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Abstract

Compound-Gaussian models are used in radar signal processing to describe heavy-tailed clutter
distributions. The important problems in compound-Gaussian clutter modeling are choosing the texture
distribution, and estimating its parameters. Many texture distributions have been studied, and their
parameters are typically estimated using statistically suboptimal approaches. We develop maximum
likelihood (ML) methods for jointly estimating the target and clutter parameters in compound-
Gaussian clutter using radar array measurements. In particular, we esfijnéie complex target
amplitudesii) a spatial and temporal covariance matrix of the speckle componentjigrtexture
distribution parameters. Parameter-expanded expectation-maximization (PX-EM) algorithms are de-
veloped to compute the ML estimates of the unknown parameters. We also derived the Cramér-Rao
bounds (CRBs) and related bounds for these parameters. We first derive general CRB expressions
under an arbitrary texture model then simplify them for specific texture distributions. We consider
the widely used gamma texture model, and propose an inverse-gamma texture model, leading to a
complex multivariatet clutter distribution and closed-form expressions of the CRB. We study the

performance of the proposed methods via numerical simulations.

Index Terms

Compound-Gaussian model, estimation, Cramér-Rao bound, parameter-expanded expectation-

maximization (PX-EM).
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I. INTRODUCTION

When a radar system illuminates a large area of the sea, tmlpitity density function (pdf) of
the amplitude of the returned signal is well approximateditey Rayleigh distribution [1], i.e., the
echo can be modeled as a complex-Gaussian process. Thiudish is a good approximation. This
can be proved theoretically by the central limit theoremgsithe returned signal can be viewed as
the sum of the reflection from a large number of randomly-paadependent scatterers. However,
in high-resolution and low-grazing-angle radar, the rdatter data show significant deviations from
the complex Gaussian model, see [2], because only a smaliséace area is illuminated by the
narrow radar beam. The behavior of the small patch is ndiestay [1] and the number of scatterers
is random, see [3]. Due to the different waveform charastiee and generation mechanism, the sea
surface wave, i.e., the roughness of the sea surface, is ofteleled in two scales [4], [5]. To take
into account different scales of roughness, a two-scalssdace scattering model was developed, see
[6], [7], [8]. In this two-scale model — aompound-Gaussiamodel — the fast-changing component,
which accounts for local scattering, is referred tospecklex(t). It is assumed to be a stationary
complex Gaussian process with zero mean. The slow-char@ingponenttexture u(t) is used to
describe the variation of the local power due to the tiltifighe illuminated area, and it is modeled
as a nonnegative real random process. The complex cluttebeavritten as the product of these two

components
e(t) = /u(t)x(t) 1)

The compound-Gaussian model is a model widely used to desize the heavy-tailed clutter dis-
tributions in radar, especially sea clutter, see [2], [6], nd Section II. It belongs to the class of
the spherically invariant random process (SIRP), see [[l0]]. Note that the compound-Gaussian
distribution is also often used to model speech wavefornts \arious radio propagation channel
disturbance, see [10] and the references therein.

Modeling of clutter using a compound-Gaussian distributiavolves these important aspects:
choosing the texture distribution, estimating its pararetand evaluating the efficiency of the
estimations. Many texture distributions have been stydiettheir parameters were typically estimated
using the method of moments, which is statistically subpalj see [2]. We present our measurement
model in Section Il. In Section Ill, we develop the paramebgpanded expectation-maximization
(PX-EM) algorithms to estimate the target and clutter patems. We compute the CRBs for the
general compound-Gaussian model and simplify them for ewtute distributions in Section IV. In

Section V, we verify our results through Monte-Carlo nuroakisimulations.
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[I. MODELS

We extend the radar array measurement model in [11] to a¢douwompound-Gaussian clutter.
Assume that an-element radar array receivéspulse returns, where each pulse providésamples.
We collect the spatio-temporal data from tith range gate into a vectay(t) of sizem = nP and

modely(t) as (see [11] and [12]}
y(t) = AX$(t) +e(t), t=1,...,N. )

where A is anm x r spatio-temporal steering matrix of the targets= [¢(1), ¢(2),...,d(N)] is the
temporal response matri¥ is anr x d matrix of unknown complex amplitudes of the targets. Here
r is the number of possible directions that the reflectionagwill come from, andl is the number
of range gate that covers the targéthe additive noise vectors(t),t = 1,2,..., N are independent,
identically distributed (i.i.d.) and come from a compou@dussian probability distribution, see e.g.
[3], [10] and [14]-[17].

We now represent the above measurement scenario using libwifig hierarchical modely(t)

are conditionally independent random vectors with prolitgldensity functions (pdfs):
Pyu(y() | u(): X, 2) = exp { ~[y(H) - AXS(O) " [u(t) 2] ly(®)-AX (1))} /Imu() X, ()

where the superscript*’ denotes the Hermitian (conjugate) transpaSds the (unknown) covariance
matrix of the speckle component, andt), ¢t = 1,2,..., N are the unobserved texture components
(powers). We assume the texture to be fully correlated duttie coherent processing interval (CPI)
[18]. This assumption is reasonable since the radar primgesime is not too long. We consider the
following texture distributions:

« gamma: u(t) follow a gamma distribution [2], [3], [14]

« inverse gamma: 1/u(t) follow a gamma distribution [19], [20], [21]

1. M AXIMUM LIKELIHOOD ESTIMATION

We develop the ML estimates of the complex amplitude makfixspeckle covariance matrix’,
and texture distribution parameterfrom the measurementg = [y(1)7,y(2)7,...,y(N)T]|T, see
[22]. In the following, we present the PX-EM algorithms forLMestimation of these parameters
under the above three texture models. The PX-EM algorithmsesthe same monotonic convergence
properties as the “classical” expectation-maximizatiBM] algorithms, see [23, Theorem 1]. They

outperform the EM algorithms in the global rate of convergersee [23, Theorem 2]. In our problem,

1A special case of the model (2) for rank-one targets (i.elascX) in compound-Gaussian clutter was considered in
[15].

2In high resolution radar, target can usually distribute iorenthan one range gates, see [13] and reference therein.
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the computations are confined to the PX-E step of the PX-EMrilgn. The PX-M step follows as

a straightforward consequence of the PX-E step.

A. PX-EM Algorithm for Gamma Texture

We model the texture component&), t = 1,2,..., N as gamma random variables with unit mean
(as e.g. in [3]) and unknown shape parameter 0, i.e.,

1 1

Pu(u(t);v) = T Vu(t)” exp [ —vu(t)]; (4)

hence, the unknown parameters &e= {X, Y, v}. (The shape parameteris also known as the
Nakagamim parameter in the communications literature, see e.g. [284,22.1.4].) This choice of
texture distribution leads to the well-knowi clutter model, see [2] and [3] and references therein.

