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Abstract

Compound-Gaussian models are used in radar signal processing to describe heavy-tailed clutter

distributions. The important problems in compound-Gaussian clutter modeling are choosing the texture

distribution, and estimating its parameters. Many texture distributions have been studied, and their

parameters are typically estimated using statistically suboptimal approaches. We develop maximum

likelihood (ML) methods for jointly estimating the target and clutter parameters in compound-

Gaussian clutter using radar array measurements. In particular, we estimate(i) the complex target

amplitudes,(ii) a spatial and temporal covariance matrix of the speckle component, and(iii) texture

distribution parameters. Parameter-expanded expectation-maximization (PX-EM) algorithms are de-

veloped to compute the ML estimates of the unknown parameters. We also derived the Cramér-Rao

bounds (CRBs) and related bounds for these parameters. We first derive general CRB expressions

under an arbitrary texture model then simplify them for specific texture distributions. We consider

the widely used gamma texture model, and propose an inverse-gamma texture model, leading to a

complex multivariatet clutter distribution and closed-form expressions of the CRB. We study the

performance of the proposed methods via numerical simulations.

Index Terms

Compound-Gaussian model, estimation, Cramér-Rao bound, parameter-expanded expectation-

maximization (PX-EM).
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I. INTRODUCTION

When a radar system illuminates a large area of the sea, the probability density function (pdf) of

the amplitude of the returned signal is well approximated bythe Rayleigh distribution [1], i.e., the

echo can be modeled as a complex-Gaussian process. That distribution is a good approximation. This

can be proved theoretically by the central limit theorem, since the returned signal can be viewed as

the sum of the reflection from a large number of randomly-phased independent scatterers. However,

in high-resolution and low-grazing-angle radar, the real clutter data show significant deviations from

the complex Gaussian model, see [2], because only a small seasurface area is illuminated by the

narrow radar beam. The behavior of the small patch is non-stationary [1] and the number of scatterers

is random, see [3]. Due to the different waveform characteristics and generation mechanism, the sea

surface wave, i.e., the roughness of the sea surface, is often modeled in two scales [4], [5]. To take

into account different scales of roughness, a two-scale seasurface scattering model was developed, see

[6], [7], [8]. In this two-scale model — acompound-Gaussianmodel — the fast-changing component,

which accounts for local scattering, is referred to asspeckleχ(t). It is assumed to be a stationary

complex Gaussian process with zero mean. The slow-changingcomponent,textureu(t) is used to

describe the variation of the local power due to the tilting of the illuminated area, and it is modeled

as a nonnegative real random process. The complex clutter can be written as the product of these two

components

e(t) =
√

u(t)χ(t) (1)

The compound-Gaussian model is a model widely used to characterize the heavy-tailed clutter dis-

tributions in radar, especially sea clutter, see [2], [6], [9], and Section II. It belongs to the class of

the spherically invariant random process (SIRP), see [10],[17]. Note that the compound-Gaussian

distribution is also often used to model speech waveforms and various radio propagation channel

disturbance, see [10] and the references therein.

Modeling of clutter using a compound-Gaussian distribution involves these important aspects:

choosing the texture distribution, estimating its parameters, and evaluating the efficiency of the

estimations. Many texture distributions have been studied, but their parameters were typically estimated

using the method of moments, which is statistically suboptimal, see [2]. We present our measurement

model in Section II. In Section III, we develop the parameter-expanded expectation-maximization

(PX-EM) algorithms to estimate the target and clutter parameters. We compute the CRBs for the

general compound-Gaussian model and simplify them for two texture distributions in Section IV. In

Section V, we verify our results through Monte-Carlo numerical simulations.
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II. M ODELS

We extend the radar array measurement model in [11] to account for compound-Gaussian clutter.

Assume that ann-element radar array receivesP pulse returns, where each pulse providesN samples.

We collect the spatio-temporal data from thetth range gate into a vectory(t) of sizem = nP and

modely(t) as (see [11] and [12])1

y(t) = AXφ(t) + e(t), t = 1, . . . , N, (2)

whereA is anm×r spatio-temporal steering matrix of the targets,Φ = [φ(1),φ(2), . . . ,φ(N)] is the

temporal response matrix,X is anr × d matrix of unknown complex amplitudes of the targets. Here

r is the number of possible directions that the reflection signals will come from, andd is the number

of range gate that covers the target.2 The additive noise vectorse(t), t = 1, 2, . . . , N are independent,

identically distributed (i.i.d.) and come from a compound-Gaussian probability distribution, see e.g.

[3], [10] and [14]–[17].

We now represent the above measurement scenario using the following hierarchical model:y(t)

are conditionally independent random vectors with probability density functions (pdfs):

py|u(y(t) |u(t);X,Σ ) = exp
{
−[y(t)−AXφ(t)]H ·[u(t)Σ ]−1 ·[y(t)−AXφ(t)]

}/
|πu(t)Σ |, (3)

where the superscript “H” denotes the Hermitian (conjugate) transpose,Σ is the (unknown) covariance

matrix of the speckle component, andu(t), t = 1, 2, . . . , N are the unobserved texture components

(powers). We assume the texture to be fully correlated during the coherent processing interval (CPI)

[18]. This assumption is reasonable since the radar processing time is not too long. We consider the

following texture distributions:

• gamma: u(t) follow a gamma distribution [2], [3], [14]

• inverse gamma: 1/u(t) follow a gamma distribution [19], [20], [21]

III. M AXIMUM L IKELIHOOD ESTIMATION

We develop the ML estimates of the complex amplitude matrixX, speckle covariance matrixΣ ,

and texture distribution parameterν from the measurementsy = [y(1)T ,y(2)T , . . . ,y(N)T ]T , see

[22]. In the following, we present the PX-EM algorithms for ML estimation of these parameters

under the above three texture models. The PX-EM algorithms share the same monotonic convergence

properties as the “classical” expectation-maximization (EM) algorithms, see [23, Theorem 1]. They

outperform the EM algorithms in the global rate of convergence, see [23, Theorem 2]. In our problem,

1A special case of the model (2) for rank-one targets (i.e., scalar X) in compound-Gaussian clutter was considered in

[15].

2In high resolution radar, target can usually distribute in more than one range gates, see [13] and reference therein.
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the computations are confined to the PX-E step of the PX-EM algorithm. The PX-M step follows as

a straightforward consequence of the PX-E step.

A. PX-EM Algorithm for Gamma Texture

We model the texture componentsu(t), t = 1, 2, . . . , N as gamma random variables with unit mean

(as e.g. in [3]) and unknown shape parameterν > 0, i.e.,

pu(u(t); ν) =
1

Γ(ν)
· ννu(t)ν−1 exp

[
− νu(t)

]
; (4)

hence, the unknown parameters areθ = {X,Σ , ν}. (The shape parameterν is also known as the

Nakagami-m parameter in the communications literature, see e.g. [24, Ch. 2.2.1.4].) This choice of

texture distribution leads to the well-knownK clutter model, see [2] and [3] and references therein.

The method for deriving EM- algorithm from complete-data sufficient statistics for a similar GMANOVA

model is presented in [12]. Since EM algorithms often converge slowly in some situations, we propose

a PX-EM algorithm. Because of the introduction of new parameter, PX-EM algorithm can capture

extra information from the complete data in the PX-E step. Also because its M step performs a more

efficient analysis by fitting the expanded model, PX-EM has a rate of convergence at least as fast as

the parent EM [23].

