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ABSTRACT 

The distribution of usual intakes of dietary components is important to individuals 

formulating food policy and to persons designing nutrition education programs. Usual 

intake of a dietary component for a person is the long run average of daily intakes of that 

component for that person. Because it is impossible to directly observe usual intake for an 

individual, it is necessary to develop an estimator of the distribution of usual intakes based 

on a sample of individuals with a small number of daily observations on each individual. 

Daily intake data for individuals are nonnegative and often very skewed. Also, there is 

large day-to-day variation relative to the individual-to-individual variation and the 

within-individual variance is correlated with the individual means. We suggest a 

methodology for estimating usual intake distributions that allows for varying degrees of 

departure from normality and recognizes the measurement error associated with daily 

dietary intakes. The estimation method contains four steps. First, the original data are 

standardized by adjusting for weekday and interview sequence effects. Second, the daily 

intake data are transformed to normality using a combination of power and grafted 

polynomial transformations. Third, using a normal components-of-variance model, the 

distribution of usual intakes is constructed for the transformed data. Finally, a 

transformation of normal usual intakes to the original scale is defined. The approach works 

well for a set of dietary components selected from the 1985-1986 Continuing Survey of 

Food Intakes by Individuals data. The selected components display a range of 

distributional shapes. 

KEY WORDS: Measurement error models, nutritional status, Continuing Survey of Food 

Intakes by Individuals, density estimation. 



1. INTRODUCTION 

The United States Department of Agriculture has been responsible for conducting 

periodic surveys to estimate food consumption patterns of household and individuals in the 

United States since 1936. Because dietary intake data from these surveys are used to 

formulate food-assistance programs, consumer education and food regulatory activities, it 

is crucial that appropriate methodologies be used in the analysis of these data. However, 

inappropriate assumptions of normality and failure to recognize the measurement error 

inherent in mean observed daily intakes as an indicator of the usual daily intake (i.e., the 

normal or long-run average daily intake) often occur in the analysis of dietary intake data 

(Li:irstad, 1971; Hegsted, 1972, 1982; National Research Council, 1986). This article 

outlines a methodology which recognizes that usual intake distributions are typically 

nonnormal and provides an appropriate estimate of the usual intake distribution from daily 

dietary intake data. 

In evaluating the adequacy of diets, it is recognized that an individual who has a 

low intake of a given dietary component on one day is not necessarily deficient or at risk of 

deficiency for the dietary component under consideration. It is low intake over a 

sufficiently long period of time that produces dietary inadequacy. A dietary deficiency 

exists when the usual daily intake of the dietary component is less than the appropriate 

dietary standard, where usual intake is the long run average of daily intakes. The same 

concepts apply to excessive intakes. 

To assess usual intake, daily dietary intakes are often collected from individuals for 

a number of days. If the individual's mean daily intake for a particular dietary component 

is used as an indication of the individual's usual intake, the variance of the mean intakes 

contains some intraindividual variability and, hence, is greater than the variance of the 

usual intakes. Other parameters of the distribution of mean intakes may differ from the 

parameters of the distribution of usual intakes. Because of these problems, using the mean 

1 
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intake distribution as an estimate of the usual intake distribution can lead to erroneous 

inferences regarding nutritional status. For example, if the mean daily intake distribution 

is used to estimate the proportion of the population whose usual daily intakes fall below an 

intake level indicative of dietary deficiency, the overdispersion of the mean intake 

distribution relative to the usual intake distribution will lead to an inflated estimate of the 

proportion of individuals at risk for dietary inadequacy. 

Two alternative approaches to estimating the usual intake distribution are to (a) 

model the data in the original scale, or (b) transform the observed intakes to normality. 

Recent research by Nusser et al. (1990) on estimating usual intake distributions uses the 

first approach. In that research, a measurement error model is hypothesized for the 

observed intakes. The model decomposes the observed daily intake of an individual into 

the usual daily intake for that individual plus a measurement error associated with the 

individual on the day the intake was observed. To account for the heterogeneity of 

intraindividual moments often observed in dietary intake data, the second and third 

moment of an individual's measurement errors are modeled as a function of the individual's 

usual intake. The first three moments of usual intake are estimated under the model. A 

parametric form for the usual intake distribution is assumed, and moment methods are 

used to estimate the parameters of the assumed distribution. While this approach has the 

advantage of working with the data in the original scale, it requires several parametric 

assumptions. 

