Supply Chain Risk Analysis Using Dynamic Fault Tree

Xue Lei
Iowa State University, xlei@iastate.edu

Cameron A. MacKenzie
Iowa State University, camacken@iastate.edu

Follow this and additional works at: https://lib.dr.iastate.edu/imse_conf

Part of the Industrial Engineering Commons, Industrial Technology Commons, and the Manufacturing Commons

Recommended Citation
https://lib.dr.iastate.edu/imse_conf/125

This Presentation is brought to you for free and open access by the Industrial and Manufacturing Systems Engineering at Iowa State University Digital Repository. It has been accepted for inclusion in Industrial and Manufacturing Systems Engineering Conference Proceedings and Posters by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Supply Chain Risk Analysis Using Dynamic Fault Tree

Abstract

Disciplines
Industrial Engineering | Industrial Technology | Manufacturing | Operations Research, Systems Engineering and Industrial Engineering

Comments
Supply Chain Risk Analysis Using Dynamic Fault Tree

Xue Lei Cameron Mackenzie
Iowa State University
Industrial and Manufacturing System Engineering (IMSE)
Outline:

1. Motivations
2. Main-backup supply chain
3. Mutual-assistance supply chain
4. Conclusions
1. Motivations

External factors

Internal factors

- Interplays within the supply chain

- Dynamic fault tree (DFT)

Opportunities exists in: Supply chain risk analysis using DFT
Main-backup Supply Chain

Main supplier

Backup supplier

Inventory

Information System

Mutual-assistance Supply Chain

Supplier

Information System

Supplier
State-time diagrams of dynamic gates:

PAND Gate: \((A = \text{information system’s failure}; \ B = \text{main supplier’s failure.})\)

SPARE Gate: \((B = \text{main supplier’s failure}; \ C= \text{backup supplier’s failure.})\)
FDEP Gate: (A = information system’s failure; C= backup supplier’s failure)

MA Gate: (B = one supplier’s failure; C= the other one supplier’s failure)
SEQ Gate: (B = main supplier’s failure; C = backup supplier’s failure; D = inventory’s failure.)

Down time of the SEQ gate

B
\[\text{TTF}_B \rightarrow \text{TTR}_B \]

C
\[\text{TTF}_C \rightarrow \text{TTR}_C \]

D
\[\text{TTF}_D \rightarrow \text{TTR}_D \]

Failure

No common down time

B
\[\text{TTF}_B \rightarrow \text{TTR}_B \]

C
\[\text{TTF}_C \rightarrow \text{TTR}_C \]

D
\[\text{TTF}_D \rightarrow \text{TTR}_D \]

No Failure
2. Main-backup supply chain

A = information system’s failure; B = main supplier’s failure; C = backup supplier’s failure; D = inventory’s failure.
Simulation Parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total simulation time</td>
<td>86400 hours (= 10 years)</td>
</tr>
<tr>
<td>Mean time to failure of each component</td>
<td>200 hours</td>
</tr>
<tr>
<td>Mean time to repair of each component</td>
<td>48 hours</td>
</tr>
<tr>
<td>Increasing failure rate of the backup supplier given failure in the main supplier</td>
<td>2</td>
</tr>
<tr>
<td>Standard delivery time</td>
<td>200 hours</td>
</tr>
</tbody>
</table>

- **Failure rate**

- **Overall delivery time**
alpha - increasing failure rate of the backup supplier given failure in the main supplier
k – acceleration rate after supplier recovery
mttf - mean time to failure
mttr - mean time to repair
a - information system
b - main supplier
c - backup supplier
3. Mutual-assistance supply chain

A = information system’s failure; B = one supplier’s failure; C = the other one supplier’s failure.
beta - Increasing failure rate of one supplier given failure in the other supplier
k – acceleration rate after supplier recovery
mttf - mean time to failure
mttr - mean time to repair
a - information system
b, c – two suppliers
4. Conclusions

• Contributions
 • First use of dynamic fault tree to supply chain risk analysis
 • Development of mutual assistance gate
 • Estimate the overall delivery time of supply chain
 • Include low volume and high volume production scenarios

• Limitation
 • Limited kinds of supply chains

email: xlei@iastate.edu