2007

Is Manure the Same as Fertilizer as a Crop Nutrient Resource?

John Sawyer
Iowa State University, jsawyer@iastate.edu

Follow this and additional works at: http://lib.dr.iastate.edu/extension_pubs

Part of the Agricultural Science Commons, Agriculture Commons, and the Agronomy and Crop Sciences Commons

Recommended Citation
http://lib.dr.iastate.edu/extension_pubs/113

Iowa State University Extension and Outreach publications in the Iowa State University Digital Repository are made available for historical purposes only. Users are hereby notified that the content may be inaccurate, out of date, incomplete and/or may not meet the needs and requirements of the user. Users should make their own assessment of the information and whether it is suitable for their intended purpose. For current publications and information from Iowa State University Extension and Outreach, please visit http://www.extension.iastate.edu.
Manure has been land applied for centuries as a replenishment of nutrients removed with crop harvest, and to improve soil productivity. Manure contains all plant essential nutrients, and is therefore a complete crop nutrient resource. Use as a replacement for commercial fertilizer however, can be complicated due to unique manure characteristics and application uncertainties. These include multiple nutrient forms, variation in nutrient content ratios, nutrient analysis variation, differences between manure sources in crop nutrient availability, and application control and variability. Because of these issues, manure must be viewed and managed differently than fertilizer nutrient sources. In addition, management of manure as a nutrient resource has improved over time, and as applications are targeted more closely to crop needs, the aforementioned issues make further improvement in management increasingly challenging. This fact sheet will review some of the characteristics of fertilizer and manure, and implications for nutrient management.

Fertilizers commonly used today have high, if not complete, water solubility and contain chemical forms that are quickly converted to plant available forms or can be immediately taken up by plants. Examples are:

- Anhydrous ammonia – NH₃
- Urea – CO(NH₂)₂
- Ammonium nitrate – NH₄NO₃
- Urea-ammonium nitrate solutions – 50% urea and 50% NH₄NO₃
- Ammonium sulfate – (NH₄)₂SO₄
- Ammoniated phosphates – MAP (NH₄H₂PO₄); DAP [(NH₄)₂HPO₄].
- Potassium chloride – KCl

Commercially available fertilizers are typically refined to provide high availability, guaranteed analysis, consistent particle size and density, and often contain only one essential element. This makes planning for nutrient application relatively easy as an application can be tailored for the specific rate or rates of each nutrient required (because of guaranteed analysis, only one nutrient per material, and ability to blend materials), and the application rate is known due to the guaranteed analysis. Application variation can occur if fertilizer spreaders are not well calibrated or maintained, but the consistent physical characteristic of the fertilizer products greatly improve application uniformity.

Manure is different from fertilizer materials in several ways:

- Contain multiple organic and inorganic nutrient forms.
- Nutrient content, organic/inorganic proportion, and characteristic of organic material varies by animal species, feed ration, storage, and handling. For example:
 - Nitrogen (N) in manure is either inorganic ammonium (NH₄), or organic materials like amino acids and proteins. There is little to no nitrate (NO₃) in manure.
 - Lagoon swine manure is almost entirely NH₄-N.
 - Pit swine manure is about 84% NH₄-N.
 - Liquid pit beef manure is about 44% NH₄-N
 - Poultry manure is about 25% NH₄-N.
 - Phosphorus (P) in manure is a complex mix of organic and inorganic compounds.

Contributors

- Natural Resource Conservation Service
- Agribusiness Assoc. of Iowa
- Iowa Farm Bureau Federation
- Iowa Poultry Association
- Iowa Turkey Federation
- Iowa Pork Industry Center
- Iowa Beef Center
- Iowa Pork Producers Assoc.
- Iowa Department of Natural Resources
- Iowa Cattlemen’s Assoc.
- Division of Soil Conservation, Iowa Department of Agriculture and Land Stewardship
- Iowa State Dairy Association
- Iowa Commercial Nutrient Applicators Assoc.
- Coalition to Support Iowa’s Farmers
- Iowa Corn Growers Assoc.
- Iowa Soybean Association
- Iowa State University, University Extension
- Iowa State University, College of Agriculture
Potassium (K) in manure is essentially all in the inorganic K⁺ ion.

• Nutrient analysis varies within storage structures and during load out.
• Manure and nutrient application rate control is more difficult due to manure physical characteristics, variability in nutrient content, water content, and high volumes.
• Organic materials can slow release of crop available nutrient forms and enhance loss of N from denitrification with wet soils. The longer the period from manure application to crop uptake can help give time for conversion of organic N and P forms to crop available inorganic forms, or can reduce N availability because of greater chance for nitrate loss with wet soils.
• Instead of essentially 100% in crop available forms like fertilizer materials, manure nutrient availability varies due to the above mentioned characteristics, and hence varies by manure source. Currently suggested first year crop N availability is
 o Liquid swine – 100%
 o Dry beef cattle – 30 to 40%
 o Dairy – 30 to 40%
 o Poultry – 65%

For P it is 60% unless soil test P is high or very high and then it is considered 100%; and for K is 100%.

Confidence in nutrient application rate and crop availability will increase as more is known about the above differences or can be controlled, especially within specific manure sources. For instance, nutrient rate control is easier with liquid compared to solid manure sources. Flow and rate controllers, and distributors, on liquid applicators help with uniformity and desired rate of application. Stirring liquid storage structures helps reduce concentration variability during manure load out. Conversely, nutrient rate control is more difficult with solid manure due to more problematic spreading of solid materials compared to liquid, both in regard to material rate and distribution across the spread width.

Nutrient composition can be more variable as it is more difficult to uniformly mix solid manure.

As the need to more closely target manure nutrient application increases, increased attention is being paid to differences in manure sources and to making manure nutrient use more closely match nutrient recommendations for crop production. The reasons are many, but include record high fertilizer costs, environmental issues, and regulatory requirements. Also, considering manure as a source of just one nutrient is no longer a viable practice. Besides environmental concerns with nitrate in surface and groundwater, P in runoff and the tie to surface water quality concerns dictates that manure applications consider multiple nutrients. Although not an environmental concern, this applies to K as well. Despite manure being a complete nutrient resource, the variation in nutrient ratios, and the difference between crop nutrient needs and manure content (nutrient ratios) can result in over- or under-application of nutrients. Manure planning and application must include long-term implications on soil test P and K.

Manure can be used quite effectively as a crop nutrient resource. It takes careful planning, a thorough understanding of the specific manure characteristics, adequate manure sampling and analyses, and careful attention to rate and distribution during application. This is not unlike use of fertilizers as a crop nutrient resource. It’s just that using manure effectively is different, more challenging, and takes more effort. The reward in achieving high crop yields with use of manure as a nutrient resource is accomplished on many acres each year in Iowa.

Written by: John Sawyer, Soil Fertility Specialist, Iowa State University

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, and marital or family status. (Not all prohibited bases apply to all programs.) Many materials can be made available in alternative formats for ADA clients. To file a complaint of discrimination, write USDA, Office of Civil Rights, Room 326-W, Whitten Building, 14th and Independence Avenue, SW, Washington, DC 20250-9410 or call 202-720-5964. Issued in furtherance of Cooperative Extension work, Acts of May 8 and June 30, 1914, in cooperation with the U.S. Department of Agriculture. Jack M. Payne, director, Cooperative Extension Service, Iowa State University of Science and Technology, Ames, Iowa.