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Can the strengths of AIC and BIC be shared?

Abstract
A traditional approach to statistical inference is to identify the true or best model first with little or no
consideration of the specific goal of inference in the model identification stage. Can the pursuit of the true
model also lead to optimal regression estimation? In model selection, it is well known that BIC is consistent in
selecting the true model, and AIC is minimax-rate optimal for estimating the regression function. A recent
promising direction is adaptive model selection, in which, in contrast to AIC and BIC, the penalty term is
data-dependent. Some theoretical and empirical results have been obtained in support of adaptive model
selection, but it is still not clear if it can really share the strengths of AIC and BIC. Model combining or
averaging has attracted increasing attention as a means to overcome the model selection uncertainty. Can
Bayesian model averaging be optimal for estimating the regression function in a minimax sense? We show that
the answers to these questions are basically in the negative: for any model selection criterion to be consistent,
it must behave suboptimally for estimating the regression function in terms of minimax rate of covergence;
and Bayesian model averaging cannot be minimax-rate optimal for regression estimation.
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Can the Strengths of AIC and BIC Be Shared? ∗

Yuhong Yang
Department of Statistics

Iowa State University
Ames, IA, 50011

December 30, 2003

Abstract

It is well known that AIC and BIC have different properties in model selection. BIC is consistent
in the sense that if the true model is among the candidates, the probability of selecting the true
model approaches 1. On the other hand, AIC is minimax-rate optimal for both parametric and
nonparametric cases for estimating the regression function. There are several successful results on
constructing new model selection criteria to share some strengths of AIC and BIC. However, we
show that in a rigorous sense, even in the setting that the true model is included in the candidates,
the above mentioned main strengths of AIC and BIC cannot be shared. That is, for any model
selection criterion to be consistent, it must behave sup-optimally compared to AIC in terms of mean
average squared error.

1 Introduction

1.1 Setup

Consider the regression model

Yi = f(xi) + εi, i = 1, 2, ..., n,

where xi = (xi1, ..., xid) is the value of a d-dimensional design variable at the i-th observation, Yi is the

response, f is the true regression function, and the random errors εi are assumed to be iid normally

distributed with mean zero and variance σ2.

For the purpose of statistical model identification, estimation or prediction, a number of plausible

linear models are being considered:

Y = fk(x, θk) + ε,

where for each k, Fk = {fk(x, θk), θk ∈ Θk} is a linear family of regression functions with θk being the

parameter of a finite dimension mk.

With the candidate models given, we need to select one of them to best capture the underlying

distribution of the data or best estimate the regression function f or predict the future response.
∗This work was supported by the US NSF CAREER Grant DMS0094323.

AMS 2000 subject classifications. Primary 62C05; secondary 62F12, 62C20, 62G08.
Key words and phrases. Model selection, AIC, BIC, consistency, minimax-rate optimality.
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The above framework includes the usual subset selection and order selection problems in linear

regression. It also includes nonparametric regression based on series expansion, where the true function

is approximated by linear combinations of appropriate basis functions (such as polynomials, splines, or

wavelets).

1.2 Model selection criteria

Up to now, there is a rather large literature on model selection methods following different philosophies,

assumptions, theoretical and/or practical considerations. The readers are referred to Shao (1997) for

references. We focus on two of the most representative and widely applied model selection criteria in

this work.

AIC (Akaike (1973)) and BIC (Schwarz (1978)) are derived from distinct perspectives: AIC intends

to minimize the Kullback-Leibler divergence between the true distribution and the estimate from a

candidate model and BIC tries to select a model that maximizes the posterior model probability. Due

to the rather different motivations, it is not surprising that they have different properties.

The most well-known properties of AIC and BIC are asymptotic (loss) optimality and consistency

(in selection), respectively. Simply put, when f is among the candidate families of regression functions,

the probability of selecting the true model by BIC approaches 1 as n → ∞ (e.g., Nishii (1984)); On

the other hand, if f is not in any of the candidate families and if the number of models of the same

dimension does not grow very fast in dimension, the average squared error of the selected model by

AIC is asymptotically equivalent to the smallest possible offered by the candidate models (e.g., Shibata

(1983), Li (1987), Polyak and Tsybakov (1990), and Shao (1997)). Note that here the true model is

defined as the smallest model containing f. These two properties of BIC and AIC are respectively called

consistency and asymptotic (nonparametric) optimality (under the average squared error loss). Note

that in general, AIC is not consistent and BIC is not asymptotically (loss) optimal in the nonparametric

case.