The method for deriving EM- algorithm from complete-datéisient statistics for a similar GMANOVA
model is presented in [12]. Since EM algorithms often cogeeslowly in some situations, we propose
a PX-EM algorithm. Because of the introduction of new paremePX-EM algorithm can capture
extra information from the complete data in the PX-E stegoAbecause its M step performs a more
efficient analysis by fitting the expanded model, PX-EM haata bf convergence at least as fast as
the parent EM [23].

The proposed PX-EM algorithm estimat@sby treatingu(t), t = 1,2,..., N as the unobserved
data. First we add an auxiliary parametgr (the mean ofu(¢)) to the set of parametefs Note that
iy, = 1 in the original model. Hence the augmented parameter gt is { X, X, v, p, }, Where X,
and X' are related as followsY = p,, - Y,. Note thatu,, and X, are not unique whereas their product
X is. Under this expanded model, the pdf«f) is (for u(t) > 0)

Puu(t); v, ) = % () ut " exp [ = vu(t) /] (5)
whereI'(-) denotes the gamma function. The conditional pdfgy(f) are unchanged, see (3). The
underlying statistical principle of PX-EM is to perform ad\eariance adjustment” to correct the M
step. In this problem, we adjust the covariance maXtito a product ofu,, and X,. More specifically,
we use a expanded complete-data model that has a larger igletntifiable parameters, but leads to
the original observed-data model with the original pararseidentified from the expanded parameters
via a many-to-one mapping [23].

We present the details of the derivation of the PX-EM algponitin Appendix A. To summarize it,
in the PX-E step, we calculate the conditional expectatiminge complete-data sufficient statistics
assuming all unknown parametets are known from the complete data log-likelihood. In the PX-M

step, we estimate the unknown parameters from these exipestalhe derivation of these estimates
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from the sufficient statistics are explained in [12] in distaiThe PX-EM algorithm for the above
expanded model consists of iterating between the follovRXgE and PX-M steps:

PX-E Step:  Compute the conditional expectations of the natural sefficstatistics

N
Ty(y;0Y) = % Sy By lut)! | y(); 0], (6a)
t=1
N
Tofy:6) = S wy(0)" By, lu(t) " | y(0): 60 (6b)
t=1
N
Ty(y:00) = > SNSN! Bylult) " | y(0): 60, (6)
t=1
, 1 X ,
ta(y; 0) = 5+ D Bup[lnu(t) [y(t); 60, (6d)
t=1
4 1 X .
t5(y§02(:)) = N ’ ZEu|y[u(t) ‘ y(t);t‘)g’)], (66)

wheree(l = {X® é ), v(® ,,uu } is the estimate ofl,, in theith iteration and (6a)—(6e) are computed
using (8) (below) Wlthg(u(t)) =u(t)~!, Inu(t), andu(t).
PX-M Step: Compute

XU = (AR (SO)~ A AR (SO) - Ti(y, 00) Ty (y, 690) (7a)

S = g0 41, — QW(SD) 1Ty (y, 89)

T5(y; 09) ' Tu(y, 69 (I — QW(SY) 1A (7b)
p = t5(y,09), (7¢)
E(H—l) — ,US—H) Eéi-i—l)’ (7d)
where
SO = Ty(y,00)) — T1(y,0) - Ts(y; 00) " - Ty (y,0) ", (7€)
QW = A[AT(SD)TtAt A, (7f)

and findv(+1) that maximizes
D = arg max{ —InT(v) + vinv — vinfts(y, 0D)] + vis(y, 0D — V}.

The above iteration is performed uniil®, ¥(®) andv() converge. The computation ofit1) requires
maximizing (7c), which is accomplished using the NewtorpfRson method (embedded within the
“outer” EM iteration, similar to [26]). The conditional-pectation expression (8) is obtained by using
the Bayes rule, equations (3) and (4), and change-of-ariaénsformationz = vu/p.

Ty [V W) |z /v X, X)) - xv 7! exp(—x) dx
Euylg(u(®) |9(1):0a] = bt fou p/y p(?;') ‘(7;(/;/’1/ ,MX{, Za)’w”—)l exp(—xfilx ) '

(8)
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The integrals in the numerator and denominator of (8) areieffily and accurately evaluated using

the generalized Gauss-Laguerre quadrature formula (SeeCl2. 5.3)):

| @ e dmNZwl v—1) fla(v — 1)), (©)
0

where f(x) is an arbitrary real function/, is the quadrature order, ang(v — 1) andw;(v — 1), | =
1,2,..., L are the abscissas and weights of the generalized Gausefragwadrature with parameter
v—1.

B. PX-EM Algorithm for Inverse Gamma Texture

We now propose a&omplex multivariatet-distribution modelfor the clutter and apply it to the
measurement scenario in Section Il. A similar clutter madas briefly discussed in [17, Sec. IV.B.3],
where it was also referred to as tigeneralized Cauchy distributiorAssume thatw(t) = u(t)™1,
t=1,2,..., N are gamma random variables with mean one and unknown shagee@rr > 0.
Consequentlyu(t) follows an inverse gammalistribution and the conditional distribution af(¢)
given w(t) is py‘u(y(t)|w(t)_1;X, X'), see also (3). Integrating out the unobserved dats, we

obtain aclosed-formexpression for the marginal pdf f(t):

Py(y(t)aX, Z,l/) = ’W;"(.yr—i(_lj)n')ym X {1 4 [y(t) o AX¢(t)]H 2—1[ ( AXQ') /V}—I/—m’
(10)

which is thecomplex multivariate distribution with location vectorAX ¢(¢), scale matrix, and
shape parameter. Here, the unknown parameters &e= {X, ¥, v}. We first estimateX and X'
assuming that the shape parametds knownand then discuss the estimation:of

Known v: For a fixedv, we derive a PX-EM algorithm for estimating and X' by treatingw(t),

t = 1,2,...,N as the unobserved data and adding an auxiliary mean parafoete(t), similar
to the gamma case discussed in Section IlI-A. The derivatioRX-EM algorithm is analogous to
the one for gamma texture in Appendix A. Here, the resultiXggM algorithm consists of iterating
between the following PX-E and PX-M steps:

PX-E Step: Compute

800 = (v m) - L+ ) — AXOSO - (501 () - AXDp(e]} T (112)
fort=1,2,...,N and

N

0 = 2 S ynen™ o), (11b)
t=1

r) = <Y yoym" o), (11c)
t=1

) = <Y ete®" - @), (11d)
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PX-M Step: Compute

) [AH(S(Z'))—IA]—IAH(S(Z'))—1 Tl(i)(Tg(i))‘l, (12a)
o+ {S(i)_‘_[Im_Q(i)(S(i))—l]'Tl(i) (Tg(i))—l
TN o g1 /LN o0
(@O (L — QV(SO) 7] }/[N;w ®), (12b)
where
sO = 1) - (@) ()", (12¢)
QW = A[AH(SW)~14]~t AT, (12d)

The above iteration is performed unfil® and X converge. Denote by (>°)(v) and () (v) the
estimates ofX and X’ obtained upon convergence, where we emphasize their depemdny.
Unknown v: We compute the ML estimate af by maximizing the observed-data log-likelihood
function concentrated with respect J.%(u) and E(u):
N
D =argmax Y Inpy(y(t); X (v), 2 (v),v), (13)

t=1
see also (10).

