that the presence of white oal< heartwood 

extractives interfered with the proper curing of the resin. When the specimens were 

tested in the dry condition, the adhesive bond quality was reduced only to a limited 

extent. The aged adhesive bonds, however, were drastically weakened due to 

dissolution of uncured phenolic resin. 

Of all the white oak heartwood extracts, water extract with the ethanol fraction 

removed showed the most deleterious effect on gluebond quality, followed by the 

water extract, the ethanol extract, and finally the hexane extract. The earlier study 

of white oak extractives indicated that there is a large overlap in the ethanol and 

water solubility of white oak heartwood and that the main difference between the 

ethanol and water extracts is that the latter contains polymeric carbohydrates such 

as arabinogalactans. In a study that attempted to incorporate simple sugars and 

oligosaccharides into phenolic resins, Conner et al. (1986) found that reducing 

sugars and oligosaccharides with reducing ends were rapidly transformed under a 

basic condition to acidic components, especially saccharinic acids. These acidic 

reaction products in turn neutralized the base catalyst in the phenolic resin, causing 

a detrimental effect on the curing of the resin. Therefore, it is possible that water-

soluble polymeric carbohydrates and other reducing sugars in white oak heartwood 

interfere with the curing of phenolic resins. 

The deleterious effect of white oak hexane extract on adhesive bond quality is 

most likely due to the reduction of wettability of hard maple surfaces with the PF-

resin. As shown previously, white oak heartwood contains only 0.36% of hexane 

solubles, and therefore such a smaller amount of hexane-solubles is probably not 

enough to cause any significant effect on bonding of white oak. 
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Effects of Grain Orientation on Adhesive Bond Quality 

Effects of grain orientation on the adhesive bonding quality of white oak using 

a commercial phenol-formaldehyde resin are summarized in Table 6, Results 

indicate that radial-grained specimens had lower dry shear strength values than 

those of the mix- and tangential-grained specimens. Okt<onen and River (1989) 

also showed lower dry gluebond shear strengths in bonded radial-grained white 

oak specimens compared to those of tangential-graineded specimens. A weaker 

dry gluebond shear strength in the radial plane can be attributed to an inherently 

lower shear strength between the ray tissue and vertical elements of the wood. 

This explanation is in agreement with the result of dry wood failure evaluations, in 

which radial-grained specimens consistently had higher dry wood failure values 

than those of either the mix- or tangential-grained specimens. Differences in dry 

gluebond shear strength between radial-grained specimens and mix- and 

tangential-grained specimens gradually diminished as the specimens were 

subjected to more solvent extraction. This, again, is attributed to warping of 

specimens during drying after each solvent extraction. Warp in turn caused an 

incomplete closure of glue assemblies during hot pressing. Very little difference in 

dry gluebond shear strength between the mix-grained and tangential-grained 

specimens was observed. 

After boiling the specimens in water for 2 hours, the adhesive bonds were 

considerably weakened, and no difference in wet gluebond shear strength among 

radial-, mix- and tangential-grained specimens was observed. Because the aging 

process weakens both the gluebond and the wood, the effect of grain orientation 

on the wet gluebond shear strength was not as pronounced as that in the 



Table 6. Effect of grain orientation on bonding quality of white oak using a commercial phenol-formaldehyde resin 

Bonding Dry stiear strengtti Wet shear strength Dry wood failure Wet wood failure 
properties (psi) (psi) (%) (%) 
Grain orientation® M\x Tan Rad Mix Tan Rad Mix Tan Rad Mix Tan Rad 
Not extracted 2910 2810 2411 1304 1290 1238 61 58 80 31 26 54 

(261)" (371) (197) (176) (116) (95) (25) (11) (21) (12) (13) (22) 
Duncan grouping A" A B A A A AB B A B B A 
Hexane extracted 2630 2749 2408 1247 1354 1259 69 59 75 40 30 53 

(355) (173) (241) (123) (152) (139) (31) (21) (25) (30) (12) (26) 
Duncan grouping AB A B A A A A A A A A A 
Ethanoi extracted 2746 2626 2576 1297 1220 1229 72 49 87 47 26 62 