There has been quite a debate between AIC and BIC in the literature, centering on the assumption:

Is the true model finite-dimensional or infinite-dimensional? There seems to be a consensus that for the

former case, BIC should be preferred and AIC should be chosen for the latter.

1.3 The problem of interest in this work

The purpose of this paper is to investigate the possibility of uniting the rivalry model selection criteria

AIC and BIC. Obviously, if possible, sharing the strengths of different statistical procedures is desirable.

This is, for example, the spirit of adaptive estimation in function estimation. In that context, a large

number of results have been obtained to construct estimation procedures that work optimally in rates of

convergence (or even up to the right constants) over different assumptions on the true regression function
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or different loss functions (see, e.g., Barron, Birgé and Massart (1999) for history and some references).

Following this spirit, instead of focusing on the difference between the two model selection rules, why

not devise a new one that integrates their strengths together?

There have been several attempts to pursue the good qualities of AIC and BIC using a new criterion.

Barron, Yang and Yu (1995) reported that the minimum description length (MDL) criterion (Rissanen

(1978)), when applied in a novel way, yields a penalty of AIC type when the data are governed by

a nonparametric model and of BIC type when the data are governed by a parametric model in the

candidate list. A consequence is that the resulting estimator converges at the minimax optimal rates for

nonparametric cases and also optimally in rate in terms of a cumulative prediction error for parametric

cases. Thus in an appropriate sense, the novel use of MDL indeed provides a reconciliation of the criteria

AIC and BIC. Hansen and Yu (1997) took a different approach based on MDL to have a penalty term

basically switching between AIC and BIC type according to a test statistic. When the true model is finite-

dimensional, the criterion is consistent and prediction-optimal (Corollary 1 of Hansen and Yu (1997), see

also Hansen and Yu (2001)). Foster and George (2000) proposed new Bayesian model selection criteria

based on empirical Bayes approaches to have an adaptive penalty term that acts like BIC or RIC (note

that RIC has a penalty of AIC type when the number of models does not grow in the sample size). Yang

(2003) showed empirically that when AIC and BIC estimators are properly combined, the new estimator

tends to perform like the better one under the squared error loss.

Of course one can consider different aspects of the properties of AIC and BIC to be shared, if

possible. The positive results in Barron, Yang and Yu (1995) and Hansen and Yu (1997) focused on the

“parametric versus nonparametric” aspect. However, in this paper, from a different angle, assuming that

the true model is among the candidates, we show that there is an uncompromisable difference between

AIC and BIC. That is, if any model selection procedure is consistent in selection as BIC is, unlike AIC,

it must be minimax rate sub-optimal. Therefore, in a strong sense, no model selection procedure can

be devised to share the advantages of both AIC and BIC. It is also interesting to note that the classical

hypothesis testing theory plays a fundamental role in our analysis.

The elegant asymptotic (nonparametric) optimality property of AIC is usually stated on the loss

or risk of the selected model in an asymptotic expression where the limit is taken as n → ∞ with the

regression function held fixed. As noted by e.g., Brown, Low and Zhao (1997), in general, such an

asymptotic analysis “can involve misleading conclusions” on the performance of the estimator. Indeed,

the accuracy of the estimator suggested by such an asymptotic result can actually be illusionary in terms

of minimax rate of convergence. Fortunately, this is not the case for AIC, as we consider in the next

subsection.
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1.4 An important minimax property of AIC

