
Statistics Publications Statistics

2019

A Hierarchical Model for Heterogenous Reliability
Field Data
Eric Mittman
Iowa State University, emittman@iastate.edu

Colin Lewis-Beck
Iowa State University, clewisbe@iastate.edu

William Q. Meeker
Iowa State University, wqmeeker@iastate.edu

Follow this and additional works at: https://lib.dr.iastate.edu/stat_las_pubs
Part of the Statistics and Probability Commons

The complete bibliographic information for this item can be found at https://lib.dr.iastate.edu/
stat_las_pubs/125. For information on how to cite this item, please visit http://lib.dr.iastate.edu/
howtocite.html.

This Article is brought to you for free and open access by the Statistics at Iowa State University Digital Repository. It has been accepted for inclusion in
Statistics Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact
digirep@iastate.edu.

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fstat_las_pubs%2F125&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fstat_las_pubs%2F125&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/stat_las_pubs?utm_source=lib.dr.iastate.edu%2Fstat_las_pubs%2F125&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/stat_las?utm_source=lib.dr.iastate.edu%2Fstat_las_pubs%2F125&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/stat_las_pubs?utm_source=lib.dr.iastate.edu%2Fstat_las_pubs%2F125&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=lib.dr.iastate.edu%2Fstat_las_pubs%2F125&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/stat_las_pubs/125
https://lib.dr.iastate.edu/stat_las_pubs/125
http://lib.dr.iastate.edu/howtocite.html
http://lib.dr.iastate.edu/howtocite.html
mailto:digirep@iastate.edu


A Hierarchical Model for Heterogenous Reliability Field Data
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When analyzing field data on consumer products, model-based approaches to inference require a model with
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and truncation, estimates can be unstable and suffer from imprecision. These limitations are typical, for
example, lifetime data for high-reliability products will naturally tend to be right-censored. In this article, we
present a method for joint estimation of multiple lifetime distributions based on the generalized limited
failure population (GLFP) model. This five-parameter model for lifetime data accommodates lifetime
distributions with multiple failure modes: early failures (sometimes referred to in the literature as “infant
mortality”) and failures due to wearout. We fit the GLFP model to a heterogenous population of devices using
a hierarchical modeling approach. Borrowing strength across subpopulations, our method enables estimation
with uncertainty of lifetime distributions even in cases where the number of model parameters is larger than
the number of observed failures. Moreover, using this Bayesian method, comparison of different product
brands across the heterogenous population is straightforward because estimation of arbitrary functionals is
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Reliability Field Data

Eric Mittman, Colin Lewis-Beck, and William Q. Meeker
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Abstract

When analyzing field data on consumer products, model-based approaches to
inference require a model with sufficient flexibility to account for multiple kinds of
failures. The causes of failure, while not interesting to the consumer per se, can lead
to various observed lifetime distributions. Because of this, standard lifetime models,
such as Weibull or lognormal may be inadequate. Usually cause-of-failure information
will not be available to the consumer and thus traditional competing risk analyses
cannot be performed. Furthermore, when the information carried by lifetime data
are limited by sample size, censoring and truncation, estimates can be unstable and
suffer from imprecision. These limitations are typical; for example, lifetime data for
high-reliability products will naturally tend to be right-censored.

In this paper we present a method for joint estimation of multiple lifetime distri-
butions based on the Generalized Limited Failure Population (GLFP) model. This
5-parameter model for lifetime data accommodates lifetime distributions with mul-
tiple failure modes: early failures (sometimes referred to in the literature as “infant
mortality”) and failures due to wearout. We fit the GLFP model to a heterogenous
population of devices using a hierarchical modeling approach. Borrowing strength
across sub-populations, our method enables estimation with uncertainty of lifetime
distributions even in cases where the number of model parameters is larger than the
number of observed failures. Moreover, using this Bayesian method, comparison of
different product brands across the heterogenous population is straightforward be-
cause estimation of arbitrary functionals is easy using draws from the joint posterior
distribution of the model parameters. Potential applications include assessment and
comparison of reliability to inform purchasing decisions.

Keywords: GLFP, Bathtub hazard, Censored data, Hierarchical models, Bayesian estima-
tion
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1 Introduction

1.1 Motivation

Consumers have an interest in accurate assessment of product reliability. Toward this end,

there usually is a need for models that can accommodate common failure patterns and

methods which can make the most of available data and properly account for uncertainty.

Doing these things well enables good decision-making in matters related to product life,

including purchase decisions and contingency planning.

The reliability of many engineered products follows a similar pattern. Relatively high

rates of early failure are due to manufacturing defects. After this “burn-in” period, failure

rates stabilize after the majority of defective units have failed. Finally, after prolonged use,

rates of failure increase due to wearout. Ignoring this pattern in failure rates can lead to

spurious inferences about a product’s reliability and suboptimal decisions. This highlights

the importance of choosing a sufficiently flexible model.

This paper presents a general framework for statistically modeling reliability field data

from a heterogeneous population of components or subsystems operating within a larger

population or fleet of systems. Such a model would be useful for applications such as

• Making purchase decisions from among different suppliers of the components or sub-

systems.

• Making predictions for the number of needed replacement components or subsystems

for spare part provisioning.

1.2 Model considerations

Nonparametric methods require relatively few assumptions, but may not be suitable for

prediction when extrapolation is required. Moreover, nonparametric estimates made using

small samples or data which are heavily censored may be too noisy to be useful. Appropriate

parametric models can make better use of available data. For inference, likelihood-based

methods are able to deal with truncated and/or censored data. Furthermore, by assuming

a parsimonious representation of the data-generating process, parametric models admit
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simpler, more intuitive ways to compare sub-populations of interest, borrow strength across

sub-populations, and incorporate prior information.

Often no information is available to identify why a unit failed, even when the failed units

are available. Physical failure mode analysis (sometimes referred to as “autopsy”) can be

extremely time consuming and expensive. This presents a dilemma for analysts: the data

may indicate multiple failure modes, contraindicating the use of a unimodal parametric

distribution. However, without any knowledge of cause of failure, traditional competing

risk models are not identifiable. Chan and Meeker (1999) proposed the Generalized Limited

Failure Population (GLFP) model. This model can provide a solution to the problem of

unknown cause of failure in the special case where there is evidence of two modes of failure

which impact different stages of product life. It avoids non-identifiability by introducing a

parameter representing the population proportion defective. When this parameter is zero,

the GLFP model reduces to a unimodal distribution.