IV. CRAMER-RAO BOUND AND RELATED BOUNDS

In this section, we first derive the CRB with general textudé @ssumption. Then we apply it for
different texture distributions, see [28]. We also consitlee hybrid CRB, which is not as tight as
CRB.

A. General CRB Results

Denote byp, (u(t); v) the pdf of the texture(t). Then, according to the above measurement model,

y(t) is a complex spherically invariant random vector (SIRV)hmaibarginal pdf

N . 2
py(y(t);p) = 5] g(lz(t: & m)*,v), (14)
where
g(s,v) = /0 exp < — 2) cu” " py(usv) du, (15a)
z(t€,m) = X7V [y(t) — AX (1), (15b)
and| - | denotes the Frobenius norm. Alsai,'/2 = (X1/2)~1 where X'/ denotes a Hermitian

square root of a Hermitian matrix'.
Given an arbitrary radiu§z(¢; &, n)|| = r, the concatenated vector of real and imaginary parts of

z(t;&,n) is uniformly distributed on the surface of2an-dimensional ball with radius, centered at
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the origin. Denote byy; and g» the partial derivatives o§(-,-) with respect to its first and second
entries, i.egi(s,v) = 0g(s,v)/0s andga(s,v) = dg(s,v)/0v. For any well-behaved(-, -), changing

the order of differentiation and integration leads to

g1(s,v) =— /000 exp < - %) cum™ oy (ug ) du (16a)
g2(s,v) = /000 exp ( — %) cu " W du. (16b)

Define the vector of signal and clutter parameters:
p=1"n" " (17a)
where the subscript’™ denotes a transpose,
¢ = [Re{vec(X)}, Im{vec(X)}T]T (17b)
n = [Re{vech(X)}", Im{vech(£)}"]" (17c)

andv is the texture parameterHere, thevech andvech operators create a single column vector by
stacking elements below the main diagonal columnwiselh includes the main diagonal, whereas
vech omits it. The Fisher information matrix (FIM) fop is computed by using [29, egs. (3.21) and
(3.23):

0lnp(y; p) OInp(y; p)
Zpipn E{ 0, Do, } (18a)
_ 9% Inp(y; p)
B _E{ dpiOpx } (180)

where[Z],,,, denotes the FIM entry with respect to the parameteesidp;, i,k € {1,2,...,dim(p)}

and N
Inp(y; p) = ~Nln|z 2|+ Ing(|lz(t:&n)]* v) (18c)
t=1
is the log-likelihood function. Then the CRB for is
CRB=71"1 (18d)

To simplify the notation, we omit the dependencies of the FMI CRB on the model parameters.

We also omit details of the derivation and give the final FINbessions (see Appendix B for details):

3We parameterize the texture pdf using only one parameter.ektension to multiple parameters is straightforward.
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2al H (9XH H w_1 00X
Tee,=— Y Re[pf(t)—AT 5714 t 192
b= 2 Re [0 5 501 (192)
2N?cy.n, N(N = Ve,
Lyins :N2cmm + mn T vy + — 71 2
N 4,0 0%
m(m+ 1) [tr(E on; = aﬁk) + C"mk] 3 (19b)
Tw =N-h (19¢)
_N ~10%
Lo =t (5715, 22 (19d)
Z¢m, =0 (19e)
Ty =0 (19f)
where 10X 0%

Cpp, —tr (X —)tr (X — 20
MMk ( 8772) ( ank) ( )

and
Jo~ Sz o dr
= ’ 21a
aq fooo g(r2’ V) . 7°2m_1 dT ( )

00 909 N 2mtl
oy = D ) dr (21b)
fo g(r2,v)-r?m=1 dr

o0 g (r*,v) . 2m+3
fo T . & dr

g(r2,v)
= 21
S e BT (210)

fooo (95(7"2711) _ 8gzg~2w)) Cp2m=1 g

g(r2,v) Z
= 21d
51 fooo 9(7“2, I/) ] 742m—1 dr ( )

fooo (Bglgj,l/) _ 91(7”29,2/71)2921/()7”2,@) Cp2mtl gy 21
= ’ . e
* T a2 (21

Here, (19a) and (19b) have been computed by using (18a) arldrtima, whereas (19c¢)-(19f) follow
by using (18b).

Interestingly, the FIMs of compound-Gaussian models wiffegnt texture distributions share the

common structure in (19a)-(19f) where the texture-specjfiantities are the scalar coefficients in
(21). The above FIM and CRB matrices are block-diagonal (48e) and (19f)), implying that the
CRBs for the signal parameteg¢sare uncoupled from the clutter parameterandn. Hence, the CRB
matrix for € remains the same whether or noand X' are known. Similarly, the CRBs fay andv
remain the same whether or n&t is known. Also, (19a) and (19b) simplify to the FIM expressio

for complex Gaussian clutter when = m, as = —m andas = m(m+1), see also [29, eq. (15.52)].
B. CRB for Specific Texture Distributions
Computing the texture-specific terms in (21) typically ilwes two-dimensional integration that

cannot be evaluated in closed form. This integration candyéopmed using Gauss quadratures, see
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10

e.g. [27, Ch. 5.3]. Here we use the gamma texture as an example

Gamma texture: Here we use the same model as in Section IlI-A. After apglyrchange-of-variable
transformationz = vu in (15a) and (16), we evaluate both integrals in (21) usirgy deneralized
Gauss-Laguerre quadrature formula (see (9).) For exartigeformula used to compute; is given

in (22) where, to simplify the notation, we omit the deperales of the abscissas and weights on

v—1.

v

z? 2
S exp(— 2 puar,
le;:l ( — ”2;/12 & 2) eXp(mll) T Wy

1 _
Sh oy exp(— o g

o (22)

v}
4

- L L
Zl4:1 (Elszl exp(— Ty

)xl_sm : wl5) eXp('mM) s Wiy

In Appendix C, we derive other coefficients for gamma-disttéd texture.

I nverse-gamma texture: We use the model discussed in Section IlI-B. In this casBa)knd (16)
can be evaluated in closed form, leading to the followingpt@arexpressions for the texture-specific
terms in (21a)-(21e) (see Appendix C):

m(v +m)

a1 = m (233.)

oy = —m (23b)

0y = mmr ) (230)
B m(v+m+ 2)

6 = TGw)—-TGw+m)— 7 P arap——— (23d)

B = - i (23¢)

(v+m)(v+m+1)
whereTG(z) = d?[InT'(x)]/dz? is the trigamma function. Interestingly, the CRB matrix foe signal
parameterg is proportional to the corresponding CRB matrix for comp&aussian clutter, with the
proportionality factor(v + m + 1)/(v + m) always greater than one.
As v — oo, the inverse gamma texture distribution degenerates tanataot, the marginal pdf of
y(t) in (14) reduces to the complex Gaussian distribution in (Bhw(¢) = 1, and (19a) and (19b)

simplify to the FIM expressions for complex Gaussian clutte

C. Hybrid CRB (HCRB)

The CRB is a lower bound of the covariance of all unbiasedrnegtrs of an unknown parameter
vector. However, in some scenarios, we need to assess thmagsh performance quickly but not so
tightly. Thus we also consider the computation of a lessnagitibound, the HCRB.