The proposed PX-EM algorithm estimatesθ by treatingu(t), t = 1, 2, . . . , N as the unobserved

data. First we add an auxiliary parameterµu (the mean ofu(t)) to the set of parametersθ. Note that

µu = 1 in the original model. Hence the augmented parameter set isθa = {X,Σa, ν, µu}, whereΣa

andΣ are related as follows:Σ = µu ·Σa. Note thatµu andΣa are not unique whereas their product

Σ is. Under this expanded model, the pdf ofu(t) is (for u(t) ≥ 0)

pu(u(t); ν, µu) =
1

Γ(ν)

( ν

µu

)ν
u(t)ν−1 exp

[
− νu(t)/µu

]
(5)

whereΓ(·) denotes the gamma function. The conditional pdfs ofy(t) are unchanged, see (3). The

underlying statistical principle of PX-EM is to perform a “covariance adjustment” to correct the M

step. In this problem, we adjust the covariance matrixΣ to a product ofµu andΣa. More specifically,

we use a expanded complete-data model that has a larger set ofidentifiable parameters, but leads to

the original observed-data model with the original parameters identified from the expanded parameters

via a many-to-one mapping [23].

We present the details of the derivation of the PX-EM algorithm in Appendix A. To summarize it,

in the PX-E step, we calculate the conditional expectationsof the complete-data sufficient statistics

assuming all unknown parametersθa are known from the complete data log-likelihood. In the PX-M

step, we estimate the unknown parameters from these expectations. The derivation of these estimates

December 2, 2005 DRAFT



5

from the sufficient statistics are explained in [12] in details. The PX-EM algorithm for the above

expanded model consists of iterating between the followingPX-E and PX-M steps:

PX-E Step: Compute the conditional expectations of the natural sufficient statistics

T1(y;θ(i)
a ) =

1

N
·

N∑

t=1

y(t)φ(t)H · E u|y[u(t)−1 | y(t);θ(i)
a ], (6a)

T2(y;θ(i)
a ) =

1

N
·

N∑

t=1

y(t)y(t)H · E u|y[u(t)−1 | y(t);θ(i)
a ], (6b)

T3(y;θ(i)
a ) =

1

N
·

N∑

t=1

φ(t)φ(t)H · E u|y[u(t)−1 | y(t);θ(i)
a ], (6c)

t4(y;θ(i)
a ) =

1

N
·

N∑

t=1

E u|y[ ln u(t) | y(t);θ(i)
a ], (6d)

t5(y;θ(i)
a ) =

1

N
·

N∑

t=1

E u|y[u(t) | y(t);θ(i)
a ], (6e)

whereθ
(i)
a = {X(i),Σ

(i)
a , ν(i), µ

(i)
u } is the estimate ofθa in theith iteration and (6a)–(6e) are computed

using (8) (below) withg(u(t)) = u(t)−1, ln u(t), andu(t).

PX-M Step: Compute

X(i+1) = [AH(S(i))−1A]−1AH(S(i))−1 · T1(y,θ(i)
a )T3(y,θ(i)

a )−1, (7a)

Σ
(i+1)
a = S(i) + [Im − Q(i)(S(i))−1]T1(y,θ(i)

a )

·T3(y;θ(i)
a )−1T1(y,θ(i)

a )H [Im − Q(i)(S(i))−1]H, (7b)

µ(i+1)
u = t5(y,θ(i)), (7c)

Σ
(i+1) = µ(i+1)

u · Σ (i+1)
a , (7d)

where

S(i) = T2(y,θ(i)
a ) − T1(y,θ(i)

a ) · T3(y;θ(i)
a )−1 · T1(y,θ(i)

a )H , (7e)

Q(i) = A [AH(S(i))−1A]−1AH , (7f)

and findν(i+1) that maximizes

ν(i+1) = arg max
ν

{
− ln Γ(ν) + ν ln ν − ν ln[t5(y,θ(i))] + νt4(y,θ(i)) − ν

}
.

The above iteration is performed untilX(i), Σ (i), andν(i) converge. The computation ofν(i+1) requires

maximizing (7c), which is accomplished using the Newton-Raphson method (embedded within the

“outer” EM iteration, similar to [26]). The conditional-expectation expression (8) is obtained by using

the Bayes rule, equations (3) and (4), and change-of-variable transformationx = νu/µ.

E u|y
�
g(u(t)) | y(t);θa

]
=

∫ ∞
0 g(xµu/ν) · py|u(y(t) | xµu/ν ; X,Σa) · xν−1 exp(−x) dx∫ ∞

0 py|u(y(t) | xµu/ν ; X,Σa) · xν−1 exp(−x) dx
. (8)

December 2, 2005 DRAFT
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The integrals in the numerator and denominator of (8) are efficiently and accurately evaluated using

the generalized Gauss-Laguerre quadrature formula (see [27, Ch. 5.3]):
∫ ∞

0
f(x) · xν−1 exp(−x) dx ≈

L∑

l=1

wl(ν − 1) f(xl(ν − 1)), (9)

wheref(x) is an arbitrary real function,L is the quadrature order, andxl(ν − 1) andwl(ν − 1), l =

1, 2, . . . , L are the abscissas and weights of the generalized Gauss-Laguerre quadrature with parameter

ν − 1.

B. PX-EM Algorithm for Inverse Gamma Texture

We now propose acomplex multivariatet-distribution modelfor the clutter and apply it to the

measurement scenario in Section II. A similar clutter modelwas briefly discussed in [17, Sec. IV.B.3],

where it was also referred to as thegeneralized Cauchy distribution. Assume thatw(t) = u(t)−1,

t = 1, 2, . . . , N are gamma random variables with mean one and unknown shape parameterν > 0.

Consequently,u(t) follows an inverse gammadistribution and the conditional distribution ofy(t)

given w(t) is py|u(y(t)|w(t)−1;X,Σ ), see also (3). Integrating out the unobserved dataw(t), we

obtain aclosed-formexpression for the marginal pdf ofy(t):

py(y(t);X,Σ , ν) =
Γ
(
ν + m

)

|πΣ | · Γ
(
ν
)
· νm

·
{

1 + [y(t) − AXφ(t)]H Σ
−1 [y(t) − AXφ(t)]

/
ν
}−ν−m

,

(10)

which is thecomplex multivariatet distribution with location vectorAXφ(t), scale matrixΣ , and

shape parameterν. Here, the unknown parameters areθ = {X,Σ , ν}. We first estimateX and Σ

assuming that the shape parameterν is knownand then discuss the estimation ofν.