The GLFP model has a meaningful parameterization and accommodates lifetime data

with both early and wearout failures. Unfortunately, it can require a lot of data to fit due to

the model’s complexity. When multiple sources of information are available, partial pooling,

accomplished via hierarchical modeling, can reduce the amount of data required to produce

stable parameter estimates. When multiple sub-populations are of interest, comparisons

based on separate, unrestricted GLFP model fits will be limited to those products with

sufficient data. As we will show, hierarchical modeling of the GLFP parameters allows for

borrowing of information across sub-populations which imposes “soft” constraints on model

parameters. This enables estimation of the lifetime distribution for all sub-populations

via shrinkage toward a “pooled” model, with the degree of shrinkage inversely related to

the amount of sub-population specific information. We demonstrate the computation of

various quantities of interest while comparing reliability across populations using numerical

integration over the posterior distribution with samples obtained via Markov Chain Monte

Carlo (MCMC).
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1.3 Overview

The structure of the paper is as follows. Section 2 introduces the proposed method, po-

tential applications, and examines previous related work. Section 3 introduces the GLFP

model and illustrates its use with a subset of hard drive failure data from the company,

Backblaze. In Section 4, we describe the complete Backblaze Hard Drive data set, which is

used throughout as a motivating example. In Section 5 we discuss using hierarchical model-

ing of the GLFP model parameters to extend the GLFP model to multiple sub-populations.

Section 6 applies the hierarchical GLFP model to the hard drive data. First, we do model

selection among four models of increasing complexity, using approximate leave-one-out

cross-validation. Next, for the selected model, we assess the model fit using a graphical

comparison of replicated data sets generated from the posterior distribution to the ob-

served data. Finally, we present an evaluative comparison of sub-populations taking into

account practical considerations related to product lifetime. Section 9 describes potential

applications of our model and limitations for inference implied by the model assumptions.

2 Background

In engineering applications, a product can often fail from one out of a set of possible mal-

functioning components. For example, a computer system can break if the mother board,

disc drive or power supply stop working. Circuit boards (CB) can fail due to a manufac-

turing defect or later as a result of wearout of certain components. The general name for

such products is a series system where the lifetime of the product is the minimum failure

time across different components or risks (Nelson, 1982, Chapter 5). A common assump-

tion in series system modeling is the time to failure for the different risks are statistically

independent. Thus, the overall reliability of a unit is the product of the reliability of each

of the risks. Then parameter estimation is straightforward if the cause of failure is known

for each observation. However, in many situations the cause of failure is unknown to the

analyst. This is referred to in the literature as masking.

Previous papers have employed various assumptions and methods to model masked life-

time failure data. When modeling computer system failures Reiser et al. (1995) assumed
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each observed failure came from a known subset of failure modes, and estimation was per-

formed using a Bayesian approach. Chan and Meeker (1999) labeled the cause of circuit

board failures as early (due to defects), unknown, or wearout based on the time of observed

failures. This helped identify parameters when using maximum likelihood (ML) estima-

tion. Extending Chan and Meeker’s analysis, Basu et al. (2003) performed a Bayesian

analysis with informative priors to better identify early versus late failure modes without

making any assumptions about the causes of failure. Berger and Sun (1993) introduced

the Poly-Weibull distribution where the failure time is the minimum of a several Weibull

distributions, corresponding to different failure modes. Ranjan et al. (2015) considered a

competing risk model for early and wearout failures as a mixture of Weibull and exponen-

tial distributions. Treating the unknown failure modes as incomplete data, an expectation

maximization (EM) algorithm providing ML estimates was used, in addition to Bayesian

estimation.

3 Model for field data

3.1 Weibull distribution parameterization

The Weibull cumulative distribution function (cdf) is

Pr(T ≤ t|α, β) = F (t|α, β) = 1− exp

[
−
(
t

α

)β]
, t > 0, (1)

where β > 0 is the Weibull shape parameter and α > 0 is a scale parameter. Because

log(T ) has a smallest extreme value distribution (a member of the location-scale family of

distributions), the Weibull cdf can also be written as

Pr(T ≤ t|µ, σ) = F (t|µ, σ) = ΦSEV

[
log(t)− µ

σ

]
, t > 0,

where ΦSEV (z) = 1 − exp[− exp(z)] is the standard smallest extreme value distribution

cdf and µ = log(α) and σ = 1/β are, respectively, location and scale parameters for the

distribution of log(T ). Therefore, the Weibull distribution is a member of the log-location-

scale family of distributions.
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We will use an alternative parameterization where α is replaced by the p quantile

tp = α [− log(1− p)]σ. Replacing α in (1) with the α = tp/[− log(1− p)]σ gives

Pr(T ≤ t|tp, σ) = F (t|tp, σ) = 1− exp

[
−
(

t

tp/[− log(1− p)]σ

)1/σ
]

= 1− exp

[
log(1− p)

(
t

tp

)1/σ
]
, t > 0.

There are two important reasons for using this parameterization.

• Especially with a high-reliability product, it will be easier to elicit prior information

about a quantile (tp) in the lower tail of the distribution than it will be to elicit prior

information about α (approximately the 0.63 quantile). In addition, there is generally

available information about the shape parameter, σ, for a given failure mechanism

(e.g., if the failure is due to a wearout mechanism, then it is known that σ < 1).

• Because of heavy censoring in reliability field data, the parameter estimates of the µ

and σ parameters will generally be highly correlated and thus specification of inde-

pendent marginal prior distributions would be be inappropriate. On the other hand,

estimates of tp and σ, for some appropriately chosen value of p, will be approximately

independent, allowing the easier elicitation and specification of independent marginal

prior distributions. For example, if a typical field data set has 10% of units failing,

then choosing t0.05 would work well.

• Bayesian MCMC estimation will be better behaved due to reduced correlation be-

tween tp and σ (relative to α and σ).

3.2 Generalized Limited Failure Population model

Let F1, F2 be Weibull distributions with parameters (tp1, σ1) and (tp2, σ2), respectively.

The Generalized Limited Failure Population model (GLFP) of Chan and Meeker (1999) is

defined as follows: Let T ∼ GLFP(π, tp1, σ1, tp2, σ2). Then

Pr(T ≤ t) = H(t) = 1− (1− π F1(t))(1− F2(t)), t > 0, 0 < π < 1.