The HCRB is defined in [30]:

OInpyu(y,u;©) 0lnpy . (y,u; ©
. ) O

HCRB(6) = [I7'(©)]: (24b)
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11

Note that the HCRB takes the expectation over the unobselated.(¢) for the whole product of two

complete data score functions while the CRB takes the eapenst respectively. This usually reduces
the calculation effort at the cost of degraded bound tigkgn&imilarly, we omit the dependencies of
the information matrix and HCRB on the model parametersh\tfie derivation presented in Appendix

D, the information entries of the HCRB for general texture ar

N
_ 0X 10X g -1
Iee, = 2;Re[tr<A 5 o0 0" (05— AT ] B () (25a)
_ N+ 0808
iy = T3 D) (X T 877j) (25b)
N
1 azpu 1 /0py\?
I, = —;Eu{p—u—ayz —p—%(ﬁ) } (25¢)
Ly = Iep=1Iye =0 (25d)

Compared with FIM, the information matrix of HCRB is much giler and easier to compute. It
is interesting to observe that
e £, and v are decoupled from each other. The HCRB is a block diagonatixnaith three
blocks. Note that in the CRB; andv are coupled.
« I, is constant. It does not change over the choice of textureetaod

o u(t) affectsIy,, in a simple way — by multiplying a constant with,, (u=*(t)).

V. NUMERICAL EXAMPLES

The numerical examples presented here assess the estimagtaracy of the ML estimates of
X, Y, and the shape parameters of the texture components. Waleoasineasurement scenario with
a 3-element radar array arti= 3 pulses, implying thatn = 9. We select a rank-one target scenario
with ¢(t) =1, t=1,2,..., N, complex target amplitud& = 0.207 - exp(j=/7), and

A=b(w) ® a(), (26)
where b(w) = [l1,exp(j2nw),exp(j4nw)]? with normalized Doppler frequencyy = 0.42, and
a(¥) = [1,exp(j270), exp(j4m9))T with spatial frequency) = 0.926. Here,® denotes the Kronecker
product. The speckle covariance matfixwas generated using a model similar to that in [31, Sec.
2.6] with 1000 patches. Th@, ¢)th element of the covariance matrix of the speckle componaist
chosen as

Zpq =02 0.977 - explj(m/2)(p — q)], (27)
which is the correlated noise covariance model used in [38E (also references therein). In the
simulations presented here, we seleét= 10.17. The order of the Gauss-Hermite and generalized

Gauss-Laguerre quadratures was- 50.
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We compare the average mean-square errors (MSEs) of the tifha¢ss of¢, » and v over 2000
independent trials with the corresponding CRBs derivedantisn IV. We also show the HCRBs in
the results. Note: we just shown the average of elemeng of andv in this paper.

First we study the performance of the ML estimation for gantexdure in Section IlI-A. We have
set the shape parameterito= 2. The Fig. 1 shows the MSEs for the ML estimatesXdfandr and
the average MSE for the ML estimates of the speckle covagigacameters as functions Hf.

In Fig. 2, we show the performance of the ML estimation for itherse gamma texture in Section
IlI-A. Here, the shape parameter was sette 4. Fig. 2 shows the MSEs for the ML estimatesXf
andv and the average MSE for the ML estimates of the speckle cnvesi parameters as functions
of N.

In Fig. 1 and Fig. 2, the MSEs matches the CRBs very well whenrnthmber of observations
increases, which indicates that the PX-EM is the optimahgagptically efficient estimation for target
and the clutter parameters. HCRBs show their loose esbmadt the lower bound of estimation
variance as mentioned before. The average signal powerlatidrqpower can be calculated by their

definitions:

P = E{AXe@®]" - [AXe(1)]}, (28a)
P = E{e(t)He(t)}:E{tr[e(t)e(t)H]}:E{u(t)}-tr(E). (28b)

Thus the signal-to-noise ratio (SNR) in the above examples@&70dB and -7.95dB respectively.
Note that in these examples, the SNRs do not change with nuofitsmapshotsV.

We also investigate the performance of the clutter spikipegich can be indicated by the clutter
texture parameter. In Fig. 3, we show the average MSEs of the estimates undenvikese-gamma
texture model for four different values. The results are the averaged MSEs among 500 indemtend
trials. Whenv decreases, i.e., the clutter becomes spikier, the redutt& ¢hat there is no much
difference for the performance of estimate ®f while the estimate fo” becomes worse and the

estimate forr becomes more accurate.

VI. CONCLUDING REMARKS

In this paper, we developed maximum likelihood algorithmsestimating the parameters of a target
with compound-Gaussian distributed clutter. The algonghare potentially useful to mitigate sea-
clutter in high-resolution and low-grazing-angle raddreproposed maximum likelihood estimation is
based on the parameter-expanded expectation-maximizatorithm. We also computed the Cramér-
Rao bounds and their hybrid versions for the unknown pararse®ur results are based on the general

compound-Gaussian model and can be applied to variousréeslistributions. We obtained compact
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closed-form results of the bounds for the inverse-gammuutex Numerical simulations confirmed

the asymptotic efficiency of our estimates.
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APPENDIX A

PX-EM ALGORITHM DERIVATION FOR GAMMA TEXTURE
We derive the PX-EM algorithm to estimate the parametefset{ X, X', v} given the observations

Y.
With the auxiliary parameter,, the augmented parameter setbis = {X, X, v, u, }, and the

augmented model can be written as:

Olu®) ~ CN(AX¢(t),u(t)Xu), (A.29a)
u(t) ~ Gamma(fiy, V). (A.29Db)
Denoteu = [u(1),u(2),...,u(N)]T. Instead of maximizing the intractable likelihood functitor

the measuremenj(t), we maximize thecomplete data log-likelihoad

o(y,u;0,) Zlnpy\u u(t); X, %) +Zlnpu (£); v, pta)- (A.30)
t=1

Substitute (3) and (5) into (A.30), we can write the comphkidta log-likelihood as:

L = —Nmn(y,u)— Ntr[TL(y,u) 27— Ntr[XTAL D YAX - T (y, u)]
N
+N e[ X AT Z T (y, w)] + N tr[Ti (y, w) - 57T AX] - #—V%(y,U)
(v — 1)7a(y, 1) — Nvln g + Nln [rlzu)] — Nmlor (A.31a)

where 71 (y,u), T2(y, u), 73(y, u), 74(y, u), 75(y, ) are natural complete-data sufficient statistics
[25, ch.1.6.2]:

N

Tilyw) = 5 D y0e0) - u(t), (A322)
t=1
1 N

T(y,u) = 5D yBy®" u®)™, (A:320)
t=1
1 N

Ta(y,u) = 5D eMe®™ u(t)™, (A:320)
t=1
1 N

(y,u) = N-Zlnu(t), (A.32d)
=1
1 x

(Y u) = ) ulb), (A.32¢)

We first assume that is a known constant. Take derivative of (A.31a) with resgeck’, Y,, u,
respectively and let these derivatives equal to zero, wa get of equations. Solving these equations,

we can obtain the ML estimates &f, X, ., (see [12] for the derivations of the ML estimates for
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X and X,):

X = [AFST1AIT AT ST T (y,u) Ta(y,u) 7, (A.33a)

Ty = S+[In— QS Ti(y,w)
Ta(y,w) Ty, w)" [, - QS™1" (A.33b)
e = 75(y,u), (A.33c)
Y = iy X, (A.33d)

where

S = Ty,u)—Ti(y,u) Ty;u) " Ti(y,uw)", (A.33e)
Q = A[ATSTlAtAH (A.33f)

With these estimates, we can find the ML estimate dfiat maximizes the concentrated complete

data log-likelihood:
v o= argmax{ —InT'(v) +vinv —vin[rs(y, )] + vra(y, u) — 1/}.

In the PX-E step, we calculate conditional expectatiang,[] of sufficient statisticsT; (y, ),
To(y,u), T3(y,u), 74(y,u), 75(y,u) (See (6a)-(6e)). Then in the PX-M step, we use these expecta-
tions to calculate the ML estimates of parameteréinThe iteration goes between PX-E and PX-M

steps until estimation results converges.

APPENDIX B

DERIVATION OF THE SCORE FUNCTIONS AND FISHER INFORMATION MATRIX (FIM)

K.L. Langeet al derived the FIM of multivariate real-distribution in Appendix B of [19]. Here
we follow the same procedure to derive the entries of the FIMcamplex compound-Gaussian
distribution.

Before starting to derive the FIM entries, we list some pn&diary results that will be used in the
derivation here.

Lemma 1:For z € R¥ uniformly distributed on real spheiiez|| = » and anyk x k real matrices
A and B,

ZH z 1
B(T A=) = o, (B.34)
ZH z ZH z 1
E<WAMMBM‘M> = hg o 2UAB) +u(A)tr(B). (B.35)

Proof. See [19] Appendix B.
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Lemma 2:For z € C* uniformly distributed on sphergz|| = » and anyk x k& matricesA and B,

21 z 1
E(HAH‘HZ\D = —tr(A), (B.36)
E(iA z 21 \H H) = 1 [(AB) + te(A) tr(B)] (B.37)
Izl 1=l HZH [El o k(k+1) ' '

Proof: let z = z + iz, wherez, and z, are real and imaginary parts of vecter By applying
Lemma 1, the proof is trivial.
Lemma 3:For z1, zo € C* independently uniformly distributed on sphefe|| = r and anyk x k

matricesA and B,

H
z
E( -4 z z = 0, B.38
(e e [N R (8.39)
E( Ay 2 By z2 (”zlu |yz2|y) 1 (4 t(B). (B.39)
|21l [lz1]] [[z2]l ’ k2

Proof: Note thatz; andz, are mdependent

E<H2HA gl =) = E(sz_fjn\uzln) B (2 izl

By symmetry,

Z1 z2
B (o |lzl) =B (o [lz]) =0
B B

The first equation is proved. By applying the first equatiol@mma 2, the second equation is
also easily proved.
Now we start the derivation of FIM. First, recall the completata log-likelihood (18c). We can

get the contribution of each parameter to the score vectougfh straightforward calculations:

oL S allzOY) gt 0X i H o

% = ;ng(t)uz,u) #0573 4% 6(0) + ") a&A ¥732(t)|, (B.408)
oL (=01 v) 08

o = ~Nou(z am Zgl sz ) PO o 22(1)], (B.40D)
oL g(z@®)]*,v)

" = Z S BC ”2 . (B.40c)

These rules are used in the derivation:

9y — ) 5y — __[ont _ _ H 101
agi[(y P ET(y - )] = [8&2 (y—p)+y—-—wix L
0 ox
Y = -1
a?’]i | | tI‘( 8772>’
and
ox-! 08
o = =X 8—77,-2 .
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The entry of FIM corresponding t& is

oL oL
Teg, = E{a—&a—&_}
_ 2 M i OX" g
= o B (Gern 120r) ZRG{tf( 55, ) #0475 ) Bata)
Using Lemma 2 and Lemma 3, we can get the following results:
oL oL
nin; {8777, 87]]}

OINC,, 21|, v
= Ny + 803 F {‘g;éu”z‘((zt))\w?_fm) Ll

B 0 al z
b S T ) e ;E{(%)Quzw}

N(N = 1)y, 2 g1(llz(®)]|? ,1/)‘ 2(2)]I2
b E {—g(Hz(t)ngy) =112}, (B.422)

wherec,,,, = tr(Z~1§2) tr(Z 1 §=). See [32] for details.

The entry of the FIM matrix related to can be derived directly:

82 QelZMIT) o) (11 2(8)]12, v) | 2
Zo =B{ - 5z} = Ve{ s ~ Caieorsy) © (B.43)

Also,

2
Ty = E{ B 8(?%51/}

N 99 UZOED) 012 (1)|12, 1) — g1 (12012, ) g2 (| 2(2) 12, v 108 s
= B{Y—*> . 2(|)IZ(t£)]\1\(2‘,|V§t)H torll=OLD) (1) G i0]}

t=1

N O 5 ()], 1) — g1 (1282 v)ga (|22 v
_ %t ( 162) ZE{ gz v) = . ([[2()[1%, V) g2 ([ 2()]]%, )HZ(t)Hz}

o/ = g (lz@))?,v)
(B.443)
Finally we prove that
Tey, =0 (B.45)
and
Te, =0 (B.46)
Proof: SinceZe,, = E{§¢ 5=} andZ¢, = E{§£ 55}, for fixed ||z||, 5 is an odd function of:

(B.402) while & and 9% are even functions of (B.40b).
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APPENDIXC

CALCULATION OF EXPECTATIONS

In this section, we propose the calculation method of extieets derived in Appendix A. First
recall that for any well-behaved functiof{) and SIRV real vectotv € R* with pdf in the form of
2|72 g([[w]?, v),

f(lwl)) / f(r)g(r?, v)rf ey, dr, (C.47)

wherecy, is the surface area of the unit sphereRifi. See [19], Appendix A.