(341) (146) (56) (95) (111) (159) (22) (15) (12) (30) (7) (16) 
Duncan grouping A B B A A A A B A A B A 
Water extracted 2499 2643 2543 1239 1121 1099 77 44 64 60 21 40 

(210) (256) (330) (166) (161) (90) (25) (15) (25) ((21) (3) (21) 
Duncan grouping A A A A A A A B AB A C B 
Hexane/Ethanol 2826 2694 2374 1303 1333 1220 73 53 71 49 27 44 
extracted (179) (174) (194) (94) (152) (71) (18) (12) (18) (25) (9) (18) 
Duncan grouping A A B AB A B A B A A B AB 
Hexane/Water 2763 2353 2256 1182 1189 1136 78 43 62 50 21 42 
extracted (312) (332) (186) (153) (65) (122) (17) (14) (13) (15) (11) (12) 
Duncan grouping A B B A A A A C B A B A 
Ethanol/Water 2731 2546 2309 1242 1170 1203 73 51 59 50 19 38 
extracted (169) (273) (309) (122) (169) (181) (19) (18) (25) (30) (8) (26) 
Duncan grouping A AB B A A A A B AB A B AB 
Hexane/Ethanol/ 2517 2340 2467 1142 1103 1140 58 36 72 38 16 50 
Water extracted (251) (232) (209) (214) (123) (123) (22) (11) (24) (13) (5) (24) 
Duncan grouping A A A A A A A B A A B A 

®Grain orientation: Mix = Mix-grained; Tan = Tangential-grained; Rad = Radial-grained. 

^Numbers in parentheses are standard deviations. 

"^Letters represent Duncan's grouping At 0.05 level. 



38 

dry gluebond shear strength. In other words, wet shear strength is probably a 

better parameter to evaluate adhesive bond strength because wet shear strength is 

not as much affected by grain orientation as dry shear strength. 

In general, radially bonded specimens showed both higher dry and wet wood 

failure values than those of mix-grained specimens, and tangentially bonded 

specimens had the least dry and wet wood failure. These differences obviously are 

due to the orthotropic nature of wood. In the bonding of rotary peeled veneers into 

plywood, adhesive bonds are formed mostly in the tangential plane. In the 

preparation of finger or scarf joints, pieces of wood are glued on transverse 

surfaces. Adhesive bond quality on the transverse plane was not evaluated in this 

study. 

Effects of Resin Type on Adhesive Bond Quality 

Three types of phenol-formaldehyde resin were used in this experiment: they 

were a commercial phenol-formaldehyde resin (CPF); a laboratory-prepared phenol-

formaldehyde resin (LPF); a resin prepared by mixing equal parts of the commercial 

and lab-made resins (MPF). The molecular weight distribution of these three resins 

is shown in Figure 7. Molecular distribution was determined by gel permeation 

chromatography using a Sephadex G 100-120 gel in a 1.2 meter and 1.0 cm 

diameter column. The rate of elution was adjusted to 20 ml per hour by using 0.1 N 

NaOH aqueous solution. As shown in Figure 7, the CPF contained a higher amount 

of high-molecular-weight fraction than the low-molecular-weight fraction. The LPF 

had a normal molecular weight distribution, but in general had a lower 
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average molecular weight than that of the commercial resin. As a result, the MPF 

had a strong peak toward the low molecular weight side, and the high-molecular-

weight fraction was relatively reduced. 

Table 7 shows effects of resin type and grain orientation on white oak 

adhesive bond quality. These results also are illustrated in Figures 8 and 9. In the 

radial-grained specimens, the low-viscosity LPF resin clearly gave the strongest 

and the CPF provided the lowest dry shear bond strength. Therefore, there is a 

strong correlation between resin viscosity and the dry shear bond strength in the 

radially bonded specimens. In the mix- and tangential- grained specimens, the 

LPF also provided significantly stronger dry gluebonds than those provided by 

MPF and CPF. But the difference between the MPF and CPF bond strengths in 

the mix- and tangential-grained specimens was not as pronounced as that in the 

radially bonded specimens. In the mix-grained specimens, MPF bonds were 

inferior to CPF bonds. Because wood is weakest in the radial direction, an 

improved resin penetration by the use of low viscosity resins can increase the 

strength properties in that direction, hence the gluebond shear strength. 