6



The GLFP model can be understood as a mixture model with a binary latent variable,

δi
ind.∼ Bernoulli(π). δi is an indicator for whether unit i is defective or not (i.e., susceptible

to an early failure). Expressed conditional on δi,

P (T ≤ t|δi = 1) =1− (1− F1(t))(1− F2(t))

P (T ≤ t|δi = 0) =F2(t).

The parameter π represents the proportion of units susceptible to early failure, and

hence susceptible to both failure modes. Here the cause of failure is not assumed to be

known, thus units from the same population are exchangeable.

Taking the derivative of the (marginal) cdf, the density for the GLFP model is

h(t|π, tp1, σ1, tp2, σ2) = πf1(t|tp1, σ1) (1− F2(t|tp2, σ2)) +

f2(t|tp2, σ2) (1− πF1(t|tp1, σ1) .

Note that the p quantile of the GLFP model may be found by setting p = H(tp) and solving

numerically for tp.

3.3 Censoring and truncation

A common feature of lifetime data is right-censoring. In the analysis of reliability field

data, it is rare that all units are observed until failure. If a unit has not yet failed when

the data are analyzed it is considered right-censored. In other words, right-censoring puts

a lower bound on the failure time.

When an observation is left-truncated, it would not have been observed if it had failed

prior to a particular time, which we refer to as the left-truncation time. Left-truncation is a

common feature of observational lifetime data, where the factors leading to inclusion in the

data set are uncontrolled and/or the population of interest has a history prior to any data

collection. Ignoring left truncation can lead to biased estimates. However, dropping left

truncated observations should be avoided because it could substantially reduce the total

available information. Therefore, we incorporate both right censoring and left truncation

into the likelihood.
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3.4 Likelihood

We now give the general form for the likelihood function, taking into account left truncation

and right censoring. Let ti denote the end of the observed lifetime of unit i, in hours. Let tLi

be the left truncation time, the age of unit i when data reporting commenced. Additionally,

let ci be an indicator for censoring; ci = 1 if the failure time is right-censored, c1 = 0 if

the unit failed (at time ti). The likelihood for the GLFP is a function of the parameters

θ = (π, tp1, σ1, tp2, σ2). Assuming the lifetimes of all units are independent, the likelihood

for the data, t1, . . . , tn is

L(θ) =
n∏
i=1

[
h(ti;θ)

1−H(tLi ;θ)

]1−ci [ 1−H(ti;θ)

1−H(tLi ;θ)

]ci

4 Motivating example

4.1 Backblaze hard drive data

Backblaze is a company that offers cloud backup storage to protect against data loss. Since

2013 it has been collecting data on hard drives operating at its facility. The purpose is

to provide consumers and businesses with reliability information on different hard drive-

models. The hard drives continuously spin in controlled storage pods. Drives are run until

failure. When a hard drive fails it is removed and replaced. In addition, the number of

storage pods is increasing as Backblaze adds drives to its storage capacity. Every quarter

Backblaze makes its hard drive data publicly available through their website (https://

www.backblaze.com/b2/hard-drive-test-data.html, accessed January 18, 2018). In

addition, Backblaze publishes summary statistics of the different drive-models currently

operating. No other analysis or modeling of the failure data is provided, other than simple

rates and proportions. Backblaze does, however, encourage others to further analyze their

data.

As of the first quarter of 2016, Backblaze was collecting and reporting data on 63

different drive-models. Some drive-models have been running since 2013 or before, while

others were added at a later date. Data have been reported on 75,297 different hard drives

that are or were in operation. The number of drives varies by drive-model; some drive-
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models only have a service record for a single drive whereas the maximum number of daily

service records for a single drive-model is 35,860. Figure 1 shows a scatterplot of the total

observed running time in hundred of thousands hours versus the total number of failures

for drive-models with at least 3 failures. For model identification, a minimum of three

failures was the criterion for inclusion of drive-models into our analysis.
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Figure 1: Scatterplot of total observed running time (hundred thousands of hours) versus

total number of observed failures. Each number labels a unique drive-model, numbered

between 1 and 44. Axes are on the log scale.

4.2 Analysis of a single drive-model

To illustrate the GLFP model, we will present an analysis of the drive-model with the

most observed failures, Drive-model 14. The Kaplan-Meier (K-M) estimate plotted below

suggests at least two failure modes. The curve has a slow ramp up in failures until about

10,000 hours (early failures), and increases more rapidly from about 10,000 to 20,000 hours

(presumably wearout failures). Besides our empirical observation, it is well known that

9



computer hard drives have a mixture of early and late failures (Chan and Meeker, 1999).

Therefore, there is both an empirical and a theoretical justification to apply the GLFP

model.
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Figure 2: K-M estimate for Drive-model 14. Uncertainty band correspond to pointwise

standard errors (using Greenwood’s formula.)

To estimate the parameters of the GLFP model we use a Bayesian approach, selecting

proper, but generally diffuse, prior distributions to improve identification of the model pa-

rameters. Having a proper prior distribution also ensures a proper posterior distribution.

We reparameterize the component Weibull distributions using the 0.50 quantile for the

early failure mode (t0.5,1) and the 0.20 quantile for the wearout failure mode (t0.2,2).

When eliciting prior distribution information it is much easier to ask about recognizable

characteristics of a distribution instead of the parameters of the distribution. Following the

approach used in (Meeker et al., 2017, Section 15.2.2) we will use diagonal braces (〈., .〉) to

refer to 95 percent central probability intervals, rather than the standard model parameters

when specifying prior distributions. Using this convention the prior distributions used in
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our analyses are

t0.5,1 ∼ Lognormal〈1.7, 7.6× 106〉, t0.2,2 ∼ Lognormal〈8.6, 5.6× 107〉

π ∼ Logit-normal〈1.0× 10−3, 7.1× 10−1〉, σ1, σ2
ind.∼ Lognormal〈7.4× 10−3, 1.3× 102〉.

These prior distributions put probability mass on a wide range of values for all model

parameters — much larger than we would expect for a typical Weibull distribution. Thus,

we consider these prior distributions to be relatively uninformative.

Table 1 gives the posterior median and 95% credible intervals for the 5 GLFP parameters

for Drive-model 14. The parameter π is an estimate of the proportion of drives susceptible

to early failure. As expected, this proportion is small with a median value of 0.05. The

shape parameter estimates for the two Weibull distributions also match intuition. The early

failure mode puts posterior probability on a values of β1 less than 1, which corresponds to

a decreasing hazard. Conversely, the credible interval for β2, the wearout mode, is strictly

above 1, implying an increasing hazard function. The two quantiles are also well identified

with the early failure mode having an much earlier time to reach the 0.50 quantile compared

to the time to reach the 0.20 quantile for the wearout mode.