A key feature of an AIC type criterion (including Mallows’ Cp (1973)) is that it adds a penalty of the

same order as the model dimension to the negative maximized log-likelihood. The significance of this is

that with the penalty added as bias correction, the criterion value (with a term common to all models

removed) is of the same order as the sum of the squared bias and the estimation error (model dimension

over the sample size). Consequently, when the number of the relevant models is under control, the

comparison of the criterion value is pretty much similar to comparing the sum of the squared bias and

the estimation error over the models. In light of the well-known fact that the best trade-off between the

squared bias and the estimation error typically produces the minimax optimal rate of convergence for

both parametric and nonparametric function classes (see, e.g., Yang and Barron (1999, Section 4) and

the references therein), the AIC type criteria then have the property that they usually yield minimax-rate

optimal estimators of the regression function under a squared error type loss. There are many results

of this flavor in the literature. We mention Barron, Birgé and Massart (1999) as a source of references.

Note that the minimax-rate optimality of AIC type criteria holds much more generally in terms of the

assumptions on the candidate models compared to the asymptotic loss optimality.

We give an example result below.

Consider the average squared error for estimating the regression function f : for a model selection

criterion δ that selects model k̂, let ASE(fk̂) = 1
n

∑n
i=1

(
f(xi)− fk̂(xi, θ̂k̂)

)2

, where θ̂k̂ is the least

squares estimator of the parameter in the model. It assesses the performance of the estimator at the

design points. The corresponding risk is R(f ; δ;n) = 1
n

∑n
i=1E

(
f(xi)− fk̂(xi, θ̂k̂)

)2

.

Definition 1: A model selection criterion δ is said to be minimax-rate optimal over a class of regres-

sion functions F if supf∈F R(f ; δ;n) converges at the same rate as inf f̂ supf∈F
1
n

∑n
i=1E

(
f(xi)− f̂(xi)

)2

,

where f̂ is over all estimators based on the observations of Y1, ..., Yn.

Let Γ be the collection of all the models being considered. The size of Γ can be finite or countably

infinite. Let Nm denote the number of models that have the same dimension m in Γ. We assume that

there exists a positive constant c such that Nm ≤ ecm, i.e., the number of models of dimension m

increases no faster than exponentially in m. This is certainly the case when the size of Γ is finite and

also the case in the usual order selection problem in series expansion.

Let δAIC denote the estimator of f based on the outcome of AIC, i.e., the estimator is fk̂(x, θ̂k̂),

where k̂ is the model selected by AIC. Let Mk denote the projection matrix of model k and let rk denote

the rank of Mk (note that rk ≤ mk). Let ‖ a ‖n denote the Euclidean norm of a n dimensional vector a.

For simplicity, for the following proposition, we assume that σ2 is known and then set to be 1 to avoid

unnecessary technicality for better illustrating the main point. See Barron, Birgé and Massart (1999),

Birgé and Massart (2001) and references therein for more general treatments and many interesting
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results.

Proposition 1: There exists a constant C > 0 depending only on c such that for every regression

function f, we have

R(f ; δAIC ;n) ≤ C inf
k∈Γ

(
‖ f −Mkf ‖2n

n
+
rk
n

)
.

Proposition 1 follows readily from Theorem 1 of Yang (1999). A corollary is immediately available if

the true model is among the candidates.

Corollary 1: Suppose that model k∗ ∈ Γ is the true model. Then

sup
f∈Fk∗

R(f ; δAIC ;n) ≤ Cmk∗

n
.

Thus the worst-case risk of δAIC under the true model k∗ is at the parametric rate 1/n. In other

words, δAIC is minimax-rate optimal if the true model is among the candidates. When the true regression

function is infinite-dimensional (relative to the candidate models), ‖ f −Mkf ‖2n /n is non-zero for all k.

For smoothness classes such as Sobolev balls, with an appropriate choice of the candidate models (e.g.,

polynomial splines), infk∈Γ

(
‖f−Mkf‖2n

n + rk
n

)
is of the same order as the minimax rate of convergence.

Therefore δAIC is automatically minimax-rate optimal over the smoothness classes without the need to

know the true smoothness order.

From above, we know that δAIC is minimax-rate optimal, converging at rate 1/n when one of the

candidate model holds; and is also minimax-rate optimal when the true regression function is infinite-

dimensional in e.g., Sobolev classes (or more generally in full approximation sets, see Yang and Barron

(1999, Section 4)).