The second approach involves transforming the daily intakes so that the 

transformed values follow a normal distribution. The National Research Council (1986) 

recommends this approach and suggests power transformations. However, preliminary. 

investigations using the data from the 1985-1986 Continuing Survey of Food Intakes by 

Individuals (CSFII) indicate that simple power transformations do not consistently produce 

transformed data that are normally distributed. In the case of the CSFII data described in 

Section 3, the three parameters of the model, 
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Normal Score for Daily Intake = jJ(Daily Intake 1 + ~) , 

were estimated in an attempt to transform the data to normality. The method of fitting 

described by Lin and Vonesh (1989) was used. Of the dietary components tested (calcium, 

energy, iron, protein, vitamin A, and vitamin C), only the transformed intake values for 

calcium and energy were consistent with the hypothesis of normality. 

Because the three-parameter power transformation approach was not suitable for 

these data, a semi parametric transformation for dietary intake data was developed. The 

first step in the process is to fit a grafted cubic equation to a power of the original data to 

transform the observed daily intakes to normality. This fitting can be considered a 

semi parametric version of the Lin and Vonesh (1989) procedure. It is also related to the 

spline approach to estimating the distribution function. See Wahba (1975) and Wegman 

(1982). The transformed observed intake data are assumed to follow a measurement error 

model and normal theory is used to develop a predictor for the transformed usual daily 

intake for each individual. An inverse transformation is estimated for transforming normal 

usual intakes back to the original scale. The inverse transformation of the fitted normal 

distribution defines the distribution of usual intakes. Inferences concerning usual daily 

intakes can be made in the transformed space or in the original scale. Alternatively, the 

inverse transformation can be used to produce a set of pseudo usual intakes in the original 

scale and the pseudo usual intakes can then be used to estimate the distribution of usual 

intakes. 

This article describes the transformation approach to analyzing dietary intake data. 

The approach was developed with the objective of producing an algorithm suitable for 

computer implementation and application to a large number of dietary components. To 

illustrate the approach, data from the 1985-1986 CSFII are analyzed using the proposed 

methodology. 
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2. THE TRANSFORMATION APPROACH 

2.1 Overview 

The transformation approach described below contains three parts. These are 

transforming the observed intakes to normality, estimating the parameters of the normal 

distribution of transformed usual intakes, and developing the transformation that carries 

the normal usual intakes into the original scale. The parameters of the normal usual intake 

distribution and the transformation of normal usual intakes to the original scale define the 

distribution of usual intakes in the original scale. 

2.2 Transforming the Observed Data to Normality 

The first step in the procedure is to develop the transformation to normality. 

Preliminary analyses established that no simple power transformation was applicable for all 

dietary components. Therefore, the transformation is specified as a grafted cubic applied 

to a power of the original observations. The grafted polynomial transformation described 

below is restricted to have continuous first and second derivatives. The number of join 

points is chosen so that the transformed values are approximately N(O, 1) random 

variables. 

A power transformation of the observed intakes is used as a starting point for the 

grafted cubic transformation to normality for two reasons. First, the grafted polynomial 

transformation required to obtain normal intakes from the power-transformed observed 

intakes will be much flatter and thus require fewer join points. Second, extrapolation for 

extreme intake values is likely to be more accurate for a power of the original data. 

Let Yij denote the observed intake of a dietary component for individual i on day 

j , where i = 1, 2, ... , n individuals and j = 1, 2, ... , r days. Assume that the individuals 

are independent, and for each individual, daily intakes are independent. Let a be the 

selected power of the transformation and let yC:. represent the power transformed data. 
IJ 



5 

Let F denote the empirical cumulative distribution function constructed from the 

nr Yfj values. By connecting the midpoints of the rises in the steps defined by F , a 

continuous piecewise linear estimate F of the true cumulative distribution function F is 

constructed. More formally, let Y(1), ... , Y{m) be the m ~ nr ordered distinct observed 

daily intake values. Then F is defined by 

- a · a -1 · a · a 
F(Y ) = F(Y ( t) + 2 [F(Y ( t-1))- F(Y ( t))J Ya a a 

when (t)~y <Y(t+l) 

for t = 1, ... , m 

a a 
when Y > Y(m) 

This approach was chosen because it produces a continuous piecewise linear estimate of F 

which yields approximately the same mean value as that computed with the empirical 

cumulative distribution function F . The approach also accommodates data with sampling 

weights and repeated observations. Let 

- -1 - a X .. = ! (F[Y .. 1) , 
IJ IJ' 

(1) 

where !( ·) is the normal cumulative distribution function. 