2.5% 50% 97.5%

π 0.033 0.054 0.099

β1 = 1/σ1 0.47 1.13 1.72

β2 = 1/σ2 4.47 4.70 4.95

t0.5,1 1.03 2.28 3.99

t0.2,2 18.0 18.2 18.6

Table 1: Posterior 95% Credible Intervals for the 5 GLFP parameters for Drive-model 14.

Quantiles are in thousands of hours.

Probability plotting is a simple method to assess and compare the adequacy of members

of the log-location-scale family of distributions. After properly transforming the axes of

a plot, graphing an empirical estimate of fraction failing as a function of time along with

pointwise confidence bands provides a visual check for distributional goodness of fit. We

applied this method using the Kaplan-Meier nonparametric estimate of the empirical cdf.
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With left truncation, however, the standard Kaplan-Meier estimator is biased, so we used

an adjusted version due to Meeker and Escobar (1998, Chapter 11) (see Appendix for a

detailed description).

In Figure 3, we overlay the posterior median of the fitted GLFP model onto the ad-

justed K-M estimate with axes on the Weibull probability scale. The plot also contains

90% pointwise credible bands associated with each estimate. While the Weibull model

is inadequate for these data, the GLFP model fits quite well, as it is able to adequately

describe the rapid increase in the empirical cdf between 8000 and 20,000 hours.
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Figure 3: The estimated GLFP for Drive-model 14 plotted on Weibull paper. The dashed

line corresponds to the median of the posterior draws; pointwise 90% credible bounds are

shown in red. The solid line is an adjusted K-M estimate with pointwise 90% credible

bounds in blue.
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5 Hierarchical GLFP model

5.1 Conditional likelihood

In order to describe an entire product population, consisting of different but similar sub-

populations, and because of the limited amount of data from many of the sub-populations,

we model sub-population-specific parameters hierarchically, borrowing strength across sub-

populations. Let

Tig
ind.∼ GLFP (πg, tp1g, σ1g, tp2g, σ2g) , (2)

where g = 1, . . . , G indexes the sub-populations. The likelihood for the hierarchical GLFP

model is a function of the sets of parameters θg = (πg, tp1g, σ1g, tp2g, σ2g), one set for each

sub-population, g. Assuming the lifetimes of all units are independent within and across

sub-populations, and conditional on the fixed parameters, the likelihood for the data, i =

1, . . . , ng, is given by

L(Θ) =
G∏
g=1

ng∏
i=1

[
h(tig;θg)

1−H(tLig;θg)

]1−cig [1−H(tig;θg)

1−H(tLig;θg)

]cig
where Tig is the observed failure or survival time of unit i in sub-population g; tLig is the

left truncation time for unit i in sub-population g; and cig is an indicator if unit i in

sub-population g is right censored. All times are again in hours.

5.2 Parameter distributions

In a hierarchical model, the parameters are modeled as random variables, varying across

different sub-populations. For example

σ1g
ind.∼ Lognormal

(
ησ1 , τ

2
σ1

)
σ2g

ind.∼ Lognormal
(
ησ2 , τ

2
σ2

)
Tr (0, 1)

tp1g = exp
(
µ1g + σ1g Φ−1(p1)

) ind.∼ Lognormal
(
ηtp1 , τ

2
tp1

)
(3)

tp2g = exp
(
µ2g + σ2g Φ−1(p2)

) ind.∼ Lognormal
(
ηtp2 , τ

2
tp2

)
πg

ind.∼ Logit-normal(ηπ, τ
2
π).
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As discussed in Section 3.1, we reparameterize the Weibull distribution in terms of a

quantile and the shape parameter because observed failure data are often more informative

about the lower tail of their respective lifetime distribution (note that if T has a Weibull

distribution, σ is a shape parameter for the distribution of T and a scale parameter for

the distribution of log(T )). We truncate the distribution of σ2g at 1 (indicated by Tr(0, 1)

above) restricting the wearout failure mode to have an increasing hazard function (i.e.,

β2g = 1/σ2g > 1).

5.3 Priors

The complete GLFP model requires prior distributions on the hierarchical parameters.

We suggest weakly informative proper distributions that allow the data to overwhelm the

prior and provide information about the distribution of the population parameters. Prior

knowledge about product lifetimes is useful for choosing the mean of the location parameter

(η) distributions. However, the corresponding standard deviations should be diffuse to

allow the location to vary depending on the observed data. For the scale parameters (τ)

we recommend half-Cauchy distributions as suggested by Gelman et al. (2014).

5.4 Nested models

In principle, we prefer the full model (3) because we tend to believe that every population

has a distribution with a distinct set of parameters. In practice, however, we may consider

restrictions to reduce the number of parameters if the data do not support their inclusion.

We considered four models, all based on (3), differing by which model parameters are held

constant across sub-populations. These are (from most to least restrictive):

Model 1 πg = π, tp1g = tp1 , σ1g = σ1, tp2g = tp2 , σ2g = σ2

Model 2 πg = π, tp1g = tp1 , σ1g = σ1, σ2g = σ2

Model 3 πg = π, tp1g = tp1 , σ1g = σ1
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Model 4 tp1g = tp1 , σ1g = σ1

This set of model specifications is chosen based on the data, interpretation of the model,

as well as estimation considerations. Sub-population-model-specific parameters for the the

wearout failure mode (tp2g, σ2g), and the proportion defective (πg), are considered as a

means to account for heterogeneity across sub-populations in the right tails of the failure

distribution. Going from a common model for all sub-populations and gradually increasing

the complexity of the model, Model 4 is the most flexible. Model 4 allows for the probability

of early failure as well as the shape and scale parameters for the wearout failure mode to

vary across sub-populations.

For all of the nested models, the parameters for the early failure mode are common across

sub-populations. We found that there was often insufficient information to model these

parameters hierarchically. Moreover, assuming a common distribution for early failures

provides a meaningful interpretation and comparison of πg and πg′ (g 6= g′). Also the failure-

time distribution of the defective subpopulation (as opposed to the proportion defective)

is not of high interest.