It is useful to point out that many theoretical results in the literature on model selection are pointwise

asymptotics in the sense that the loss or risk bound is of an asymptotic nature at a fixed f (for example,

the main results in Shibata (1983), Li (1987) and Shao (1997) are of this kind). A consequence is that the

results do not lend useful implications on minimax properties of the estimators. Note that the minimax

view on statistical estimation has been emphasized in recent years (see, e.g., Donoho and Johnstone

(1998)).

In contrast to AIC, BIC does not have the minimax-rate optimality mentioned above. Indeed, Foster

and George (1994) showed that in the parametric scenario, BIC converges sub-optimally in terms of the

worst-case risk performance. Therefore, even in the parametric case, BIC can perform much worse than

AIC.

The rest of the paper is organized as follows. The main result is given in Section 2 and the proof is

provided in Section 3. A brief summary of the paper is in Section 4.
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2 Can consistency and minimax rate optimality be shared?

Assumption 1: There exist two models k1, k2 ∈ Γ such that

1. Fk1 = {fk1(x, θk1) : θk1 ∈ Θk1} is a sub-linear space of Fk2 = {fk2(x, θk2) : θk2 ∈ Θk2};

2. There exists a function ϕ(x) in Fk2 orthogonal to Fk1 (at the design points) with 1
n

∑n
i=1 ϕ

2(xi)

being bounded between two positive constants (at least for large enough n);

3. There exists a function f0 ∈ Fk1 such that f0 is not in any family Fk (k ∈ Γ) that does not contain

Fk1 .

The second part of Assumption 1 is very mild and is typically satisfied for a reasonable design. The

third part of the assumption always holds when one has a finite number of models or a countable list of

nested models. For a general case of countably many models, the satisfaction of the third requirement is

not obvious (it seems that the axiom of choice is relevant). Assumption 1 is satisfied for subset or order

selection in the usual linear regression setting with a reasonable design.

Theorem 1. Under Assumption 1, if any model selection method δ is consistent in selection, then

we must have

n sup
f∈Fk2

R(f ; δ;n)→∞. (1)

Remarks:

1. Without a proper nested relationship between the models, defining consistency in model selection

can be tricky. Consider any two models k1, k2 ∈ Γ that are not nested. If Fk1 ∩ Fk2 is not

degenerate and Fk1 ∩ Fk2 does not correspond to a candidate model, then for a given f in the

intersection, it is unclear how to define the true model for f (especially when k1 and k2 have the

same dimension).

2. The conclusion of (1) still holds even if one considers a compact subset of Fk2 instead of Fk2 itself

in the expression (see the proof of Theorem 1 in Section 3).

3. From the proof of the theorem in Section 3, it is seen that allowing randomization in model selection

(which corresponds to randomized testing there) does not help to unite AIC and BIC.

The theorem says that in the parametric case, if one is to pursue consistency in selection, one must

pay a somewhat high price for estimating the regression function. Thus the strengths of AIC and

BIC cannot be combined in a rigorous sense. The theorem also implies that consistency in selection

and minimax-rate optimality in estimating f are somewhat conflicting performance measures on model

selection.
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3 Proof of Theorem 1

The key idea in the proof is to reduce the problem to a hypothesis testing problem where the classical

hypothesis testing theory can be applied.

We first prove Theorem 1 in a simple case. Suppose that we have two models, the null model:

Yi = α+ εi, i = 1, 2, ..., n and the simple linear model below:

Yi = α+ βxi + εi, i = 1, 2, ..., n, (2)

where x is a one-dimensional design variable. Without loss of generality, here we assume that the design

is such that xn = 0. In addition, we assume that 1
n

∑n
i=1 x

2
i is bounded between two positive constants

for all n. For convenience, call the aforementioned models model 0 and model 1 respectively.

Now consider a consistent (in selection) model selection criterion δ. Let An be the event that model

1 is selected. The corresponding estimator of f(x0) is

f̂(x0) = α̂+ β̂x0IAn .