The effect of resin type on dry gluebond shear strength is also reflected in dry 

wood failure, in that LPF-bonded specimens consistently showed higher dry wood 

failure values regardless of whether gluebonds were made on the radial plane, 

between radial and tangential plane, or on the tangential plane. Just as with dry 

gluebond strength, MPF-bonded specimens had the lowest percentage of wood 

failure. In examining the interaction of effects of resin type and grain orientation, it 

is found that percentage of wood failure is strongly correlated to grain orientation 

when the specimens were bonded with the LPF and MPF, i.e., radially bonded 

specimens had the highest and the tangentially bonded specimens the lowest 



Table 7. Effects of grain orientation and PF-resin type on bonding quality of white oak specimens 

Bonding Dry shear strength Wet shear strength Dry wood failure Wet wood failure 

properties (psi) (psO (%) (%) 

PF-resin type® LPF MPF CPF LPF MPF CPF LPF MPF CPF LPF MPF CPF 

Radial-grained 2726 2574 2418 1308 1171 1190 78 63 71 56 38 48 

(97)'' (150) (109) (34) (52) (58) (8) (6) (9) (8) (5) (8) 

Duncan grouping A=(A)'' B(A) C{B) A(A) B(A) B(A) A(A) B(A) B(A) A(A) C(A) B{A) 

Mix-grained 2798 2625 2703 1352 1171 1245 65 51 70 45 26 46 

(130) (166) (144) (64) (64) (59) (12) (5) (7) (8) (4) (9) 

Duncan grouping A(A) B(A) AB(A) A(A) C(A) B(A) A(B) B(B) A(A) A(B) B(B) A(A) 

Tangential- 2833 2599 2595 1331 1125 1223 48 39 49 26 19 23 

grained (155) (189) (173) (52) (99) (95) (12) (7) (8) (9) (4) (5) 

Duncan grouping A(A) B(A) B(A) A(A) C(A) B(A) A(C) B(C) A(B) A(C) A(C) A(B) 

^PF-resin type; LPF = Lab-made phenol-formaldehyde resin; CPF = Commercial phenol-formaldehyde resin; 
MPF = Mixed phenol-formaldehyde resin. 

''Numbers in parentheses are standard vediations. 

•^Letters represent Duncan's grouping at 0.05 level for effect of PF-resin type. 

•^Letters in parentheses represent Duncan's grouping at 0.05 level for effect of grain orientation. 
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'LPF MPF CPF LPF MPF CPF LPF MPF CPF 
(Rad) (Mix) (Tan) 

Grain direction and resin type 

Dry shear strength El Wet shear strength 

*LPF=Lab made phenol-formaldehyde; CPF=Commercial phenol-formaldehyde; 
MPF=Mixture of LPF and CPF by 1:1 ratio 

Figure 8. Effect of grain direction and resin type on shear strength of white oak 
specimens. Rad=radial-grained; Mix=Mix-grained: Tan=tangential-
grained 
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Figure 9. Effect of grain direction and resin type on wood failure of white oak 
specimens. Rad=radial-grained; Mix=Mix-grained; Tan=tangential-
grained 
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percentage of wood failure. When the CPF was used, tangentially bonded 

specimens had a lower wood failure value than radial-grained and mix-grained 

specimens did, and there was significant difference in wood failure between the 

latter two. 

When the specimens were aged by boiling in water for 2 hours, the LPF 

gluebonds also showed superiority over the MPF and CPF bonds. On the average, 

LPF-bonded specimens had a significant 10% increase in wet gluebond shear 

strength from that of the CPF-bonded specimens. The MPF-bonded specimens 

had the weakest wet gluebond shear strength. Just like for the dry bond shear 

strength, there was no difference in wet bond shear strength in different grain 

orientations when a particular type of resin was used. The LPF also showed a 

significant improvement of radial plane wet wood failure from that of the CPF-

bonded specimens. But differences in wet wood failure between LPF- and CPF-

bonded specimens was not observed in mix- and tangential-grained specimens. 