5.5 Model selection

From the point of view of a consumer or purchaser, the goal of an analysis such as this is

may be to rate manufacturers and/or to inform future purchases based on predicted product

performance. In this case, we should choose the model that will provide the most accurate

prediction for future units of previously observed products. One appropriate criterion for

model selection, then, is the log pointwise predictive density (lpd),

lpd =
G∑
g=1

ng∑
i=1

log[p(tnew,g,i|t, tL, c)]

=
G∑
g=1

ng∑
i=1

log

[∫
p(tnew,g,i|θ)p(θ|t, tL, c)dθ

]
.

Using this criterion, we should choose the model with the highest expected lpd (elpd)

for a new data set {tnew,g,i : g = 1, . . . , G; i = 1, . . . , ng}. Notationally suppressing the
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conditioning on tL and c,

elpd = Eh lpd =
G∑
g=1

ng∑
i=1

∫
log[p(tnew,g,i|t)]h(tnew,g,i)dtnew,g,i, (4)

where h is a density for the true distribution of tnew,g,i. Although h is unknown, leave-one-

out cross-validation provides a robust estimator:

êlpd =
G∑
g=1

ng∑
i=1

log[p(tg,i|t−(g,i))]. (5)

The R package, loo (Vehtari et al., 2016), computes an approximation of (5) provided

that the observations ti are conditionally independent. It employs an importance sampling

method that uses S saved MCMC draws to compute smoothed importance weights, wi,s,

approximating log[p(tg,i|t−(g,i))] with
∑S

i=1wi,sp(tg,i)/
∑S

s=1wi,s. In addition to providing

an estimate of (4), their method also produces a standard error based on an asymptotic

result. For details, refer to Vehtari et al. (2017).

6 Model for the Backblaze hard drive data

We now apply this general methodology to the hard drive failure data from Backblaze.

There are 44 different drive-models in the data set, and significant heterogeneity in the

number of observed failures, time observed (Figure 1), and the parameter estimates of

the underlying GLFP. The hierarchical GLFP allows us to model the entire drive-model

population, borrowing information across drive-models, allowing estimation for those drive-

models for which little information exists.

6.1 Prior distributions

Following the recommendations in Section 5.3, we specify the following prior distributions

for each of the four nested GLFP models. Different sets of restrictions require different

prior distribution specifications, which are assigned as follows:

Model 1 Constrain all drive-models to the same GLFP distribution. For this “reduced”

model we assume the same prior distributions as in Section 4.2.
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Model 2 tp2g varies by drive-model. To help with model identifiably, we tighten the

priors on the early failure mode:

π ∼ Logit-normal〈7.0× 10−3, 2.6× 10−1〉,

σ1 ∼ Lognormal〈1.4× 10−1, 7.1〉,

tp1 ∼ Lognormal〈2.2× 101, 5.5× 104〉.

Model 3 tp2g and σ2g vary by drive-model. Prior distributions for the constrained pa-

rameters are the same as for Model 2.

Model 4 πg, tp2g and σ2g vary by drive-model. Prior distributions for constrained pa-

rameters are the same as for Model 2.

Where applicable, prior distributions on hyperparameters are as listed below. We use

half-Cauchy prior distributions on hierarchical scale parameters. As for the location hy-

perparameters, we choose weakly informative prior distributions centered around the cor-

responding prior mean for the non-hierarchical model.

ηπ ∼ Normal(−3, 1)

τπ ∼ Half-Cauchy(0, 1)

ησ,2 ∼ Normal(0, 2)

τσ,2 ∼ Half-Cauchy(0, 1)

ηt.22 ,2 ∼ Normal(9, 2)

τt.22 ,2 ∼ Half-Cauchy(0, 1).

6.2 Model fitting

Each model was fit using the rstan (Stan Development Team, 2016) package in R (R Core

Team, 2013), which implements a variant of Hamiltonian Monte Carlo (HMC) (Betancourt

and Girolami, 2015). HMC jointly updates all model parameters by simulating energy

preserving paths with random initial momentums along the posterior density. This is done
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to reduce autocorrelation and efficiently explore the posterior. Multiple chains were run,

each with 1500 iterations after 1500 warmup iterations: 4 chains were run for Models 1, 2

and 3 for a total of 6,000 post burn-in iterations and 16 chains were run for Model 4 for a

total of 24,000 post burn-in iterations. The Gelman-Rubin potential scale reduction factor

was used to provide a check for adequate mixing of the multiple chains. Upon convergence,

R̂, converges to 1. The respective maximum values of R̂ across all model parameters

for Models 1 through 4 (5, 50, 95 and 140 parameters, respectively) were 1.005, 1.028,

1.009 and 1.004. Other diagnostics provided by the software (tree-depth, and divergent

transitions) did not indicate problems with sampling. Plots of the posterior draws were

inspected for parameters with the fewest effective samples; these did not suggest features

that were inadequately explored.

6.3 Model selection

As we have discussed, while we prefer to allow all of the GLFP model parameters to be

drive-model specific, there are practical issues with fitting the full model. For example, due

to heavy left-truncation, there may be insufficient information for particular drive-models

to estimate all of the parameters.

Figure 4 provides a visual comparison for Models 1 through 4 by plotting the pointwise

posterior median of the cdf for each drive-model. The large left panel shows the adjusted

K-M estimate. The smaller plots correspond to Models 1 through 4. To make the plots

comparable, we use an adjustment based on the parametric model (Model 4). Note that

while all the paths for the posterior estimates necessarily pass through the origin, the K-

M estimates do not, because, for the K-M estimator, inference is entirely conditional on

survival up to left-most left-trunctation time.

These plots suggest that Model 1 is insufficient to explain the observed data. Model

2 certainly captures more of the heterogeneity observed in the K-M estimates; we observe

that the assumption of a common σ2 results in very similar progressions in the cdf, which

may be too restrictive. Model 3, which allows σ2 to vary by sub-population, suggests there

is evidence to support variation in this parameter among drive-models. While there are

differences between Model 3 and 4, they are relatively subtle.
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Figure 4: Left: Adjusted K-M estimates of the time to failure for each of the drive-models

in the Backblaze data. Right: Pointwise posterior median cdf estimates for Models 1-4,

ordered left to right, top to bottom.