Known ν: For a fixedν, we derive a PX-EM algorithm for estimatingX and Σ by treatingw(t),

t = 1, 2, . . . , N as the unobserved data and adding an auxiliary mean parameter for w(t), similar

to the gamma case discussed in Section III-A. The derivationof PX-EM algorithm is analogous to

the one for gamma texture in Appendix A. Here, the resulting PX-EM algorithm consists of iterating

between the following PX-E and PX-M steps:

PX-E Step: Compute

ŵ(i)(t) = (ν + m) ·
{
ν + [y(t) − AX(i)φ(t)]H · [Σ (i)]−1 [y(t) − AX(i)φ(t)]

}−1
(11a)

for t = 1, 2, . . . , N and

T
(i)
1 =

1

N
·

N∑

t=1

y(t)φ(t)H · ŵ(i)(t), (11b)

T
(i)
2 =

1

N
·

N∑

t=1

y(t)y(t)H · ŵ(i)(t), (11c)

T
(i)
3 =

1

N
·

N∑

t=1

φ(t)φ(t)H · ŵ(i)(t). (11d)

December 2, 2005 DRAFT
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PX-M Step: Compute

X(i+1) = [AH(S(i))−1A]−1AH(S(i))−1 T
(i)
1 (T

(i)
3 )−1, (12a)

Σ
(i+1) =

{
S(i) + [Im − Q(i)(S(i))−1] · T (i)

1 (T
(i)
3 )−1

·(T (i)
1 )H [Im − Q(i)(S(i))−1]H

}/[ 1

N

N∑

t=1

ŵ(i)(t)
]
, (12b)

where

S(i) = T
(i)
2 − T

(i)
1 (T

(i)
3 )−1 (T

(i)
1 )H , (12c)

Q(i) = A [AH(S(i))−1A]−1 AH . (12d)

The above iteration is performed untilX(i) andΣ
(i) converge. Denote byX(∞)(ν) andΣ

(∞)(ν) the

estimates ofX andΣ obtained upon convergence, where we emphasize their dependence onν.

Unknown ν: We compute the ML estimate ofν by maximizing the observed-data log-likelihood

function concentrated with respect tôX(ν) and Σ̂ (ν):

ν̂ = arg max
ν

N∑

t=1

ln py(y(t);X(∞)(ν),Σ (∞)(ν), ν), (13)

see also (10).

IV. CRAMÉR-RAO BOUND AND RELATED BOUNDS

In this section, we first derive the CRB with general texture pdf assumption. Then we apply it for

different texture distributions, see [28]. We also consider the hybrid CRB, which is not as tight as

CRB.

A. General CRB Results

Denote bypu(u(t); ν) the pdf of the textureu(t). Then, according to the above measurement model,

y(t) is a complex spherically invariant random vector (SIRV) with marginal pdf

py(y(t);ρ) =
1

|πΣ | · g(‖z(t; ξ,η)‖2, ν), (14)

where

g(s, ν) =

∫ ∞

0
exp

(
− s

u

)
· u−m · pu(u; ν) du, (15a)

z(t; ξ,η) = Σ
−1/2 · [y(t) − AXφ(t)], (15b)

and ‖ · ‖ denotes the Frobenius norm. Also,Σ
−1/2 = (Σ 1/2)−1 whereΣ

1/2 denotes a Hermitian

square root of a Hermitian matrixΣ .

Given an arbitrary radius‖z(t; ξ,η)‖ = r, the concatenated vector of real and imaginary parts of

z(t; ξ,η) is uniformly distributed on the surface of a2m-dimensional ball with radiusr, centered at

December 2, 2005 DRAFT
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the origin. Denote byg1 and g2 the partial derivatives ofg(·, ·) with respect to its first and second

entries, i.e.g1(s, ν) = ∂g(s, ν)/∂s andg2(s, ν) = ∂g(s, ν)/∂ν. For any well-behavedg(·, ·), changing

the order of differentiation and integration leads to

g1(s, ν) = −
∫ ∞

0
exp

(
− s

u

)
· u−m−1 · pu(u; ν) du (16a)

g2(s, ν) =

∫ ∞

0
exp

(
− s

u

)
· u−m · ∂pu(u; ν)

∂ν
du. (16b)

Define the vector of signal and clutter parameters:

ρ = [ξT ,ηT , ν]T (17a)

where the subscript “T ” denotes a transpose,

ξ = [Re{vec(X)}T , Im{vec(X)}T ]T (17b)

η = [Re{vech(Σ )}T , Im{vech(Σ )}T ]T (17c)

andν is the texture parameter3. Here, thevech andvech operators create a single column vector by

stacking elements below the main diagonal columnwise;vech includes the main diagonal, whereas

vech omits it. The Fisher information matrix (FIM) forρ is computed by using [29, eqs. (3.21) and

(3.23)]:

[I]ρiρk
= E

{∂ ln p(y;ρ)

∂ρi

∂ ln p(y;ρ)

∂ρk

}
(18a)

= −E
{∂2 ln p(y;ρ)

∂ρi∂ρk

}
(18b)

where[I]ρiρk
denotes the FIM entry with respect to the parametersρi andρk, i, k ∈ {1, 2, . . . ,dim(ρ)}

and

ln p(y;ρ) = −N ln |πΣ | +
N∑

t=1

ln g(‖z(t; ξ,η)‖2, ν) (18c)

is the log-likelihood function. Then the CRB forρ is

CRB = I−1. (18d)

To simplify the notation, we omit the dependencies of the FIMand CRB on the model parameters.

We also omit details of the derivation and give the final FIM expressions (see Appendix B for details):

3We parameterize the texture pdf using only one parameter. The extension to multiple parameters is straightforward.
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Iξiξk
=

2α1

m

N∑

t=1

Re
[
φH(t)

∂XH

∂ξk
AH

Σ
−1 A

∂X

∂ξi
φ(t)

]
(19a)

Iηiηk
=N2cηiηk

+
2N2cηiηk

m
· α2 +

N(N − 1)cηiηk

m2
· α2

2

+
N

m(m + 1)

[
tr(Σ−1 ∂Σ

∂ηi
Σ

−1 ∂Σ

∂ηk
) + cηiηk

]
· α3 (19b)

Iνν =N · β1 (19c)

Iηiν =
N

m
tr

(
Σ

−1 ∂Σ

∂ηi

)
· β2 (19d)

Iξiηk
=0 (19e)

Iξiν =0 (19f)

where cηiηk
= tr

(
Σ

−1 ∂Σ

∂ηi

)
tr

(
Σ

−1 ∂Σ

∂ηk

)
(20)

and

α1 =

∫ ∞
0

g2
1(r2,ν)
g(r2,ν) · r2m+1 dr

∫ ∞
0 g(r2, ν) · r2m−1 dr

(21a)

α2 =

∫ ∞
0 g2

1(r
2, ν) · r2m+1 dr∫ ∞

0 g(r2, ν) · r2m−1 dr
(21b)

α3 =

∫ ∞
0

g2
1(r2,ν)
g(r2,ν) · r2m+3 dr

∫ ∞
0 g(r2, ν) · r2m−1 dr

(21c)

β1 =

∫ ∞
0

(g2
2(r2,ν)
g(r2,ν) − ∂g2(r2,ν)

∂ν

)
· r2m−1 dr

∫ ∞
0 g(r2, ν) · r2m−1 dr

(21d)

β2 =

∫ ∞
0

(∂g1(r2,ν)
∂ν − g1(r2,ν)g2(r2,ν)

g(r2,ν)

)
· r2m+1 dr

∫ ∞
0 g(r2, ν) · r2m−1 dr

. (21e)

Here, (19a) and (19b) have been computed by using (18a) and the lemma, whereas (19c)-(19f) follow

by using (18b).

Interestingly, the FIMs of compound-Gaussian models with different texture distributions share the

common structure in (19a)-(19f) where the texture-specificquantities are the scalar coefficients in

(21). The above FIM and CRB matrices are block-diagonal (see(19e) and (19f)), implying that the

CRBs for the signal parametersξ are uncoupled from the clutter parametersν andη. Hence, the CRB

matrix for ξ remains the same whether or notν andΣ are known. Similarly, the CRBs forη andν

remain the same whether or notX is known. Also, (19a) and (19b) simplify to the FIM expressions

for complex Gaussian clutter whenα1 = m,α2 = −m andα3 = m(m+1), see also [29, eq. (15.52)].