The coefficients, {3l, of the regression equation 

- k a x .. = l": (fY . . )f3e + e .. 
IJ l= 1 (' I J IJ 

are estimated, where ( fY~-), l = 1, 2, ... , k, are regression variables that define a . (' IJ 

function that is locally cubic, has continuous first and second derivatives, and is linear at 
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the beginning and end of the range of the data. Let X.. be the transformed variables 
IJ 

defined by 

k Ct • 
X .. = L (iY .. ){Jl, 

IJ l=l (;- IJ 

where ~l are the estimated regression coefficients. 

Although the Xij are approximately normal variables, they may not exhibit 

homogeneous intraindi vidual variance. A test of homogeneity can be constructed by 

regressing the standard deviations on the means and testing whether the slope from this 

regression is equal to zero. For the dietary components in the food intake data, the initial 

transformation produced homogeneous intraindividual variance as well as a normal 

distribution for the transformed observations. 

2.3 Parameter Estimation in Normal Space 

A measurement error model is used as a basis for estimating the distribution of 

usual intakes in normal space. Let 

where 

x .. = x. + u .. , 
IJ I IJ 

2 
uij N NI(O, cru) , (2) 

x. is the unobservable normal usual intake value for individual i ; u .. is the unobservable 
I ij 

measurement error for individual i on day j ; the uij are independent given i ; and xi 

and ulj are independent for all i, l and j . Note that the transformed observed daily 

intakes Xij from the transformation described in Section 2.2. have J.Lx = 0 . This model 

implies that the X .. are N(O, cr2 + cr2) variates, and that the individual means 
IJ X U 
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- -1 r 
X. = r I: X .. 

I. . 1 1J J= 

are independent random variables from a N(O, cr~) distribution, where 

2 2 . -1 2 cr- = cr + r cr X X u 

Estimators for the moments are 

n 
. -1 " -
J1. = n " X. , 

X i=1 I. 

n 
• 2 ( )-1 " (X- • )2 cr- = n-1 " . -JJ. , 
X i=1 I. X 

n 
a-2 = [n(r- 1)]-1 I: (X .. - X. )2 , 

U i= 1 1J I. 

Let the assumptions of model (2) hold and let Jl.x , cr~ and cr~ be known. Then 

the best linear unbiased predictor of xi is 

where Jl.x = 0 , and the variance of the prediction error is 

V (- ) 2 -4 2 ar x. - x. = C1 - crx- C1 • 
1 1 X X 

The unconditional variance of x. is 
1 

(3) 
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If the objective is to predict a single value of xi , then xi is optimal with respect to 

mean square error. However, our objective is to obtain a set of values whose distribution is 

close to that of the true xi , where true xi has variance u~ . It is clear from (3) that the 

variance of X:. is less than u2 . Predicted values of x. with unconditional variance u2 
I X I X 

can be obtained by using the predictor 

.. -1 - ) 
x. = p. + ux- u (X. - J1. • 

I X X !. X 

An analogous adjustment for empirical Bayes estimation was suggested by Louis (1984), 

given that the objecti-.-e of prediction is to obtain estimates whose empirical cumulative 

distribution function is close to the true distribution function. 

To implement the procedure of ( 4), the means calculated from the Xij for each 

individual i and the estimates of p. , u2 and O"X~ are inserted into ( 4) in the 
X X 

appropriate places. The resulting xi are called normal pseudo usual daily intakes. 

2.4 The Transformation for Usual Intakes 

(4) 

An individual's usual intake is the expected value of that individual's daily intakes. 

That is, 

y. = E{Y..Ii}, 
I IJ 

where yi is the usual intake for individual i . In the transformed scale, xi is the 

expected value of Xij for individual i . Let g denote the transformation taking the 

original observed intakes to normality; i.e. 
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Because the transformation g is nonlinear, yi j g - 1(xi) . Therefore, it is necessary to 

develop the transformation that carries x. into y .. Denote the desired transformation by 
I I 

h . The transformation h is constructed by adding to the inverse of the nonlinear 

transformation g an approximation for the bias necessary for transforming mean values. 