Then its risk at x0 under the squared error loss is

σ2

n
+ x2

0E
(
β̂IAn − β

)2

+ 2x0E(α̂− α)(β̂IAn − β)

and thus the mean average squared error is

R(f ; δ;n) =
σ2

n
+

(
1
n

n∑
i=1

x2
i

)
E
(
β̂IAn − β

)2

.

Note that in the above equality, the cross-product term vanishes due to that xn = 0. We next show that

for any consistent model selection method, for each c > 0, we must have

sup|β|≤cEβ
(
β̂IAn − β

)2

1/n
→∞.

The conclusion of Theorem 1 then follows for the simple two model case. Note that the left hand side

above is equal to

sup
|β|≤c

Eβ

(√
nβ̂IAn −

√
nβ
)2

= sup
|β|≤c

Eβ

(√
n
(
β̂ − β

)
IAn −

√
nβIAcn

)2

= sup
|β|≤c

(
Eβn

(
β̂ − β

)2

IAn + nβ2Pβ (Acn)
)
.

Thus to show that δ is not minimax-rate optimal at rate 1/n, it suffices to show that for each c > 0,

sup
|β|≤c

nβ2Pβ (Acn)→∞.
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Since δ is consistent, we have Pβ=0(An) → 0 as n → ∞. Consider a testing problem as follows. The

observations are from the model:

Yi = βxi + εi, i = 1, 2, ..., n, (3)

where the errors are independent and have standard normal distribution. Note that this is a sub-family

of (2) with α = 0 and σ2 = 1. Consider the hypotheses: H0 : β = 0 versus H1 : β > 0. If we take the

rejection region An, δ becomes a testing rule with probability of type I error approaching zero. We next

show, via Neyman-Pearson Lemma, that for any test with the probability of type I error going to zero, it

necessarily has sup|β|≤c nβ2P
(
Ãcn

)
→∞, where Ãn is the rejection region of the test. Let f(y1, ..., yn;β)

denote the joint probability density function of (Y1, ..., Yn) under (3). Note that for β1 > β0 ≥ 0,

f(y1, ..., yn;β1)
f(y1, ..., yn;β0)

= exp

(
1
2

n∑
i=1

(
(yi − β0xi)

2 − (yi − β1xi)
2
))

= exp

(
(β1 − β0)

n∑
i=1

xiyi +
1
2
(
β2

0 − β2
1

) n∑
i=1

x2
i

)
.

Thus the family has a monotone likelihood ratio in the statistic
∑n
i=1 xiYi. It follows from the fa-

miliar Karlin-Rubin theorem that a uniformly most powerful (UMP) test exists, which is to reject

H0 when
∑n
i=1 xiYi is larger than some constant C. Let us choose the constant C = dn so that

Pβ=0 (
∑n
i=1 xiYi ≥ dn) = Pβ=0(An). Let An,∗ denote the event {

∑n
i=1 xiYi ≥ dn}. By the UMP prop-

erty of An,∗, we have that for all β > 0

Pβ (An,∗) ≥ Pβ (An) .

Consequently,

sup
|β|≤c

nβ2Pβ (Acn) ≥ sup
0≤β≤c

nβ2Pβ
(
Acn,∗

)
.

Now since
∑n
i=1 xiYi has a normal distribution, it is easy to get

Pβ=0

(
n∑
i=1

xiYi ≥ dn

)
= P

(
N(0, 1) ≥ dn√∑

x2
i

)
,

and for β > 0

Pβ

(
n∑
i=1

xiYi < dn

)
= P

(
N(0, 1) <

dn − β
∑
x2
i√∑

x2
i

)
.

Since Pβ=0 (
∑n
i=1 xiYi ≥ dn) = Pβ=0(An) → 0, we must have dn√

n
→ ∞. Then with the choice of

βn = min
(

dn
2
∑

x2
i

, c

)
, we have

sup
0≤β≤c

nβ2Pβ
(
Acn,∗

)
≥ nβ2

nPβn
(
Acn,∗

)
.

