Crystallization of Bi–Sr–Ca–Cu–O glasses in oxygen

Thumbnail Image
Date
1992-07-01
Authors
Holesinger, T.
Miller, D.
Chumbley, L. Scott
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Research Projects
Organizational Units
Organizational Unit
Materials Science and Engineering
Materials engineers create new materials and improve existing materials. Everything is limited by the materials that are used to produce it. Materials engineers understand the relationship between the properties of a material and its internal structure — from the macro level down to the atomic level. The better the materials, the better the end result — it’s as simple as that.
Journal Issue
Is Version Of
Versions
Series
Department
Materials Science and Engineering
Abstract

A detailed study of the crystallization process for compositions near Bi2Sr2Ca1Cu2Oy was undertaken using differential thermal analysis (DTA), transmission and scanning electron microscopy (TEM and SEM), and x-ray diffraction (XRD). Glasses prepared by a splat-quench technique were free of secondary phases in most cases. A two-step crystallization process in oxygen was observed in which partial crystallization of the glass occurs initially with the nucleation of “2201” and Cu2O, and is completed with the formation of SrO, CaO, and Bi2Sr3−xCaxOy. No specific thermal event could be associated with the formation of the “2212” phase. Rather, formation occurs via conversion of 2201 into 2212. This was a kinetically limited process at temperatures below 800 °C as other phases were found to evolve in addition to the 2212 phase during extended anneals. In contrast, a nearly full conversion to the 2212 phase occurred after only 1 min of annealing at 800 °C and above. However, changes in resistivity data, secondary phases, and the measured 2212 composition upon extended anneals at 865 °C showed that considerably longer heat treatments were necessary for the sample to reach its equilibrium state.

Comments

This articles is from Journal of Materials Research 7 (1992): 1658-1671, doi: 10.1557/JMR.1992.1658. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Wed Jan 01 00:00:00 UTC 1992
Collections