An approximation for the transformation h is developed as follows. Let g - 1 

represent the inverse of g. Using a Taylor series approximation for g-1(xi + ui), 

Y· = E{Y..Ji} 
I IJ 

a2 -1( ) 
. -1( ) -1 g xi 2 
= g xi + 2 ax2 au . 

To obtain an approximation for the second derivative of g - 1 , consider a particular 

x and the three points [xi- au, g-
1(xi- au)], [xi, g-

1(xi)], and [xi+ au, g-1(xi +au)]. 

A quadratic can be fit to these three points to furnish a local approximation to g - 1(x) . 

Thus, we can write 

-1( ) 2 g x ~ a.x + b.x + c. 
- I I I 

for x near to x., where (a., b., c.) is such that the quadratic passes through the three 
I I I I 

points. Furthermore, the second derivative of the approximation is 2a. and the 
I 

approximate yi value for X = xi is 

- -1(- ) 2 Y· = g x. +a. a 
I I I U 
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(5) 

Note that, given the power transformation and the grafted polynomial transformation, a 

value of g -l(x) can be obtained for any x through iterative numerical techniques. Thus, 

an approximate usual intake y can be generated for any x using ( 5). 

The function h(x) can be approximated by fitting a grafted cubic to the (yi' x) 

pairs in the same way that the function carrying the power transformed data to normality 

was estimated wjth the (Ya., X .. ) pairs. This smoothed inverse transformation is called 
I J IJ 

the mean transformation. 

3. APPLICATION TO CSFII DATA 

The procedures described in Section 2 were applied to a subset of the data from the 

1985-1986 Continuing Survey of Food Intakes by Individuals (CSFII) conducted by the 

Human Nutrition Information Service of the U.S. Department of Agriculture. Daily 

dietary intakes were collected from women between 19 and 50 years of age and from the 

preschool children of the women. The design called for daily intakes to be obtained at 

approximate two-month intervals over the period of one year (April 1985 to March 1986). 

Data for the first day were collected by personal interview and were based on a 24-hour 

recall. Data for subsequent days were based on 24-hour recall and were collected by 

telephone whenever possible. The sample was a multi-stage stratified area probability 

sample from the 48 coterminous states. The primary sampling units were area segments, 

and the probabilities of selection of area segments were proportional to the numbers of 

housing units in the segments as estimated by the Bureau of the Census. The sample was 

designed to be self weighting. Because of the high rate of nonresponse for the six~ay 

sample, the USDA constructed a four~ay data set for analyses. The four days of data 

consisted of the first day of dietary intakes for all individuals who provided at least four 
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days of data, plus a random selection of three daily intakes from the remaining three, four 

or five days of data available. Weights were developed to adjust for nonresponse, but the 

analyses of this paper are constructed on unweighted data. 

In this paper, we analyze a subset of the four-day data set containing dietary 

intakes for women between 23 and 50 years of age who were responsible for meal planning 

within the household and who were not pregnant or lactating during the survey period. 

There were 785 women who belonged to this category. Because of the time separation of 

the observations, we assume the four observations on each individual to be independent 

observations on that individual. The dietary components included in the analyses are 

calcium, energy, iron, protein, vitamin A and vitamin C. These components were selected 

because of their nutritional importance and because of their different distributional 

behaviors. 

Most of the differences in distributional shapes for the different components are 

associated with the frequency of consumption for a dietary component. Dietary 

components that are consumed frequently, such as energy, tend to be more sy=etrically 

distributed than those that are consumed sporadically. For example, there is a large 

variability in the amount of vitamin A in foods and vitamin A has a heavily right skewed 

intake distribution. 

The report of the National Research Council ( 1986) provides a review of factors that 

influence observed daily intakes. Some effects, such as errors in reported food intake and 

translation of food intake to nutrient intake, are not estimable from the data of our study. 