Now build a 1-1 mapgC™ : z — R?™ : w by letting w = [2], 2717, wherez, and z, are the real

R I

and imaginary parts of respectively. Clearly, ifz is SIRV in C™, w will be SIRV in R?™. Also

note that||z|| = - || denotes the.? norm. Applying (C.47), we get

E(f(lz)) = E(f[wl)) / F(r)g(r?,v)r® ey, dr. (C.48)

SinceE (1) = 1, we can get following result

Com 000 902, )2 g (C.49)
Define
2 14
o =B { (i 0} (€50

By applying (C.48) and (C.49),

[e%) 2

91(7” 77/) 29 9 2m—1

ap = ( ) rég(re,v)-r Com dr
| (G e g

o0 g3 (r*v)  2m+1
Jo~ Sgemay T dr

fooo g(r2,v) - r?m=1 dr
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Similarly,

(=02 )
SO =01}

0 2

g(r¥v) 5 o 2m—1

= = rég(r‘,v) - r Cop, dr
/0 g(r?,v) "

J5Z (%, ) - P dr
JoT ol 0) T dr

o = B{(S ) =0}

o) 7,27 )N 2 B
0 )

o gi(r*v) |, .2m+3
fO gy " dr

fooo g(r?,v) - r2m=1l dr

9g2(1Z®)]1%,v) 2
_ — o — (20Ol v)\?
h= E{g(HZ(t)sz) <9(HZ(t)H2,V))}

- [ () et e

OZQZE{

r2,v) g(r?,v)
oo [ Oga(r?,v 2(r2,v m—
fO { ! él/ ) - gg((rz,u))} ’ T2 ! dr

a0 ) 2T dr

b E {Wmnz@)u?,u)—gl<||z<t>u2,u)gz<uz<t>||2,u>”z(t)Hz}
P(l=0 )
oo 99:(r*v) 2 2
. ~ v gl(r ,I/)gg(?" 77/) 2, 2 2m—1
- | G -y e s
oo [ dgi(r?,v 1(r2,v)g2(r?,v m
I {géy )_g(g(ggy() )},73 +1 gy

fooo g(r2,v) - r2m=1 qr
Gamma Distribution

From the pdf of the gamma distribution (4), we can get theofwithg results easily:

Trliv) (—TG(V) S (=DG(v) +Inv+1 +lnu—U)2>‘ (u;v), (C.522)
8V2 Py pu ? Y -

whereDG(z) = % InT'(x) is the digamma function. For notation simplification, we deff (u;v) =

—DG(v) + Inv + 1 + Inu — u. In the calculations, we change variables with= vu and use the

general Gauss-Leguerre quadrature for both inner and ontegration. The results are
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[ Cxp(_é)u—m—l vt Le=vu dy)?

fO oo r2 —m vy v—1 7U1Ld T2m+1 dr
o = Jo7 exp(—==-)u -mu u’~1le u
o 0O [oe _r2\,—m . vy v—1,—vu . pr2m—1
Jo (fy" exp(—%)u F( v e e du) dr
0o [_ fooo CXp(— 71")1/([77%71'%"7167:5 dw}Z 2m+1
fo — 2 : -7 dr
. Js oxp(——)m*m-mufle*fdm
IS (fo" exp(— )x—m cxv~le=z dx) - r2m=l dr
L(ufl) vr2 m 2
L&Y (sz:li OXp(_Tl;)WDL; +1).hl2) b
=1 Lgfl) l2 o exp(rll) t
13=1 eXP(__:) i3 hug

L(mel) L(ufl) m‘é _ N
Zl4G:L1 ( l5G:L1 exp(— mll: )xlsm ' ls) exp(rM) : hl4

Similarly,
L(2m+1) L(Vfl) VTLZ _(m+1)
ZhEIi (leiLl exp(_T;)l/xlz ’ hlz) exp(rll) ' hll

Qg = — )
L(2'm, ) ng];l) Vi o
214_1 ls=1 exp(— o, o™ - by, ) exp(ry,) -,
L&D 2 2
i —(m+1)
Lg]:n+3) (le i exp(— o . 1 'hlz)

llzl L(C;/L 1) vry —m
2 CXP(—K)%S Py

a3 = (2m—1) -1 2 5
Lg L _
Zl4=1 ( 5C;L1 eXp(_,;T;l: ):Elsm : hls) eXp(TM) : hl4

,em=1 1)

(V Vrlzl Tiy
5 _ T D TG<>+ +12(5250)) By pexp(n,) - b,
1 = (2m—1) (v—1)
LGL LGL m
21321 (214—1 exp(— )xu “hy) exp(ry,) - g

1)

V 2
L(2m 1) [le 1 )%6 f( ) hls}
lr—l (V D) e 12 exp(rls) ' hls
Zz . 5 ) Ty, b,
L(Zm 1)

L(u 1) 2
le_l (214 exp(— )wu “hy,) exp(ry) - hug

and
L(2m+1)

L L(UI:U —m xlz
S {SE ep(- e 1f< V) h, fexp(r,) b,

ﬁ2 = - ,@m—D Lo=1
)x_m : l4)em3 : hls

ZZSG:Ll (ZlfL ex( la

vr v

(v—1) _ 15 =1 _ z

LEMD TSy e o vay b 7S e T e (),
lr_l L(vfl)

elts . hls

+ L(mel) (u 1)

vr? _
zlSG:Ll (214 exp(— lef Yo, hy,)ems - hy,

Inverse-Gamma Distribution

Fortunately, we have a closed form for the functiong.gf;, andgs in the inverse-gamma distribution

with pdf:

pul(u;v) = F(ly)u”u_”_le_”/“ ~ iGammdv, 1/v). (C.53)
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g(s,v) = ; exp < - 2) cu” " py(uyv) du
_ T'(v+m) S\ e
= T (1+ ;) , (C.54a)
91(87’/) = _/0 exp(—%) 'u_m_l'pu(u;y) du,
T+ m+1) S\ ey
= gy )T (C.54b)
and
o) = 2
- (DG(V +m) — DG(v) — % “In(1+ ;) + %) -g(s,v). (C.54c)
The calculations yield
_ m(v+m)
o] = m, (C.55a)
Qay = —my (C.55b)
B m(m + 1)(V+m)'
ag = R (C.55¢)
B B , m(v 4+ m + 2) '
B = TG+ m)—TG( )+V(V+m)(y+m+1)7 (C.55d)
m
fa = RO T p—— (C.55€)
APPENDIXD
HYBRID-CRB (HCRB)
A. General Results
In the compound-Gaussian model,
yDlut) ~ pyu(y@)|u); X, X)
= s ep{ly(t) — AXG() - [u(0) T [y(D) — AX$(1)]}.(D.56a)
u(t) ~ pu(u(t);v). (D.56b)

The complete data log-likelihood function is
n 27
u(t)

Let z(t) = X5 - “’Lﬁ“, t=1,...,N. z is SIRV.