We can also compare posterior estimates of time to failure under Models 1-4 for each

drive-model individually. For these comparisons we calculate pointwise the posterior me-

dian of the proportion failing over a grid. That is, for every model, and for a fixed set,

t̃ = {t̃1, . . . , t̃M}, we compute

median
{

H
(
t̃m|π(s)

g , t(s)p1g, σ
(s)
1g , t

(s)
p2g
, σ

(s)
2g

)
; s = 1, . . . , S

}
, (6)

where θ(s) is posterior sample s from p(θ|y).
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Figure 5: Posterior median of the proportion failing as a function of time under Models 1-4

for sample of drive-models, with axes scales as for Weibull probability plotting. The solid

step function is the adjusted K-M estimate.

The GLFP fit for a representative selection of drive-models (Drive-models 2, 9, 14, and

40) are presented in Figure 5 (See the Supplementary Material for similar plots for the other

drive-models). The black step functions again correspond to the adjusted K-M estimates.

As model complexity increases, the hierarchical-model GLFP curves become more flexible

and are better able to describe the observed failure data. All of the GLFP models appear

to produce higher estimates of the proportion failing, relative to K-M, for Drive-model

2. This behavior is not unexpected, however, because hierarchical models improve model

stability through shrinkage; in this context, shrinkage is toward an average cdf. Model 4 is
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êlpd Difference in êlpd SE of the Difference

Model 4 -13309.5 40.7 11.3

Model 3 -13350.2 458.8 31.0

Model 2 -13809.0 3674.6 96.2

Model 1 -17483.6

Table 2: Expected Log Pointwise Predictive Density (elpd) for each model specification.

Each model is compared to the more parsimonious model below. The estimated difference

of expected leave-one-out prediction errors between the two models, as well as the standard

error of the difference, is also presented.

in closest agreement.

Drive-model 9 shows a high proportion of early failures, a fact which Model 1 fails to

capture. Model 2 addresses this by estimating an earlier time to wearout, but still results in

a poor fit to the data. Models 3 and 4 conform more closely to the adjusted K-M estimate.

The disagreement between Models 3 and 4 for Drive-model 9, is interesting: Model 4 allows

the proportion of defective units to vary by drive-model, but Model 3 appears to fit just as

well in this case, by increasing the scale parameter for the wearout failure mode.

For Drive-model 14, Models 1-3 produce lower estimates of the proportion of drives

failing, and for Drive-model 40, they produce higher estimates. On the other hand, Model

4 follows the K-M closely across stages of lifetime. The differences between Models 3 and

4 and Models 1 and 2 are visually apparent. Differentiating between Model 3 and 4 is less

clear; for instance, the estimates from Model 3 and 4 are nearly identical for Drive-model

40.

Results showing the estimated elpd and associated standard errors for all 4 models

are shown in Table ??. We calculated the difference in expected predictive accuracy for

Model 4 versus 3, Model 3 versus 2, and Model 2 versus 1, as well as the standard error

of the difference (Table 2). For the models we considered, each successive increase in

model complexity increases elpd. Of all the models, Model 4 has significantly better elpd

compared to the the other 3 models.
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7 Model Assessment

7.1 A simulation-based approach

Having selected a model, it is good practice to check that the model provides an adequate

representation of the data-generating mechanism. One way to do this is to draw replicate

data sets from the posterior predictive distribution

p(trep,g|t) =

∫
f(trep,g|θg) p(θg|t) dθg.

This is a general approach recommended by Gelman et al. (1996), which works when no

classical goodness-of-fit test is available. When the model is adequate for the data, the

predictive distribution of a finite set of data characteristics — chosen to reflect features rel-

evant to the goals of the analysis — should not contradict the corresponding characteristics

observed in the actualized data.

There are many possible approaches to the posterior predictive check. We propose the

comparison of K-M estimates for each sub-population derived from replicated data drawn

from the posterior predictive distribution to the K-M estimate based on the actualized

data. This graphical approach does not provide a test statistic, but provides rich feedback

with respect to the fitted model’s agreement with the data.

Because the variability in the K-M estimator is primarily a function of the number of

at-risk units, we want to replicate the pattern of censoring that was observed. That is, for

unit i of sub-population g,

p(trep,g) =

∫ ng∏
i=1

f(tnew|tLg,i, cg,i, θ) p(θ|t)dθ.

Because we are working with posterior draws, θ(s), we can draw from this distribution by

choosing a draw, θ(s), at random, then conditionally draw trep,g from f(tnew|tLg,i, cg,i, θ(s)).

An obstacle remains, owing to the fact that the censoring time is unknown for observed

failures. Our admittedly simple approach is to assume that failed units would have been the

censored had they survived until the latest censoring or failure time for that drive model.

Our method for generating replicate data sets, t
(s)
rep,g, s = 1, . . . , R, for each sub-population

g = 1, . . . , G, is as follows:

For s = 1, . . . , R, do:
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1. Sample r uniformly from {1, . . . , S}.

For i = 1, . . . , ng, do:

2. Simulate t̃
(s)
rep,g,i ∼ GLFP(π

(r)
g , t

(r)
p1 , σ

(r)
1 , t

(r)
p2g, σ

(r)
2g ).

3. Repeat step 2 until t̃rep,g,i > tLg,i.

4. Set d
(s)
g,i =

max{tg,i : i ≥ 1}, if cg,i = 0

tg,i, if cg,i = 1.

Lastly, set (t
(s)
rep,g,i, c

(s)
rep,g,i) =

(d
(s)
g,i , 1), if t̃

(s)
rep,g,i > d

(s)
g,i

(t̃
(s)
rep,g,i, 0), if t̃

(s)
rep,g,i ≤ d

(s)
g,i .

Finally, plot K-M estimates based on the R replicated data sets along with the one based

on the actualized data on the same axes. Discrepancies between the replicated and actual

data can be used to diagnose inadequacies of the model.

7.2 Application to the Backblaze data

For the hard-drive data, we used the posterior samples obtained in fitting Model 4 to

generate R = 19 replicate data sets as described above. The resulting plots are displayed

in Figure 6.
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Figure 6: Adjusted K-M estimates of the proportion failing for a representative subset of

drive-models. Both the original data (bold line) and 19 “replicated” data sets from the

posterior predictive distribution (dashed lines) are shown.