Once again, the MPF gave the lowest wet wood failure regardless of which plane 

the wood was adhesive bonded. 

In conclusion, the low viscosity, laboratory-prepared phenol-formaldehyde 

resin produced better white oak adhesive bond quality than did the commercial 

phenolic resin. The superiority of the LPF can be attributed to an improved resin 

penetration. The phenolic resin prepared by mixing equal parts of laboratory-

prepared and commercial resins produced the worst white oak bond quality. No 

explanation can be offered as to why MPF performed worse than CPF even though 

the former has a lower viscosity than the latter. 
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CHAPTER 5. SUMMARY AND CONCLUSIONS 

Previous studies showed that white oal< plywood bonded with resole type of 

phenol-formaldehyde resins had low bond strength and wood failure. Studies also 

showed that white oak flakeboards bonded with phenol-formaldehyde resins were 

inferior to boards made from pine species. It is believed that difficulty in bonding 

white oak with phenol-formaldehyde resins is due to interference of extractives with 

the formation of a good adhesive bond. 

The white oak butt log selected for this study had a ring count of 106 and a 

diameter of 20 inches. The heartwood had a total extractive content of 15.03%. 

Based on a successive solvent extraction of white oak heartwood, there was 0.36% 

hexane-soiubles, 11.56% ethanol-solubles, and 2.96% hot water-solubles. The 

total average heartwood extractive content of this white oak tree is relatively high 

probably because the extractive content was determined based on a 24-hour 

extraction. 

Solvent extraction of white oak heartwood specimens with hexane, 95% 

ethanol, hot water, and combinations of these solvents did not improve the adhesive 

bond quality. This is attributed to the fact that specimens were machined to 

thickness prior to bonding, removing possible extractive contaminants and exposing 

fresh cell wall surfaces for good adhesive bonding, in addition, solvent extractions 

caused warping of test specimens, preventing a complete closure of the gluelines 

during hot pressing, and resulting in inferior gluebond strength. 
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Applying white oak heartwood extracts onto freshly planed hard maple wood 

surfaces significantly reduced adhesive bond quality, especially the gluebond 

durability. Results indicated that water-soluble polymeric saccharides had the most 

deleterious effect on adhesive bond quality. Previous studies have shown that 

reducing sugars and polysaccharides with reducing ends under alkaline conditions 

can be transformed to acidic components, especially saccharinic acids. Therefore, 

these acidic components can neutralize the base catalyst in the phenolic resin and 

prevent proper setting and curing of the resin. Although white oak heartwood 

hexane-solubles can potentially interfere with proper wetting of wood surfaces with 

resin adhesives, their roles in influencing the gluebond quality of white oak is 

questionable because white oak contains only a small quantity of these extractives. 

This study also found that bonding of radial-grained white oak specimens had 

a low bond strength but a high percentage of wood failure. This is most likely due to 

a high volume of ray tissues in white oak wood. Adhesive bonds between mix-

grained and between tangential-grained white oak specimens showed higher bond 

strengths but low values of wood failure. 

A phenol-formaldehyde resin with a viscosity of 100 centipoises at 25°C, a pH 

of 11, and a solid content of 50% prepared in the laboratory provided a better white 

oak adhesive bond quality than did a commercial phenolic resin with a viscosity of 

300 centipoises. Improvement in adhesive bond quality with the low-viscosity resin 

was more apparent for the radial-grained specimens than in the mix- and tangential-

grained specimens. Improvement of the adhesive bond quality of white oak with the 

low-viscosity resin is attributed to better resin penetration. 

Although it has been demonstrated that white oak extractives have deleterious 

effects on adhesive bonding, it is impractical to efficiently remove extractives during 
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the industrial processes to manufacture PF-bonded products. Results of this study 

also indicated that a low-viscosity PF resin significantly improved the adhesive bond 

quality due to a better resin penetration. More research in the direction of 

formulating low-viscosity PF resins is needed to further improve the white oat< 

adhesive bond quality. If a deep-penetrating PF resin that can overcome the 

deleterious effects of extractives can be developed, a large volume of PF-bonded 

products can be produced from lumber, veneer, flakes and particles, and fibers from 

low-quality oaks. 
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