B. CRB for Specific Texture Distributions

Computing the texture-specific terms in (21) typically involves two-dimensional integration that

cannot be evaluated in closed form. This integration can be performed using Gauss quadratures, see
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e.g. [27, Ch. 5.3]. Here we use the gamma texture as an example.

Gamma texture: Here we use the same model as in Section III-A. After applying a change-of-variable

transformationx = νu in (15a) and (16), we evaluate both integrals in (21) using the generalized

Gauss-Laguerre quadrature formula (see (9).) For example,the formula used to computeα1 is given

in (22) where, to simplify the notation, we omit the dependencies of the abscissas and weights on

ν − 1.

α1 =

∑L
l1=1

(�
L

l2=1 exp(−
νx2

l1
xl2

)νx−(m+1)
l2

·wl2

)2

�
L

l3=1 exp(−
νx2

l1
xl3

)x−m

l3
·wl3

exp(xl1
) · wl1

∑L
l4=1

( ∑L
l5=1 exp(−νx2

l4

xl5

)x−m
l5 · wl5

)
exp(xl4

) · wl4

. (22)

In Appendix C, we derive other coefficients for gamma-distributed texture.

Inverse-gamma texture: We use the model discussed in Section III-B. In this case, (15a) and (16)

can be evaluated in closed form, leading to the following simple expressions for the texture-specific

terms in (21a)-(21e) (see Appendix C):

α1 =
m(ν + m)

ν + m + 1
(23a)

α2 = −m (23b)

α3 =
m(m + 1)(ν + m)

ν + m + 1
(23c)

β1 = TG(ν) − TG(ν + m) − m(ν + m + 2)

ν(ν + m)(ν + m + 1)
(23d)

β2 = − m

(ν + m)(ν + m + 1)
(23e)

whereTG(x) = d2[ln Γ(x)]/dx2 is the trigamma function. Interestingly, the CRB matrix forthe signal

parametersξ is proportional to the corresponding CRB matrix for complexGaussian clutter, with the

proportionality factor(ν + m + 1)/(ν + m) always greater than one.

As ν → ∞, the inverse gamma texture distribution degenerates to a constant, the marginal pdf of

y(t) in (14) reduces to the complex Gaussian distribution in (3) with u(t) ≡ 1, and (19a) and (19b)

simplify to the FIM expressions for complex Gaussian clutter.

C. Hybrid CRB (HCRB)

The CRB is a lower bound of the covariance of all unbiased estimators of an unknown parameter

vector. However, in some scenarios, we need to assess the estimation performance quickly but not so

tightly. Thus we also consider the computation of a less optimal bound, the HCRB.

The HCRB is defined in [30]:

[I(Θ)]ij = E u

{
E y|u�∂ ln py,u(y, u;Θ)

∂θi

∂ ln py,u(y, u;Θ)

∂θj

}}
(24a)

HCRB(θi) = [I−1(Θ)]ii (24b)
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Note that the HCRB takes the expectation over the unobserveddatau(t) for the whole product of two

complete data score functions while the CRB takes the expectations respectively. This usually reduces

the calculation effort at the cost of degraded bound tightness. Similarly, we omit the dependencies of

the information matrix and HCRB on the model parameters. With the derivation presented in Appendix

D, the information entries of the HCRB for general texture are

Iξiξj
= 2

N∑

t=1

Re
[
tr(A

∂X

∂ξi
φ(t) · φH(t)

∂XH

∂ξi
AH

Σ
−1)

]
· E u{u−1(t)} (25a)

Iηiηj
=

N(m + 2)

(m + 1)
tr(Σ−1 ∂Σ

∂ηi
Σ

−1 ∂Σ

∂ηj
) (25b)

Iνν = −
N∑

t=1

E u

{ 1

pu

∂2pu

∂ν2
− 1

p2
u

(∂pu

∂ν

)2}
(25c)

Iηiν = Iξiν = Iηiξj
= 0 (25d)

Compared with FIM, the information matrix of HCRB is much simpler and easier to compute. It

is interesting to observe that

• ξ,η and ν are decoupled from each other. The HCRB is a block diagonal matrix with three

blocks. Note that in the CRB,η andν are coupled.

• Iηiηj
is constant. It does not change over the choice of texture models.

• u(t) affectsIξiξj
in a simple way – by multiplying a constant withE u(u−1(t)).

V. NUMERICAL EXAMPLES

The numerical examples presented here assess the estimation accuracy of the ML estimates of

X,Σ , and the shape parameters of the texture components. We consider a measurement scenario with

a 3-element radar array andP = 3 pulses, implying thatm = 9. We select a rank-one target scenario

with φ(t) = 1, t = 1, 2, . . . , N , complex target amplitudeX = 0.207 · exp(jπ/7), and

A = b($) ⊗ a(ϑ), (26)

where b($) = [1, exp(j2π$), exp(j4π$)]T with normalized Doppler frequency$ = 0.42, and

a(ϑ) = [1, exp(j2πϑ), exp(j4πϑ)]T with spatial frequencyϑ = 0.926. Here,⊗ denotes the Kronecker

product. The speckle covariance matrixΣ was generated using a model similar to that in [31, Sec.

2.6] with 1000 patches. The(p, q)th element of the covariance matrix of the speckle componentwas

chosen as

Σp,q = σ2 · 0.9|p−q| · exp[j(π/2)(p − q)], (27)

which is the correlated noise covariance model used in [33] (see also references therein). In the

simulations presented here, we selectσ2 = 10.17. The order of the Gauss-Hermite and generalized

Gauss-Laguerre quadratures wasL = 50.
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We compare the average mean-square errors (MSEs) of the ML estimates ofξ,η andν over 2000

independent trials with the corresponding CRBs derived in Section IV. We also show the HCRBs in

the results. Note: we just shown the average of elements ofξ,η, andν in this paper.

First we study the performance of the ML estimation for gammatexture in Section III-A. We have

set the shape parameter toν = 2. The Fig. 1 shows the MSEs for the ML estimates ofX andν and

the average MSE for the ML estimates of the speckle covariance parameters as functions ofN .

In Fig. 2, we show the performance of the ML estimation for theinverse gamma texture in Section

III-A. Here, the shape parameter was set toν = 4. Fig. 2 shows the MSEs for the ML estimates ofX

andν and the average MSE for the ML estimates of the speckle covariance parameters as functions

of N .

In Fig. 1 and Fig. 2, the MSEs matches the CRBs very well when the number of observations

increases, which indicates that the PX-EM is the optimal asymptotically efficient estimation for target

and the clutter parameters. HCRBs show their loose estimation to the lower bound of estimation

variance as mentioned before. The average signal power and clutter power can be calculated by their

definitions:

Ps = E
{

[AXφ(t)]H · [AXφ(t)]
}

, (28a)

Pc = E {e(t)He(t)} = E
{

tr[e(t)e(t)H ]
}

= E {u(t)} · tr(Σ ). (28b)

Thus the signal-to-noise ratio (SNR) in the above examples are -6.70 dB and -7.95 dB respectively.

Note that in these examples, the SNRs do not change with number of snapshotsN .

We also investigate the performance of the clutter spikiness, which can be indicated by the clutter

texture parameterν. In Fig. 3, we show the average MSEs of the estimates under theinverse-gamma

texture model for four differentν values. The results are the averaged MSEs among 500 independent

trials. Whenν decreases, i.e., the clutter becomes spikier, the results show that there is no much

difference for the performance of estimate ofX, while the estimate forΣ becomes worse and the

estimate forν becomes more accurate.