The effect of other factors, such as day of the week, season (month), interview method, and 

interview sequence can be investigated. There were two interview methods, telephone and 

personal. Interview sequence refers to the order in which the daily data were obtained for 

sample individuals. There are four values for interview sequence, first interview, second 

interview, third interview and fourth interview. 
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The daily intake data were examined using least squares methods to determine 

whether weekday, month, interview method, and interview sequence effects were 

important. Preliminary analyses with weekday, month, interview method and interview 

sequence effects in the model indicated that month and interview sequence are confounded 

to a large degree. This is because the first interview was conducted at nearly the same 

point in time for all individuals. Hence, the month effects were deleted from the model, 

and for subsequent analyses, a model containing weekday, interview method and interview 

sequence as additive classification variables was used. 

Interview method was not significant for any dietary component. Weekday effects 

were significant for energy (p < 0.001) and protein (p < 0.01) intakes. Contrasts 

indicated that the effect was primarily due to higher consumption on weekends for both 

dietary components. Weekday effects were not significant for calcium, iron or vitamin C. 

Sequence effects (confounded with month effects ) were significant at the a= 0.001 level 

for calcium, energy, iron and protein intakes. For all dietary components, a large 

proportion of the sequence variation was accounted for by a contrast of first interview day 

versus the intake for the other three days (92-99% of the sequence variation for calcium, 

energy, iron and protein and 78% for vitamin C). The mean intakes for the first 

interviews, conducted April through June, were consistently higher than mean intakes in 

other months. 

Because of these results, we used data adjusted for weekday and interview sequence 

effects in the subsequent analyses. A ratio adjustment was used to insure that all adjusted 

intake values are nonnegative. The observed intake values were regressed on indicator 

variables representing the days of the week and interview sequence. The data adjusted for 

weekday and interview sequence are 

* . -1 -
Y.. =YO .. Y1 YO .. ' IJ I J . IJ 
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where Y Oij is the original observed intake of individual i on day j , Y 1. is the mean of 

the original observed intakes for the first interview day, YOij is the predicted intake from 

* the regression, and Yij is the ratio adjusted intake for individual i on day j . 

To meet the assumptions of the basic model that the distributions are homogeneous 

across days, the ratio adjusted data were further modified using the following procedure. 

The intakes observed on the first survey day were ranked. For each remaining day, the 

data were also ranked. The data for each of the last three days were replaced by the 

first-day intake of the equivalent rank. The effect of this procedure is to produce 

smoothed data that are identically distributed on all four days. The first intake day was 

taken to be the "standard" because research workers in the field believe it to be the most 

accurate. The adjusted intakes are hereafter referred to as the observed daily intakes. 

The among- and within-individual standard deviations for the observed intakes are 

presented in Table 1. These statistics indicate that there is considerable intraindividual 

variability relative to interindividual variability. The ratios of intra- to interindividual 

variances are similar to those noted for comparable data in National Research Council 

(1986). The skewness coefficient for the distribution indicates that for most components, 

an assumption of normality is unreasonable. In addition, plots shown in Figures 1 and 2 of 

Table 1. Sample moments for data in the original scale. 

Among- Within-
Dietary Individual Individual 

Component Mean s.d. S.d. Skewness 

Calcium 579.14 223.64 297.55 1.31 

Energy 1492.97 382.73 507.25 0.73 

Iron x 100 999.10 288.98. 463.65 2.28 

Protein x 10 595.35 140.43 238.78 1.17 

Vitamin A + 10 498.30 255.43 733.04 6.37 

Vitamin C x 10 751.44 386.71 584.96 1.57 
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intraindividual standard deviations versus individual means for energy and vitamin C 

reveal that the intraindividual variances for these dietary components are related to the 

individual means. 

The observed intakes for each dietary component were transformed to normality 

using the procedure described in Section 2.2. One one hundredth of the mean of the 

component was added to each observation before performing the power transformation. 

This was done because the components vitamin C and vitamin A had some daily observed 

values very close to zero and because the derivative of the power transformation is infinite 

at zero. Let Yij denote the observed intakes increased by one one hundredth of the 

sample mean. 