Clearly nβ2
n → ∞. Also Pβn

(
Acn,∗

)
≥ P

(
N(0, 1) < dn

2
√∑

x2
i

)
and thus Pβn

(
Acn,∗

)
converges to 1. It

follows that sup|β|≤c nβ2P (Acn)→∞. This proves the result of Theorem 1 for the special case.
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Now we consider the general case. Let k1 and k2 be two models that are nested: Fk1 = {fk1(x, θk1) :

θk1 ∈ Θk1} is a sub-linear space of Fk2 = {fk2(x, θk2) : θk2 ∈ Θk2}. Let ϕ(x) be a function in Fk2 that

is orthogonal (at the design points) to Fk1 . Under Assumption 1, we can have 1
n

∑n
i=1 ϕ

2(xi) bounded

between two positive constants. Also, under the third part of Assumption 1, there is a function f0 ∈ Fk1

such that f0 does not belong to any other Fk that does not contain Fk1 (so that the true model associated

with f0 is clearly k1). Let Bn be the event that model k1 is not selected for a model selection method

δ. If δ is consistent, then

Pf0(Bn)→ 0 as n→∞.

Consider a simplified model:

Yi = f0(xi) + βϕ(xi) + εi, i = 1, 2, ..., n, (4)

and the testing problem H0 : β = 0 versus H1 : β > 0. Note that under H0, the data comes from model

k1 and under H1, the regression function is in Fk2 . The model selection rule δ can be used to get a test:

accept H0 when model k1 is selected by δ and otherwise reject H0. Since δ is consistent, this test has

probability of type I error going to zero as n→∞.

Let f = (f(x1), ..., f(xn))
′
, Y = (Y1, ..., Yn)

′
, ε = (ε1, ..., εn)

′
, ϕ = (ϕ(x1), ..., ϕ(xn))

′
and let Mk1 be

the projection matrix of model k1. Observe that under (4),

‖ f −Mk1Y ‖2n

= ‖ f −Mk1f ‖2n +ε
′
Mk1ε

= ‖ βϕ−Mk1ϕ ‖2n +ε
′
Mk1ε

= β2 ‖ ϕ ‖2n +ε
′
Mk1ε,

where the second and the third equalities follow from the fact that (f0(x1), ..., f0(xn))
′

is in the column

space of Mk1 and that ϕ is orthogonal to the column space of Mk1 . Then under (4), the risk of the

estimator associated with δ is

R(f ; δ;n) =
1
n

∑
k∈Γ

Eβ ‖ f −MkY ‖2n I{k̂=k}

≥ 1
n
Eβ ‖ f −Mk1Y ‖2n I{k̂=k1}

≥ β2

n
Eβ ‖ ϕ ‖2n I{k̂=k1}

=
∑n
i=1 ϕ

2(xi)
n

β2Pβ

(
k̂ = k1

)
.

Consequently, to show that n supf∈Fk2
R(f ; δ;n)→∞, we only need to show

sup
|β|≤c

nβ2Pβ (Bcn)→∞.
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With our setup of the testing problem, the above statement holds if we can show that for any test of

the hypotheses with rejection region An satisfying Pβ=0 (An)→ 0 we must have sup|β|≤c nβ2P (Acn)→

∞. Let Zi = Yi − f0(xi). Then Z1, ..., Zn are independent Gaussian random variables with Zi having

N(βϕ(xi), σ2) distribution. The earlier arguments for the simple two-model case follow similarly for

proving the last assertion. This completes the proof of Theorem 1.

4 Summary

Identifying the true model (when possible) and optimally estimating the regression function are both

fundamental problems in regression analysis. As is well-known, BIC enjoys the consistency property in

terms of selecting the true model. AIC is asymptotically optimal in terms of the average squared error

when the candidate models are all incorrect. The penalty of AIC type ensures an important minimax

property: it is minimax-rate optimal for both parametric and nonparametric cases.

Trying to go beyond the debate between AIC and BIC, some works in the literature have successfully

combined certain aspects of the two model selection rules. In this paper, however, we have shown that

the consistency aspect of BIC and the minimax-rate optimality aspect of AIC cannot be combined: no

matter how one comes up with a model selection criterion, if one pursues one aspect, one must sacrifice

the other. Thus the goals of model identification and minimax-rate estimation of the regression function

cannot be aligned.
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