VI. CONCLUDING REMARKS

In this paper, we developed maximum likelihood algorithms for estimating the parameters of a target

with compound-Gaussian distributed clutter. The algorithms are potentially useful to mitigate sea-

clutter in high-resolution and low-grazing-angle radar. The proposed maximum likelihood estimation is

based on the parameter-expanded expectation-maximization algorithm. We also computed the Cramér-

Rao bounds and their hybrid versions for the unknown parameters. Our results are based on the general

compound-Gaussian model and can be applied to various texture distributions. We obtained compact
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closed-form results of the bounds for the inverse-gamma texture. Numerical simulations confirmed

the asymptotic efficiency of our estimates.
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APPENDIX A

PX-EM ALGORITHM DERIVATION FOR GAMMA TEXTURE

We derive the PX-EM algorithm to estimate the parameter setθ = {X,Σ , ν} given the observations

y.

With the auxiliary parameterµu, the augmented parameter set isθa = {X,Σa, ν, µu}, and the

augmented model can be written as:

y(t)
∣∣u(t) ∼ CN (AXφ(t), u(t)Σa), (A.29a)

u(t) ∼ Gamma(µu, ν). (A.29b)

Denoteu = [u(1), u(2), . . . , u(N)]T . Instead of maximizing the intractable likelihood function for

the measurementy(t), we maximize thecomplete data log-likelihood:

Lc(y,u;θa) =
N∑

t=1

ln py|u(y(t)|u(t);X,Σa) +
N∑

t=1

ln pu(u(t); ν, µu). (A.30)

Substitute (3) and (5) into (A.30), we can write the completedata log-likelihood as:

Lc = −Nm τ4(y,u) − N tr[T2(y,u) · Σ−1
a ] − N tr[XHAH

Σ
−1
a AX · T3(y,u)]

+N tr[XHAH
Σ

−1
a · T1(y,u)] + N tr[T1(y,u)H · Σ−1

a AX] − Nν

µu
τ5(y,u)

+(ν − 1)τ4(y,u) − Nν lnµu + N ln
[ νν

Γ(ν)

]
− Nm ln π (A.31a)

where T1(y,u),T2(y,u),T3(y,u), τ4(y,u), τ5(y,u) are natural complete-data sufficient statistics

[25, ch.1.6.2]:

T1(y,u) =
1

N
·

N∑

t=1

y(t)φ(t)H · u(t)−1, (A.32a)

T2(y,u) =
1

N
·

N∑

t=1

y(t)y(t)H · u(t)−1, (A.32b)

T3(y,u) =
1

N
·

N∑

t=1

φ(t)φ(t)H · u(t)−1, (A.32c)

τ4(y,u) =
1

N
·

N∑

t=1

ln u(t), (A.32d)

τ5(y,u) =
1

N
·

N∑

t=1

u(t), (A.32e)

We first assume thatν is a known constant. Take derivative of (A.31a) with respectto X, Σa, µu

respectively and let these derivatives equal to zero, we geta set of equations. Solving these equations,

we can obtain the ML estimates ofX, Σa, µu (see [12] for the derivations of the ML estimates for
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X andΣa):

X̂ = [AHS−1A]−1AHS−1 · T1(y,u)T3(y,u)−1, (A.33a)

Σ̂a = S + [Im − QS−1]T1(y,u)

·T3(y,u)−1T1(y,u)H [Im − QS−1]H, (A.33b)

µ̂u = τ5(y,u), (A.33c)

Σ̂ = µ̂u · Σ̂a, (A.33d)

where

S = T2(y,u) − T1(y,u) · T3(y;u)−1 · T1(y,u)H , (A.33e)

Q = A [AHS−1A]−1AH , (A.33f)

With these estimates, we can find the ML estimate ofν that maximizes the concentrated complete

data log-likelihood:

ν̂ = arg max
ν

{
− ln Γ(ν) + ν ln ν − ν ln[τ5(y,u)] + ντ4(y,u) − ν

}
.

In the PX-E step, we calculate conditional expectationsE u|y[·] of sufficient statisticsT1(y,u),

T2(y,u), T3(y,u), τ4(y,u), τ5(y,u) (see (6a)-(6e)). Then in the PX-M step, we use these expecta-

tions to calculate the ML estimates of parameters inθa. The iteration goes between PX-E and PX-M

steps until estimation results converges.

APPENDIX B

DERIVATION OF THE SCORE FUNCTIONS AND FISHER INFORMATION MATRIX (FIM)

K.L. Langeet al derived the FIM of multivariate realt-distribution in Appendix B of [19]. Here

we follow the same procedure to derive the entries of the FIM of complex compound-Gaussian

distribution.

Before starting to derive the FIM entries, we list some preliminary results that will be used in the

derivation here.

Lemma 1:For z ∈ R
k uniformly distributed on real sphere‖z‖ = r and anyk × k real matrices

A andB,

E
( zH

‖z‖A
z

‖z‖
∣∣∣‖z‖

)
=

1

k
tr(A), (B.34)

E
( zH

‖z‖A
z

‖z‖
zH

‖z‖B
z

‖z‖
∣∣∣‖z‖

)
=

1

k(k + 2)
[2 tr(AB) + tr(A) tr(B)]. (B.35)

Proof. See [19] Appendix B.
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Lemma 2:For z ∈ C
k uniformly distributed on sphere‖z‖ = r and anyk × k matricesA andB,

E
( zH

‖z‖A
z

‖z‖
∣∣∣‖z‖

)
=

1

k
tr(A), (B.36)

E
( zH

‖z‖A
z

‖z‖
zH

‖z‖B
z

‖z‖
∣∣∣‖z‖

)
=

1

k(k + 1)
[tr(AB) + tr(A) tr(B)]. (B.37)

Proof: let z = zR + izI, wherezR and zI are real and imaginary parts of vectorz. By applying

Lemma 1, the proof is trivial.

Lemma 3:For z1,z2 ∈ C
k independently uniformly distributed on sphere‖z‖ = r and anyk × k

matricesA andB,

E
( zH

1

‖z1‖
A

z2

‖z2‖
∣∣∣‖z1‖, ‖z2‖

)
= 0, (B.38)

E
( zH

1

‖z1‖
A

z1

‖z1‖
zH

2

‖z2‖
B

z2

‖z2‖
∣∣∣‖z1‖, ‖z2‖

)
=

1

k2
tr(A) tr(B). (B.39)

Proof: Note thatz1 andz2 are independent,

E
( zH

1

‖z1‖
A

z2

‖z2‖
∣∣∣‖z1‖, ‖z2‖

)
= E

( zH
1

‖z1‖
∣∣∣‖z1‖

)
· A · E

( z2

‖z2‖
∣∣∣‖z2‖

)
.

By symmetry,

E
( z1

‖z1‖
∣∣∣‖z1‖

)
= E

( z2

‖z2‖
∣∣∣‖z2‖

)
= 0.

The first equation is proved. By applying the first equation inLemma 2, the second equation is

also easily proved.