The value of a was computed by using the 0.10, 0.50, and 0.90 values of the 

empirical distribution function. Let these vector of values be (w1, w2, w3), and let the 

0.10, 0.50 and 0.90 values of the standard normal distribution be (z1, z2, z) . Then the 

value of (a, {30, {31) was chosen such that 

3 a 2 E ( z. - {3
0 

- {31w. ) . 
1 

I I 
I= 

is a minimum where the minimum is over the grid of values for a, [1, (1.5)-1, (2.0)-1, ... , 

(10)-1] . This relatively simple estimation procedure was chosen so that it could be 

implemented automatically for future analyses of dietary components. Also, there is the 

second round to the transformation associated with the grafted polynomial. The inverses 

of the powers of the first round transformation are given in Table 2. The largest power of 

(2.5)-1 was chosen for energy and the power for the two vitamins is the boundary power 

of (10)-1 . 

The ( Jya.) for the grafted polynomial were created in the following manner. Let 
(' I J 

np be the largest integer less than (p- 1)-1(n- 4) . Let n1 be the largest integer less 
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Table 2. Statistics for the transformations 

Inverse Number Original Mean t for 

Dietary of of Anderson- Anderson- standard 

Component power parameters Darling a Darling a d .. b eVJatlon 

Calcium 4.5 3 0.24 0.25 -1.46 

Energy 2.5 3 0.36 0.37 0.66 

Iron 5.5 4 0.21 0.22 -D.03 

Protein 3.0 4 0.20 0.63 0.66 

Vitamin A 10.0 5 0.26 0.45 -D.35 

Vitamin C 10.0 6 0.57 0.34 -D.88 

(a) Reject at 10% level if Anderson-Darling statistic greater than 0.68. 

(b) Reject null hypothesis of homogeneous variance at 5% level if [t[ > 1.96. 

than 2 + 0.5(n- (p -1)np] , and let np- n1 - (p -1)np. Let A1, A2, ... , Ap be a set 

of points such that n1 -values of Yfj are less than A1, np+1 values of Yfj are greater 

than A +l and n values of Ya. fall between A. and A.+1 for i = 1, 2, ... , p. The p p IJ I I 

(/Yf) are defined by 

.and 

( iY~.) = G lY~.) 
[' IJ [' IJ 

n 4 
(2(Y~.) = ya.- (4n)-1 ~ ~ ya., 

IJ IJ i=lj=1 IJ 



for l = 3, 4, ... , p , where 

G.iya.) = 0 
t:- I J 
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Y~. > Al 2' IJ -

for l = 3, 4, ... , p + 2 . Each of the (/.Yf) is a function that is: a) linear for Yfj 

~ A1 , b) linear for Yfj ~ Ap, and c) continuous with continuous first and second 

derivatives. Therefore, a linear combination of the functions will have the same properties. 

The fitted grafted polynomial function was constrained to be monotone and continuous 

with continuous first and second derivatives. 

The number of join points for the grafted cubic was chosen so that the 

Anderson-Darling test for normality was nonsignificant at the 10 percent level when 

applied to the transformed data. A minimum of three parameters was estimated for each 

component. The statistics for the transformation are given in Table 2. The minimum of 

three parameters was judged satisfactory for calcium and energy. For iron and protein, 

four parameters were included in the model. The model for vitamin A contained five 

parameters and the model for vitamin C contained six parameters. 

Figure 3 contains a plot of the normal scores against the (5.5)-1 power of the iron 

observations. It is clear that no simple power transformation would be adequate to 

transform the plot into a straight line. The estimated grafted cubic is the smooth line in 

the plot. The vertical dashed lines are the join points for the grafted polynomial. The 

fitted function is linear for the segments outside the exterior dashed lines. The dashed lines 

are spaced so that there is an equal number of observations in each segment. As a result, 

the middle segment is much narrower than the two adjacent segments. 
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A plot of the transformation from the original scale observed intakes to the normal 

observed intakes is presented in Figure 4 for vitamin C. The transformation for vitamin C 

differs considerably from a power function. 

As an additional check on the transformation, the Anderson-Darling statistic was 

computed for the means of the four transformed observations. These statistics are given in 

the column headed "Mean Anderson-Darling" in Table 2. In no case is the statistic 

significant at the ten percent level. 

To examine the intraindividual variances for the transformed data, the hypothesis of 

a zero slope for the regression of the intraindividual standard deviations on the individual 

means was tested. The results from these tests are presented in the last column of Table 2. 

In all cases, the hypothesis of zero slope is accepted. Plots of the intraindividual standard 

deviations versus the individual means for the transformed data were also constructed. 