L= Z{ In | 2| - [y(t) — AXo()] [y(t) — AXo(D)] + Inpu(u(tyiv) ). (D5T)
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1) Expectations:Since,

pz\u(z(t”u(t); X, E)

_ Wimexp{—nz(t)\l?}

Similarly to Appendix C, we build a ma@™ : z — R?>™ : w. Then

Izl = [lwl],
1 2
po(wiv) = —Zexp(=|lw]).
[o.¢] ﬂ.m
Eyu(l) =1= exp(—r?) - r?m L dr = —
0 Com
It is not hard to get
E 2 =
ylu(llZ[7) = m,
Ey\u(HzH4) = m(m+2)v

22

(D.58)

(D.59a)

(D.59b)

(D.60)

(D.61a)

(D.61b)

where the recurrence relatief, o = 27% is used. Herey, is the surface area of a unit ball .

Before deriving the entries of the FIM, we note that the fingtew partial derivatives are

0L N Olt)
& ; 9¢;
- E_% 0X aXH Y3
_ Hpy . ' " 0
— ;{z (t) o) Aag o(t) + o™ (1) o€, A o) z(t)} (D.62a)
oL SLal(h)
82 al 182 1
= —N-tr(x7'2) ). ¥ 22875 2(t) (D.62b)
O ; on;
oL Lol
o Z: %
t=1
_ 1 Opy(u(t); v)
> v (D.62c)

2~ puu(t):)

We follow the same procedure of Appendix B and get (see [32p&dails)
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lee, = Eu{Ey\u{g—ég—é}}
N
- 2;&9 [tr(Ag—?;QS(t) Lot (1) O;SAHE—H B {u" (1)} (D.63a)
Iy, = Eu{Ey\u{%%}}
_ L( ;m:l?) trw—lg_iz—lg_i) (D.63b)
2
N 9 9
_ _;Eu{piu%_p%(%) L (D.63c)
wherec,,,, = tr(2~1g=) tr(2~192), and
Iy = Ie, =0. (D.63d)
B. Application to Specific Texture Distributions
1) Gamma Distribution:From gamma pdf
pu(u(t);v) = P(ly)u”u(t)”_le_”“(t) ~ Gammdv, 1/v). (D.64)
We can deriveE ,(u™'(t)) = g0y = 7%+ Also,
% = ( —DG(v)+Inv+1+Inu(t) — u(t)> * Pus (D.65a)
a;f; ( ~TG(v) + % +(=DG)+Imv+1+nut)— u(t))2> -pu.  (D.65b)

Substitute the above results into (D.63a) and (D.63c), vie ge

N
- 2v aX H aXH Hw—1
I = —- t§:1: Re [tr(Ageo(t) - 6" () 75— A" 7). (D.663)
~ N(m+2) 0¥ ;0%
Lym, = 7(m+ 0 tr(X _am'E —8nj), (D.66b)
I, = N-TG({) - E. (D.66¢)
12
2) Inverse Gamma Distributiont-Distributed Clutter):
pu(u(t);v) = my”u(t)_”_le_”/“(t) ~ iGammdv, 1/v). (D.67)
14
E, {u'(t)} =af = 1. (D.68)
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and
% = (—DG(V)—i—an—Fl—lnu(t)—ﬁ)'pw (D.692)
py 1 1
852 _ (—TG(V)+;+(—DG(V)+1nV—|—1—lnu(t)—@)2>~pu. (D.69b)
Thus,
e OX o g OXT
Ie, = 2 ZRe[tr(Aa6 o(t) - ()5 A" S )], (D.70a)
t=1 E !
_ Nm+2) 9% 0%
i = s D) tr(S 5" 877j)’ (D.70D)
L, = N-TGw) - Y. (D.70c)

1%
Interestingly, the inverse-gamma texture and the gammtareexshare the same block in the FIM

of n andv.

REFERENCES

[1] H. Goldstein, “Sea echo,” ifPropagation of Short Radio Wave3, E. Kerr, Ed. New York: McGraw-Hill, pp. 481-527,
1951.

[2] F. Gini, M. V. Greco, M. Diani, and L. Verrazzani, “Perfoance analysis of two adaptive radar detectors against
non-Gaussian real sea clutter dat&EE Trans. Aerosp. Electron. Systol. 36, pp. 1429-1439, Oct. 2000.

[3] K. J. Sangston and K. R. Gerlach, “Coherent detectioradfr targets in a non-Gaussian backgrouffiEE Trans, on
Aerospace and Electronic Systeras|. 30, pp. 330-340, April 1994.

[4] S. Haykin, R. Bakker, and B. W. Currie, “Uncovering nar@ar dynamics — The case study of sea cluttergc. IEEE
vol. 90, pp. 860-881, May 2002.

[5] G. R. Valenzula, “Theories for the interaction of elertragnetic waves and oceanic waves — A reviddgund. Layer
Meteorol.,vol. 13, no. 1/4, pp. 61-65, 1978.

[6] M. Greco, F. Bordoni, and F. Gini, “X-band sea-clutternstationarity: Influence of long waveslEEE Journal of
Oceanic Engineeringvol. 29, No. 2, pp. 269-283, Apr. 2004.

[7] F. G. Bass, I. M. Fuks, A. E. Kalmykov, |. E. Ostrovsky, aAdD. Rosenberg, “Very high frequency radiowave scattering
by a disturbed sea surfacdEEE Trans. Antennas Propagatol, AP-16, pp. 554-568, 1968.

[8] J. W. Wright, “A new model for sea clutterfEEE Trans. Antennas Propagatiol. AP-16, pp. 217-223, 1968.

[9] E. Jakeman and P. N. Pusey, “A model for non-Rayleigh s#®,&IEEE Trans. Antennas and Propagatioml. 24,
no. 6, pp. 806-814, Nov. 1976.

[10] K. Yao, “Spherically invariant random processes: Tiyeand applications,” inCommunications, Information and
Network SecurityV.K. Bhargavaet al, Eds., Dordrecht, the Netherlands: Kluwer Academic Phblis, pp. 315-332,
2002.

[11] E. J. Kelly and K. M. ForsytheAdaptive detection and parameter estimation for multigisienal signal models
Lincoln Laboratory, Tech. Report 848, April 1989.

[12] A. Dogandzit and A. Nehorai, “Generalized multiag analysis of variance: A unified framework for signal pssing
in correlated noise,JEEE Signal Processing Magvol. 20, pp. 39-54, Sept. 2003.

December 2, 2005 DRAFT



25

[13] E. Conte, and A. De Maio, “Distributed target detectinrcompound-Gaussian noise with Rao and Wald tetEZE
Trans. Aerosp. Electron. Systol. 39, pp. 568-582, Apr. 2003.

[14] V. Anastassopoulos, G. A. Lampropoulos, A. Drosopsubnd N. Rey, “High resolution radar clutter statistiéEEE
Trans. Aerosp. Electron. Systol. 35, pp. 43-60, Jan. 1999.