Now we start the derivation of FIM. First, recall the complete data log-likelihood (18c). We can

get the contribution of each parameter to the score vector through straightforward calculations:

∂L
∂ξi

= −
N∑

t=1

g1(‖z(t)‖2, ν)

g(‖z(t)‖2, ν)
·
[
zH(t)Σ− 1

2 A
∂X

∂ξi
φ(t) + φH(t)

∂XH

∂ξi
AH

Σ
− 1

2 z(t)
]
, (B.40a)

∂L
∂ηi

= −N · tr(Σ ∂Σ

∂ηi
) −

N∑

t=1

g1(‖z(t)‖2, ν)

g(‖z(t)‖2, ν)
·
[
zH(t)Σ− 1

2
∂Σ

∂ηi
Σ

− 1

2 z(t)
]
, (B.40b)

∂L
∂ν

=

N∑

t=1

g2(‖z(t)‖2, ν)

g(‖z(t)‖2, ν)
. (B.40c)

These rules are used in the derivation:

∂

∂ξi
[(y − µ)HΣ

−1(y − µ)] = −
[∂µH

∂ξi
Σ

−1(y − µ) + (y − µ)HΣ
−1 ∂µ

∂ξi

]
,

∂

∂ηi
ln |Σ | = tr

(
Σ

−1 ∂Σ

∂ηi

)
,

and

∂Σ
−1

∂ηi
= −Σ

−1 ∂Σ

∂ηi
Σ

−1.
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The entry of FIM corresponding toX is

Iξiξj
= E

{∂L
∂ξi

∂L
∂ξj

}

=
2

m
· E

((g1(‖z(t)‖2, ν)

g(‖z(t)‖2, ν)
‖z(t)‖2

)
·

N∑

t=1

Re
{

tr
(
A

∂X

∂ξi
φ(t) φH(t)

∂XH

∂ξj
AH

Σ
−1

)}
.(B.41a)

Using Lemma 2 and Lemma 3, we can get the following results:

Iηiηj
= E

{∂L
∂ηi

∂L
∂ηj

}

= N2cηiηj
+

2Ncηiηj

m
·

N∑

t=1

E
{g1(‖z(t)‖2, ν)

g(‖z(t)‖2, ν)
· ‖z(t)‖2

}

+
1

m(m + 1)
[tr(Σ−1 ∂Σ

∂ηi
Σ

−1 ∂Σ

∂ηj
) + cηiηj

] ·
N∑

t=1

E
{(g1(‖z(t)‖2, ν)

g(‖z(t)‖2, ν)

)2
‖z(t)‖4

}

+
N(N − 1)cηiηj

m2
· E 2

{g1(‖z(t)‖2, ν)

g(‖z(t)‖2, ν)
· ‖z(t)‖2

}
, (B.42a)

wherecηiηj
= tr(Σ−1 ∂Σ

∂ηi
) tr(Σ−1 ∂Σ

∂ηj
). See [32] for details.

The entry of the FIM matrix related toν can be derived directly:

Iνν = E
{
− ∂2L

∂ν2

}
= −NE

{ ∂g2(‖z(t)‖2,ν)
∂ν

g(‖z(t)‖2, ν)
−

(g2(‖z(t)‖2, ν)

g(‖z(t)‖2, ν)

)2}
. (B.43)

Also,

Iηiν = E
{
− ∂2L

∂ηi∂ν

}

= E
{ N∑

t=1

∂g1(‖z(t)‖2,ν)
∂ν g(‖z(t)‖2, ν) − g1(‖z(t)‖2, ν)g2(‖z(t)‖2, ν)

g2(‖z(t)‖2, ν)

[
zH(t)Σ− 1

2
∂Σ

∂ηi
Σ

− 1

2 z(t)
]}

=
1

m
tr

(
Σ

−1 ∂Σ

∂ηi

)
·

N∑

t=1

E
{ ∂g1(‖z(t)‖2,ν)

∂ν g(‖z(t)‖2, ν) − g1(‖z(t)‖2, ν)g2(‖z(t)‖2, ν)

g2(‖z(t)‖2, ν)
‖z(t)‖2

}

(B.44a)

Finally we prove that

Iξiηj
= 0 (B.45)

and

Iξiν = 0 (B.46)

Proof: SinceIξiηj
= E { ∂L

∂ξi

∂L
∂ηj

} andIξiν = E { ∂L
∂ξi

∂L
∂ν }, for fixed ‖z‖, ∂L

∂ξi
is an odd function ofz

(B.40a) while ∂L
∂ηi

and ∂L
∂ν are even functions ofz (B.40b).
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APPENDIX C

CALCULATION OF EXPECTATIONS

In this section, we propose the calculation method of expectations derived in Appendix A. First

recall that for any well-behaved functionf(r) and SIRV real vectorw ∈ R
k with pdf in the form of

|πΣ |−1/2 g(‖w‖2, ν),

E (f(‖w‖)) =

∫ ∞

0
f(r)g(r2, ν)rk−1ck dr, (C.47)

whereck is the surface area of the unit sphere inR
k. See [19], Appendix A.

Now build a 1-1 mapCm : z → R
2m : w by letting w = [zT

R
,zT

I
]T , wherezR andzI are the real

and imaginary parts ofz respectively. Clearly, ifz is SIRV in C
m, w will be SIRV in R

2m. Also

note that‖z‖ = ‖w‖, where‖ · ‖ denotes theL2 norm. Applying (C.47), we get

E (f(‖z‖)) = E (f(‖w‖)) =

∫ ∞

0
f(r)g(r2, ν)r2m−1c2m dr. (C.48)

SinceE (1) = 1, we can get following result

c2m =
1∫ ∞

0 g(r2, ν)r2m−1 dr
. (C.49)

Define

α1 = E
{(g1(‖z(t)‖2, ν)

g(‖z(t)‖2, ν)
‖z(t)‖2

}
. (C.50)

By applying (C.48) and (C.49),

α1 =

∫ ∞

0

(g1(r
2, ν)

g(r2, ν)

)2
r2g(r2, ν) · r2m−1c2m dr

=

∫ ∞
0

g2
1(r

2,ν)
g(r2,ν) · r2m+1 dr

∫ ∞
0 g(r2, ν) · r2m−1 dr
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Similarly,

α2 = E
{g1(‖z(t)‖2, ν)

g(‖z(t)‖2, ν)
‖z(t)‖2

}

=

∫ ∞

0

g1(r
2, ν)

g(r2, ν)
r2g(r2, ν) · r2m−1c2m dr

=

∫ ∞
0 g1(r

2, ν) · r2m+1 dr∫ ∞
0 g(r2, ν) · r2m−1 dr

α3 = E
{(g1(‖z(t)‖2, ν)

g(‖z(t)‖2, ν)

)2
‖z(t)‖4

}

=

∫ ∞

0

(g1(r
2, ν)

g(r2, ν)

)2
r4g(r2, ν) · r2m−1c2m dr

=

∫ ∞
0

g2
1(r

2,ν)
g(r2,ν) · r2m+3 dr

∫ ∞
0 g(r2, ν) · r2m−1 dr

β1 = E
{ ∂g2(‖z(t)‖2,ν)

∂ν

g(‖z(t)‖2, ν)
−

(g2(‖z(t)‖2, ν)

g(‖z(t)‖2, ν)

)2}

=

∫ ∞

0

{ ∂g2(r2,ν)
∂ν

g(r2, ν)
−

(g2(r
2, ν)

g(r2, ν)

)2}
g(r2, ν) · r2m−1c2m dr

=

∫ ∞
0

{
∂g2(r2,ν)

∂ν − g2
2(r

2,ν)
g(r2,ν)

}
· r2m−1 dr

∫ ∞
0 g(r2, ν) · r2m−1 dr

β2 = E
{ ∂g1(‖z(t)‖2 ,ν)