Only a representative sample of plots is shown here for brevity (see the Supplementary

Material for similar plots for all of the drive-models). For most drive-models, the estimates

based on the observed data look similar to those based on the replicated data. There are a

few drive-models, however where this is not the case. Drive-model 14 shows a discrepancy

between the GFLP fit and the K-M fit in the right tail. In particular, the GLFP predictions

appear conservative, overpredicting the proportion failing after about 2.5 years. Due to

the large number of failures for this drive-model, the posterior for the hierarchical model

is similar to the stand-alone model. Other drive-models showing a lack of fit are 4 and 34.

We first address Drive-model 4; our diagnosis of 34 is analogous, so the following comments

extend to that drive-model as well.
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To diagnose the cause of the discrepancies between the observed data for Drive-model

4 and its posterior predictive distribution, we consider the event plot for a random sample

of units for this Drive-model while looking at estimates of lifetime (Figure 7). From these

plots, we can see that the discrepancy between the posterior and K-M estimates is driven

by failures among a relatively small subset of units, namely those with left-truncation times

smaller than 2500 hours. Further investigation reveals that, if we exclude the newest 75

drives, those with truncation times less than 800 hours, the K-M estimate falls within the

posterior 90% pointwise credible band. This situation suggests that, despite belonging to

the same drive-model, there may be something different about the newer drives leading to

worse reliability.

A possible explanation for the discrepancy shown in Figure 7 is that the units of Drive-

model 4 were introduced into the field over a period of 22 months. Manufactures of hard

drives (and most other products) often make changes to the product design over time to

either improve reliability or to reduce cost. Such changes will sometimes have an impor-

tant effect on the product’s failure-time distribution, invalidating one of our important

assumptions that failure-time distribution for a drive-model does not depend on the date

of manufacture.

Figure 8 shows a similar pair of plots for Drive-model 43. The data for this Drive-

model are heavily truncated; the observed units had run for quite some time before data

were made available with the earliest left-truncation time at 12,189 hours. In the bottom

half of Figure 8 we contrast the posterior median for drive-model 43 to an average GLFP

cdf for the entire population, which we call the “global average;” a description of the global

average is given in Appendix B. We can see that the lack of data for this drive-model during

early life results in a diffuse posterior centered around the global average until about 10,000

hours when they diverge. Although the posterior is close to the adjusted K-M, it is shrunk

toward the global average.
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Figure 7: Top: Event plot for 60 randomly sampled drives of Drive-model

4. Note that all drives in the sample are left truncated well past 1000 hours.

Bottom: The adjusted K-M estimate (dashed step function) is substantially higher than the point-

wise posterior median (dashed line; shaded region showing 90% credible interval). However, this

discrepancy is due to several early failures among the small set of drives with the earliest left-truncation

times (the newest set). The same adjusted K-M estimator after the exclusion of the newest 75 drives

(solid step function) shows close agreement with the posterior median.
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Figure 8: Top: Event plot for all units of Drive-model 43. Data for all

units are left-truncated, being observed conditional on survival beyond 12,000 hours.

Bottom: The dashed step function correponds to the adjusted K-M estimate (solid line). Due to

the heavy left-truncation, the posterior median for Drive-model 43 (dotted line) coincides with the

posterior median of the “global average” (dashed line) until the first left-truncation time.
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8 Comparing Sub-populations

8.1 Comparisons based on model parameters

As discussed in Section 3.1, we use a parameterization of the Weibull distribution in terms

of a chosen quantile, making prior elicitation straightforward. Posterior sampling immedi-

ately gives marginal posterior distributions for quantiles, which in reliability applications

is typically more informative than a measure of central tendency. To compare the uncon-

ditional p quantile for each sub-population, plots of posterior credible intervals may be

used.

Depending on the set of model restrictions used, simlar plots may be used to compare

the p quantiles for non-defective units (tp2g) or the proportion defective (πg).

8.2 Example: Drive-model comparison based on quantiles and

proportion defective

The top panel of Figure 9 shows estimates of t0.10 (i.e., the amount of time it takes for 10%

of hard drives to fail, i.e. the quantile corresponding to the H(t) distribution in Section 3.2),

for all drive-models. In this application 50% CIs were used due to considerable posterior

uncertainty in some of the parameters: especially for those with few drives in operation.

Another interesting feature to compare is πg, the proportion defective. The bottom panel

of Figure 9 shows the posterior credible intervals of πg for each drive-model. The plot is

again sorted according to t0.10 so it can be compared to the plot above. While for many of

the drive-models the ordinal ranking is the same as on the top, there are some drive-model

comparisons, for example 23 and 18, that differ in ranking if compared using t0.10g or πg.
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Figure 9: (a) 50% CI (in years) for t0.10 (b) 50% CI for π plotted on the logit scale. Both

plots are sorted based on the median value of the marginal posterior distribution of t0.10.
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8.3 Comparisons based on posterior predictive distribution

By utilizing samples from the full posterior distribution, in addition to estimation of the

model parameters, we can also produce forecasts for new units or groups of units. In many

situations, this may more directly address issues of importance.

The posterior predictive distribution incorporates two sources of variability: the poste-

rior uncertainty in the parameters, which largely depends on the amount of data collected,

and the uncertainty in future observations conditional on those parameters.

For example,

p(tg,new|t) =

∫
p(tg,new|θg)p(θg|tg) dθg

gives the posterior predictive density for a new unit from sub-population g.

We can sample from this distribution by drawing t
(s)
g,new from GLFP(π

(s)
g , t

(s)
p1 , σ

(s)
1 , t

(s)
p2g, σ

(s)
2g ),

for s = 1, ..., S, using the saved posterior draws for the model parameters.
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Figure 10: Left: 90% CI of the posterior predictive distributions for e−0.4tg,new the depreci-

ated value at failure (VAF) for a new unit for each Drive-model. Right: A comparison (90%

CI) of the predictive distribution of TTF (top) and VAF (bottom) based on 40% for best

11 drive-models, shows that rankings produced by the two measures are not equivalent.

30



8.4 Example: Drive-model comparison based on predictive dis-

tribution of new unit

We consider the problem of ranking drive-models with respect to economical value. From

a business perspective, it is clear that we should prefer the drive-models which will provide

more years of service. For ease of exposition, we will assume that the purchase price of a

hard-drive is the same across drive-models.

The mean time-to-failure (MTTF) for drive-model d can be estimated by

1

S

S∑
s=1

t(s)g,new.

While MTTF is often an important metric, due to the anticipation of advancements

in technology, we can expect that the relative value of computer hardware will depreciate

rather quickly. In simple terms, given two hard drives, one would prefer to have both

of them work for five years than for one to work for nine years and the other to work

for just one year. To account for depreciation, rather than using MTTF as the metric for

drive-model comparison, we use the value at replacement. The US Internal Revenue Service

considers computer hardware to be “5-year” equipment (US Department of Treasury, 2016).