[15] M. Rangaswamy and J. H. Michels, “Adaptive signal pssieg in non-Gaussian noise backgrounds,Pioc. 9th
IEEE SSAP Workshogortland, OR, Sept. 1998, pp. 53-56.

[16] M. Rangaswamy, J. H. Michels, and B. Himed, “Statidtimaalysis of the nonhomogeneity detector for non-Gaussian
interference backgroundsProc. IEEE Radar Conf.Long Beach, CA, Apr. 2002, pp. 304-310.

[17] M. Rangaswamy, D. D. Weiner, and A. Ozturk, “Non-Gaassiandom vector identification using spherically invatrian
random processeslEEE Trans. Aerosp. Electron. Systol. 29, pp. 111-123, Jan. 1993.

[18] F. Gini, and A. Farina, “Vector subspace detection impound-Gaussian clutter. Part I: survey and new resuE&E
Trans. Aerosp. Electron. Sysvol. 38, No. 4, pp. 1295-1311, Oct. 2002.

[19] K. L. Lange, R. J. A. Little, and J. M. G. Taylor, “Robudttistical modeling using the distribution,” J. Amer. Stat.
Assoc.vol. 84, pp. 881-896, Dec. 1989.

[20] E. Jay, J.P. Ovarlez, D. Declercq, and P. Duvaut, “Bayesptimum radar detector in non-Gaussian noi$EEE
International Conference on Acoustics, Speech, and SiBradessing, 2002. Proceedings. (ICASSP '02002, pp.
1289-1292.

[21] E. Jay, J. P. Ovarlez, D. Declercq, and P. Duvaut, “BOBBRyesian optimum radar detecto&ignal Processingvol.
83, no. 6, pp. 1151-1162, 2003.

[22] A. Dogandzi¢, A. Nehorai, and J. Wang, “Maximum likedod estimation of compound-Gaussian clutter and target
parameters,” ilProc. 12th Ann. Workshop Adaptive Sensor Array Proces#WSA\P '04) Lincoln Laboratory, Lexington,
MA, Mar. 2004.

[23] C. H. Liu, D. B. Rubin, and Y. N. Wu, “Parameter expansionaccelerate EM: The PX-EM algorithmBiometrika,
vol. 85, pp. 755-770, Dec. 1998.

[24] M. K. Simon and M.-S. AlouiniDigital Communication over Fading ChannelNew York: Wiley, 2000.

[25] P.J. Bickel and K.A. DoksumMathematical Statistics: Basic Ideas and Selected ToRied,ed., Upper Saddle River,
NJ:Prentice Hall, 2000.

[26] A. Dogandzi¢c and J. Jin, “Estimating statistical pesties of composite gamma-lognormal fading channelsPrioc.
Globecom Conf.San Francisco, CA, Dec. 2003, pp. 2406-2410.

[27] R.A. Thisted,Elements of Statistical Computing: Numerical Computatidew York: Chapman & Hall, 1988.

[28] J. Wang, A. Dogandzi¢, and A. Nehorai, “Cramer-Raais for compound-Gaussian clutter and target paranieters,
IEEE Int. Conf. Acoust., Speech, Signal Processitgladelphia, PA, Mar. 2005. pp. 1101-1104.

[29] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimafidfieory PTR Prentice-Hall, Inc. New Jersey,
1993.

[30] F. Gini, R. Reggiannini, "On the use of Cramér-Racelikounds in the presence of random nuisance parameters,’
IEEE Trans. Communicationsol. 48, pp. 2120-2126, Dec. 2000.

[31] J. Ward,Space-Time Adaptive Processing for Airborne Radancoln Lab., Tech. Report 1015, MIT, Dec, 1994.

[32] J. Wang, A. Dogandzi¢, and A. Nehor&arameter estimation and detection for compound-Gaussiatter models,
Dept. Elect. and Comput. Eng., Univ. lllinois at Chicago pREIC-ECE-05-5, Apr. 2005.

[33] M. Viberg, P. Stoica, and B. Ottersten, “Maximum likediod array processing in spatially correlated noise fiekiisgu
parameterized signalslEEE Trans. Signal Processingpl. 45, pp. 996-1004, Apr. 1997.

December 2, 2005 DRAFT



26

LIST OF FIGURES

1 Average MSEs for the ML estimates gfn,» and corresponding CRBs and HCRBs
under the gamma texture model, as functionsvof . . . . . . .. .. ... .. ... .. 27

2 Average MSEs for the ML estimates gfn,» and corresponding CRBs and HCRBs

under the inverse-gamma texture model, as function¥of. . . . . .. ... ... ... 28
3 Average MSEs for the ML estimates &fn, v under the inverse-gamma texture model
as functions ofN for differentv values. . . . . . . . .. ... . 29

December 2, 2005 DRAFT



NS
S
e
o]
o
O
T
=]
c
I
o]
o
o
o
n
=
107 —
30 10 10
Number of snapshots N
10" .
—
S
[
o
o
(®)
T
k=]
C:
<
o
o
(®)
Ll
n
=
1072 '
30 10° 10
Number of snapshots N
10" & ;

A MSE
= = —— CRB
..§ ) A N --- HCRB
o 10 f ' E
o
)

T
=)

[

<
o]
[0
&)
LI
)
=

Fig. 1.

model, as functions oiV.

December 2, 2005

2

Numblé)r of snapshots

N

10

27

Average MSEs for the ML estimates §fn, v and corresponding CRBs and HCRBs under the gamma texture

DRAFT



28

NS
[V —
o
o
o
)
T
=]
[
<
o
o
o
i
)
=
-3
10 *
30 10° 10°
Number of snapshots N
10" .
A MSE
— —— CRB
“— 4 --- HCRB
m
o
®)
T
=)
[
o
m
o
o
Ll
)
=
-2
10 *
30 10° 10°
Number of snapshots N
10" .
A MSE
= ) — CRB |]
34 --- HCRB |/
B 10 A
0 ,
o
)
T
=]
<
IS
m
o
@)
Ll
wn
=
-2
10 *
30 3

10°
Number of snapshots N

Fig. 2. Average MSEs for the ML estimates §fn, v and corresponding CRBs and HCRBs under the inverse-gamma

texture model, as functions d¥f.

December 2, 2005 DRAFT



MSE of X

MSE of 2

10

10 -
30 102
Number of snapshots N
4
10 .
L —-— v =0.5
\\\“‘ —— v =1
\\ v=2
10° NNPE ---v=4 i

-4

10

30

Fig. 3. Average MSEs for the
different v values.

December 2, 2005

2

Number of snapshots

N

29

ML estimates &fn, v under the inverse-gamma texture model as functiongvofor

DRAFT



	9-18-2006
	Maximum Likelihood Estimation of Compound-Gaussian Clutter and Target Parameters
	Jian Wang
	Aleksandar Dogandžić
	Arye Nehorai

	Journal10.dvi