∂ν g(‖z(t)‖2, ν) − g1(‖z(t)‖2, ν)g2(‖z(t)‖2, ν)

g2(‖z(t)‖2, ν)
‖z(t)‖2

}

=

∫ ∞

0

{ ∂g1(r2,ν)
∂ν

g(r2, ν)
− g1(r

2, ν)g2(r
2, ν)

g2(r2, ν)

}
r2 · g(r2, ν)r2m−1c2m dr

=

∫ ∞
0

{
∂g1(r2,ν)

∂ν − g1(r2,ν)g2(r2,ν)
g(r2,ν)

}
· r2m+1 dr

∫ ∞
0 g(r2, ν) · r2m−1 dr

Gamma Distribution

From the pdf of the gamma distribution (4), we can get the following results easily:

∂pu(u; ν)

∂ν
=

(
− DG(ν) + ln ν + 1 + ln u − u

)
· pu(u; ν), (C.51a)

∂2pu(u; ν)

∂ν2
=

(
− TG(ν) +

1

ν
+

(
− DG(ν) + ln ν + 1 + ln u − u

)2
)
· pu(u; ν), (C.52a)

whereDG(x) = d
dx ln Γ(x) is the digamma function. For notation simplification, we definef(u; ν) =

−DG(ν) + ln ν + 1 + ln u − u. In the calculations, we change variables withx = νu and use the

general Gauss-Leguerre quadrature for both inner and outerintegration. The results are
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α1 =

∫ ∞
0

[− �∞

0
exp(− r2

u
)u−m−1· 1

Γ(ν)
ννuν−1e−νu du]2

�∞

0
exp(− r2

u
)u−m· 1

Γ(ν)
ννuν−1e−νu du

· r2m+1 dr

∫ ∞
0 (

∫ ∞
0 exp(− r2

u )u−m · 1
Γ(ν)ν

νuν−1e−νu du) · r2m−1 dr

=

∫ ∞
0

[− �∞

0
exp(− r2ν

x
)νx−m−1·xν−1e−x dx]2

�∞

0
exp(− r2ν

x
)x−m·xν−1e−x dx

· r2m+1 dr
∫ ∞
0 (

∫ ∞
0 exp(− r2ν

x )x−m · xν−1e−x dx) · r2m−1 dr

=

∑L
(2m+1)
GL

ll=1

(�
L

(ν−1)
GL

l2=1 exp(−
νr2

l1
xl2

)νx
−(m+1)

l2
·hl2

)2

�
L

(ν−1)
GL

l3=1 exp(−
νr2

l1
xl3

)x−m

l3
·hl3

exp(rl1
) · hl1

∑L(2m−1)
GL

l4=1

(∑L(ν−1)
GL

l5=1 exp(−νr2
l4

xl5

)x−m
l5 · hl5

)
exp(rl4

) · hl4

.

Similarly,

α2 = −
∑L

(2m+1)
GL

ll=1

(∑L
(ν−1)
GL

l2=1 exp(−νr2
l1

xl2

)νx
−(m+1)
l2 · hl2

)
exp(rl1

) · hl1

∑L
(2m−1)
GL

l4=1

(∑L
(ν−1)
GL

l5=1 exp(−νr2
l4

xl5

)x−m
l5 · hl5

)
exp(rl4

) · hl4

,

α3 =

∑L(2m+3)
GL

ll=1

(�
L

(ν−1)
GL

l2=1 exp(−
νr2

l1
xl2

)νx−(m+1)
l2

·hl2

)2

�
L

(ν−1)
GL

l3=1 exp(−
νr2

l1
xl3

)x−m

l3
·hl3

exp(rl1
) · hl1

∑L(2m−1)
GL

l4=1

( ∑L(ν−1)
GL

l5=1 exp(−νr2
l4

xl5

)x−m
l5 · hl5

)
exp(rl4

) · hl4

,

β1 =

∑L
(2m−1)
GL

l1=1

{ ∑L
(ν−1)
GL

l2=1 exp(−νr2
l1

xl2

)x−m
l2

(
− TG(ν) + 1

ν + f2(
xl2

ν ; ν)
)
· hl2

}
exp(rl1

) · hl1

∑L
(2m−1)
GL

l3=1 (
∑L

(ν−1)
GL

l4=1 exp(−νr2
l3

xl4

)x−m
l4 · hl4

) exp(rl3
) · hl3

−

∑L(2m−1)
GL

l5=1

[
�

L
(ν−1)
GL

l6=1 exp(−
νr2

l5
xl6

)x−m

l6
·f(

xl6
ν

;ν)·hl6
]2

�
L

(ν−1)
GL

l7=1 exp(−
νr2

l5
xl7

)x−m

l7
·hl7

exp(rl5
) · hl5

∑L(2m−1)
GL

l3=1 (
∑L(ν−1)

GL

l4=1 exp(−νr2
l3

xl4

)x−m
l4 · hl4

) exp(rl3
) · hl3

and

β2 = −
∑L(2m+1)

GL

l1=1

{∑L(ν−1)
GL

l2=1 exp(−νr2
l1

xl2

)νx−m−1
l2

f(
xl2

ν ; ν) · hl2

}
exp(rl1

) · hl1

∑L(2m−1)
GL

l3=1 (
∑L(ν−1)

GL

l4=1 exp(−nur2
l3

xl4

)x−m
l4 · hl4

)erl3 · hl3

+

∑L(2m+1)
GL

l5=1

�
L

(ν−1)
GL

l6=1 e
−

νr2
l5

xl6 νx−(m+1)
l6

hl6
·
�

L
(ν−1)
GL

l7=1 e
−

νr2
l5

xl7 x−m

l7
f(

xl7
ν

;ν)hl7�
L

(ν−1)
GL

l8=1 exp(−
νr2

l5
xl8

)x−m

l8
·hl8

erl5 · hl5

∑L(2m−1)
GL

l3=1 (
∑L(ν−1)

GL

l4=1 exp(−νr2
l3

xl4

)x−m
l4 · hl4

)erl3 · hl3

.

Inverse-Gamma Distribution

Fortunately, we have a closed form for the functions ofg, g1, andg2 in the inverse-gamma distribution

with pdf:

pu(u; ν) =
1

Γ(ν)
ννu−ν−1e−ν/u ∼ iGamma(ν, 1/ν). (C.53)
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g(s, ν) =

∫ ∞

0
exp

(
− s

u

)
· u−m · pu(u; ν) du

=
Γ(ν + m)

Γ(ν)νm
(1 +

s

ν
)−m−ν , (C.54a)

g1(s, ν) = −
∫ ∞

0
exp

(
− s

u

)
· u−m−1 · pu(u; ν) du,

= −Γ(ν + m + 1)

Γ(ν)νm+1
(1 +

s

ν
)−m−ν−1 (C.54b)

and

g2(s, ν) =
∂g(s, ν)

∂ν

=
(
DG(ν + m) − DG(ν) − m

ν
− ln(1 +

s

ν
) +

(m + ν)s

ν2(1 + s
ν )

)
· g(s, ν). (C.54c)

The calculations yield

α1 =
m(ν + m)

ν + m + 1
; (C.55a)

α2 = −m; (C.55b)

α3 =
m(m + 1)(ν + m)

ν + m + 1
; (C.55c)

β1 = TG(ν + m) − TG(ν) +
m(ν + m + 2)