Using“the declining balance method” the rate of depreciation is 40% per year.

Let L(t) = e−0.4t represent the value at the time of failure relative to a new unit. We

can rank the drive-models by

E(L(tg,new)|t)) ≈ 1

S

S∑
s=1

L(t(s)g,new).

Posterior credible intervals for L(tg,new) are shown in the left panel of Figure 10. A

zoomed version of the top eight drive-models, as ranked by E(L(tg,new)|y) are shown in

the bottom right panel. The panel above shows credible intervals for MTTF. We can

see that ranking by MTTF would lead to a different result – a new Drive-model 8 unit is

expected to last the longest, but the possibility of it failing early is higher than for the drive-

models ranked highest by our depreciation-aware metric. The top four drive-models (4, 5,

2, 3) seem comparable, with a new Drive-model 4 unit expected to depreciate the most.

However, given the discrepancy of the model fit for Drive-model 4 (noted in the previous
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subsection), in the absence of more early life data, we might harbor some lingering concern

about possible quality-control issues with this Drive-model.

9 Discussion

This paper offers a new approach to modeling and making inference for the lifetime of

consumer products using incomplete field reliability data. Products with long lifetimes often

have few failures and when failures do occur the cause is frequently unknown to the analyst.

The GLFP model provides a framework to accurately model data with evidence of multiple

failure modes. Moreover, when there are multiple product populations within the same

product class, our hierarchical modeling approach borrows strength across brands with

many observed failures to help make inference for those populations with little information.

This can be important when trying to leverage multiple sources of data with various sample

sizes and levels of censoring and truncation. We found that the use of weakly informative

priors on the hyperparameters can increase the overall efficiency of the MCMC. We now

address some important model assumptions and their potential for impacting statistical

inference.

First, we assume the failures occurring from various causes can be approximately as-

signed to two phases of product life. In practice, there might be additional phases, clearly

supported by the data, making the GLFP model too rigid. This rigidity is illustrated by

the right tail of the estimated distribution in Figure 2.

Second, we assume exchangability of units within a sub-population. This assumption is

due in part to ignorance about which units are defective but also of potentially important

covariates. We do not account for batch effects or varying conditions in the facility which

have impacted the observed failure rates. These factors are confounded with drive-model

in our analysis. An example of a possible batch effect is noted in Section 7.1 and illustrated

by Figure 7.

Consumers of manufactured goods usually lack the data and expertise to perform a

failure analysis to determine the cause of failure. Moreover, their interest is primarily in

the lifetime distribution of a product rather than the specific cause of failure. The ability

to fit marginal models, such as GLFP, allow consumers and manufacturers to accurately
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model products with bathtub hazard lifetime distributions and make comparisons across

different product sub-populations. Because the Bayesian approach provides full posteriors

distributions once a model is fit, the analyst can easily estimate a functional, such as a

quantile or depreciation factor, that allow products to be compared using statistics that

are meaningful in the context of the actual application.

While not presented here, another potential application is forecasting the number of fu-

ture failures over a fixed period of time for a current population of drives. Hong et al. (2009)

proposed a method, based on the Poisson-binomial distribution. It would be straightfor-

ward to adapt their approach to work with our method. For details and examples see Hong

et al. (2009, Sect. 6) and Xu et al. (2015).
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A Truncation adjusted Kaplan-Meier estimate of life-

time

We first start with a nonparametric estimate of the empirical cdf for each sub-population

using the Kaplan-Meier estimator. With left truncation, however, the standard Kaplan-

Meier estimator for drive-model g, denoted by F̂g(t)KM , is conditional on survival up to

tLg,min, the shortest reported running time of all units in of sub-population g for which

records are available. To produce unconditional estimates, we adapt the adjustment method

outlined by Meeker and Escobar (1998, Chapter 11). For each sub-population we select

tLg,min, the smallest left truncated time in the sample. By sampling from the full posterior

distribution, because Pr(T > tLg,min|θg) (the probability that a hard drive has survived up

to tLg,min) is a function of the model parameters, we can easily compute its posterior median,

Âmed = P̂r(T > tLg,min|θg). We compute the adjusted estimate by

F̂ (t)KMadj = Âmed +
(

1− Âmed

)
F̂g(t)KM , t > tLg,min.

While this adjustment is may be negligible for sub-populations with little truncation,

in our Backblaze example, five drive-models receive upward adjustments of greater than 5

percent and the estimated time to failure distribution of one drive-model (30) was adjusted

by nearly 16 percent, in part because the shortest truncation time for all observed units

was approx. 2.3 years.

B Definition of global average for Model 4

In Section 7.1, to illustrate the concept of shrinkage in our hierarchical model, we refer

to a “global average” which represents an average GLFP cdf for the entire population,

H (·|π̄, µ1, σ1, µ̄2, σ̄2). Since µ1 and σ1 are common across all sub-populations in our model,

these can already be interpreted as “global.” For the parameters that vary across sub-

populations, we select values corresponding to the medians of the hierarchical distributions

(3) conditional on the hyperparameters. In particular, we set

π̄ = logit−1(ηπ), µ̄2 = ηt2 −mσ2Φ
−1(.2) and σ̄2 = mσ2 .
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Let J(·|a, b), J−1(·|a, b) denote the cdf and inverse cdf, respectively, for a ognormal distri-

bution with log-location parameter a and log-scale parameter b. Then

mσ2 = J−1[0.5 · J(1|ησ2 , τσ2)|ησ2 , τσ2 ],

which is the median of a ognormal distribution with parameters ησ2 , and τσ2 , truncated to

the interval (0, 1).

We estimate the global average pointwise, using draws from the joint posterior distri-

bution, H
(
t̃|η(s)π , µ

(s)
1 , σ

(s)
1 , η

(s)
t2 , η

(s)
σ2 , τ

(s)
σ2

)
, s = 1, 2, . . . , S. The computation is thus similar

to that shown in (6).

C Supplementary Material

Model code and plots Stan code for Model 4 as well as the complete set of plots for

Figures 5 and 6 (supplementary.pdf)

Backblaze data set Lifetime data set for all 44 Backblaze drive-models used in our anal-

ysis. (backblaze hd data.csv)
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