ν(ν + m)(ν + m + 1)
; (C.55d)

β2 = − m

(ν + m)(ν + m + 1)
, (C.55e)

APPENDIX D

HYBRID-CRB (HCRB)

A. General Results

In the compound-Gaussian model,

y(t)|u(t) ∼ py|u(y(t)|u(t);X,Σ )

=
1

|πu(t)Σ | exp{−[y(t) − AXφ(t)]H · [u(t)Σ ]−1 · [y(t) − AXφ(t)]},(D.56a)

u(t) ∼ pu(u(t); ν). (D.56b)

The complete data log-likelihood function is

L =

N∑

t=1

{
− ln |Σ | − [y(t) − AXφ(t)]H · Σ

−1

u(t)
· [y(t) − AXφ(t)] + ln pu(u(t); ν)

}
. (D.57)

Let z(t) = Σ
− 1

2 · y(t)−AXφ(t)√
u(t)

, t = 1, . . . , N . z is SIRV.
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1) Expectations:Since,

p
z|u(z(t)|u(t);X,Σ ) =

1

πm
exp{−‖z(t)‖2} (D.58)

Similarly to Appendix C, we build a mapCm : z → R
2m : w. Then

‖z‖ = ‖w‖, (D.59a)

pw(w; ν) =
1

πm
exp(−‖w‖2). (D.59b)

E y|u(1) = 1 =⇒
∫ ∞

0
exp(−r2) · r2m−1 dr =

πm

c2m
. (D.60)

It is not hard to get

E y|u(‖z‖2) = m, (D.61a)

E y|u(‖z‖4) = m(m + 2), (D.61b)

where the recurrence relationck+2 = 2πck

k is used. Hereck is the surface area of a unit ball inRk.

Before deriving the entries of the FIM, we note that the first order partial derivatives are

∂L
∂ξi

=
N∑

t=1

∂l(t)

∂ξi

=
N∑

t=1

{
zH(t) · Σ

− 1

2

√
u(t)

· A∂X

∂ξi
φ(t) + φH(t)

∂XH

∂ξi
AH · Σ

− 1

2

√
u(t)

· z(t)
}

(D.62a)

∂L
∂ηi

=

N∑

t=1

∂l(t)

∂ηi

= −N · tr(Σ−1 ∂Σ

∂ηi
) +

N∑

t=1

zH(t) · Σ− 1

2
∂Σ

∂ηi
Σ

− 1

2 · z(t) (D.62b)

∂L
∂ν

=

N∑

t=1

∂l(t)

∂ν

=

N∑

t=1

1

pu(u(t); ν)

∂pu(u(t); ν)

∂ν
. (D.62c)

We follow the same procedure of Appendix B and get (see [32] for details)
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Iξiξj
= E u

{
E y|u�∂L

∂ξi

∂L

∂ξj

��

= 2

N∑

t=1

Re
[
tr(A

∂X

∂ξi
φ(t) · φH(t)

∂XH

∂ξi
AH

Σ
−1)

]
· E u{u−1(t)} (D.63a)

Iηiηj
= E u

{
E y|u�∂L

∂ηi

∂L

∂ηj

��

=
N(m + 2)

(m + 1)
tr(Σ−1 ∂Σ

∂ηi
Σ

−1 ∂Σ

∂ηj
) (D.63b)

Iνν = −E u

{∂2L
∂ν2

}

= −
N∑

t=1

E u

{ 1

pu

∂2pu

∂ν2
− 1

p2
u

(∂pu

∂ν

)2}
, (D.63c)

wherecηiηj
= tr(Σ−1 ∂Σ

∂ηi
) tr(Σ−1 ∂Σ

∂ηj
), and

Iηiν = Iξiν = 0. (D.63d)

B. Application to Specific Texture Distributions

1) Gamma Distribution:From gamma pdf

pu(u(t); ν) =
1

Γ(ν)
ννu(t)ν−1e−νu(t) ∼ Gamma(ν, 1/ν). (D.64)

We can deriveE u(u−1(t)) = 1
θ(α−1) = ν

ν−1 . Also,

∂pu

∂ν
=

(
− DG(ν) + ln ν + 1 + ln u(t) − u(t)

)
· pu, (D.65a)

∂2pu

∂ν2
=

(
− TG(ν) +

1

ν
+

(
− DG(ν) + ln ν + 1 + ln u(t) − u(t)

)2
)
· pu. (D.65b)

Substitute the above results into (D.63a) and (D.63c), we get,

Iξiξj
=

2ν

ν − 1
·

N∑

t=1

Re
[
tr(A

∂X

∂ξi
φ(t) · φH(t)

∂XH

∂ξi
AH

Σ
−1)

]
, (D.66a)

Iηiηj
=

N(m + 2)

(m + 1)
· tr(Σ−1 ∂Σ

∂ηi
Σ

−1 ∂Σ

∂ηj
), (D.66b)

Iνν = N · TG(ν) − N

ν
. (D.66c)

2) Inverse Gamma Distribution (t-Distributed Clutter):

pu(u(t); ν) =
1

Γ(ν)
ννu(t)−ν−1e−ν/u(t) ∼ iGamma(ν, 1/ν). (D.67)

E u{u−1(t)} = αθ = 1. (D.68)
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and

∂pu

∂ν
=

(
− DG(ν) + ln ν + 1 − lnu(t) − 1

u(t)

)
· pu, (D.69a)

∂2pu

∂ν2
=

(
− TG(ν) +

1

ν
+

(
− DG(ν) + ln ν + 1 − lnu(t) − 1

u(t)

)2
)
· pu. (D.69b)

Thus,

Iξiξj
= 2 ·

N∑

t=1

Re
[
tr(A

∂X

∂ξi
φ(t) · φH(t)

∂XH

∂ξi
AH

Σ
−1)

]
, (D.70a)

Iηiηj
=

N(m + 2)

(m + 1)
· tr(Σ−1 ∂Σ

∂ηi
Σ

−1 ∂Σ

∂ηj
), (D.70b)

Iνν = N · TG(ν) − N

ν
. (D.70c)

Interestingly, the inverse-gamma texture and the gamma texture share the same block in the FIM

of η andν.
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[22] A. Dogandžić, A. Nehorai, and J. Wang, “Maximum likelihood estimation of compound-Gaussian clutter and target

parameters,” inProc. 12th Ann. Workshop Adaptive Sensor Array Processing (ASAP ’04), Lincoln Laboratory, Lexington,

MA, Mar. 2004.

[23] C. H. Liu, D. B. Rubin, and Y. N. Wu, “Parameter expansionto accelerate EM: The PX-EM algorithm,”Biometrika,

vol. 85, pp. 755-770, Dec. 1998.

[24] M. K. Simon and M.-S. Alouini,Digital Communication over Fading Channels, New York: Wiley, 2000.

[25] P.J. Bickel and K.A. Doksum,Mathematical Statistics: Basic Ideas and Selected Topics,2nd ed., Upper Saddle River,

NJ:Prentice Hall, 2000.
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Fig. 1. Average MSEs for the ML estimates ofξ, η, ν and corresponding CRBs and HCRBs under the gamma texture

model, as functions ofN .
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Fig. 2. Average MSEs for the ML estimates ofξ, η, ν and corresponding CRBs and HCRBs under the inverse-gamma

texture model, as functions ofN .
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Fig. 3. Average MSEs for the ML estimates ofξ, η, ν under the inverse-gamma texture model as functions ofN for

different ν values.
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