There were no obvious deviations from homogeneous intraindividual variances in the plots. 

Figure 6 contains the plot for vitamin C. 

The within and between variances for the transformed data are given in Table 3. In 

all cases, the sum of the within-individual and between-individual variances is close to one 

Table 3. 

Dietary 
Component 

Calcium 

Energy 

Iron 

Protein 

Vitamin A 

Vitamin C 

Sample moments for data in the 
normal scale. 

Among- Within-
Individuals Individual 
Variance Variance 

·2 .2 
ax au 

0.358 0.639 

0.362 0.634 

0.314 0.684 

0.273 0.725 

0.226 0.767 

0.308 0.683 
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because the transformed data have mean zero and variance one. The within variance 

exceeds the among variance for all dietary components. The ratio of within to among is 

smallest for energy with a value of 1. 75 and is largest for vitamin A with a ratio of 3.39. 

The ratios of within to among of Table 3 are larger than the corresponding ratios computed 

from the standard deviations in normal scale of Table 1. This is because in the original 

scale, the data are skewed and the individual standard deviations are positively correlated 

with the individual means. 

The mean transformation was computed in three steps. First, an individual normal 

usual intake was computed for each individual using the individual means and formula ( 4). 

Then, an individual usual intake in the original scale was computed for each normal usual 

intake using equation (5). Finally, a function was fit to the (xi,)\) pairs. The function 

was of the same form as the original transformation. That is, the power of )\ , the number 

of parameters estimated for the grafted polynomial, and the join points were the same as 

for the original function. 

Table 4 lists the sample mean, variance and skewness coefficient for the pseudo 

usual intakes where the pseudo usual intakes are in the original scale. The pseudo usual 

intakes are those defined by equation (5). Comparison of the statistics for pseudo usual 

intakes with the same statistics for the distribution of individual means (Table 5) indicates 

that the distribution of four-<iay means is not an appropriate estimate of the usual intake 

distribution. For all dietary components, the standard deviation and skewness coefficient 

is larger for the mean distribution than for the estimated usual intake distribution. 

The estimated densities of usual intakes for energy and vitamin C are the solid lines 

in Figures 7 and 8. These densities were constructed by taking the derivative of the h 

transformation and multiplying this derivative by the normal ordinate for the usual intake 

density of the component in the normal scale. Thus, the density of usual intakes is 



19 

Table 4. Sample moments for the pseudo usual intakes. 

Dietary Standard 
Component Mean Deviation Skewness 

Calcium 580.00 220.10 0.93 

Energy 1493.77 383.10 0.40 

Iron • 100 990.37 286.33 1.03 

Protein • 10 592.88 141.14 0.45 

Vitamin A .;. 10 464.71 256.27 1.56 

Vitamin C • 10 765.66 368.64 0.80 

Table 5. Sample moments for four-day means. 

Dietary Standard 
Component Mean Deviation Skewness 

Calcium 579.14 268.60 1.13 

Energy 1492.97 459.14 0.50 

Iron • 100 999.10 370.48 1.40 

Protein • 10 595.35 184.32 0.73 

Vitamin A .;. 10 498.30 446.74 3.66 

Vitamin C • 10 751.44 484.86 1.13 

where if> ( ) is the distribution of usual intakes in normal space. 
X 

Also in the figures are the estimated density for one-day intakes identified by the 

short dashed lines and the estimated density of the four-day means identified by long 

dashed lines. The densities for four-day means were estimated by estimating the 

transformation to normality in exactly the same way as described for the one-day intakes. 

The one-day intake distribution for energy is only mildly skewed. The energy usual intake 
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distribution is even less skewed. The estimated density of four-day means for energy has 

properties falling between those of the one-day density and the usual intake density. 

The one-day intake distribution for vitamin C is very skewed. While the four-day 

distribution is less skewed, it is still of a nonnormal shape. The distribution of usual 

intakes for vitamin C is less skewed than the four-day distribution but it is definitely 

skewed. 

Dietary intake data are often used to make inferences about the nutritional status of 

the population. Of particular interest are estimates on the prevalence of a dietary 

inadequacy, that is, the proportion of the population with usual nutrient intake below the 

appropriate standard. Therefore, in deriving an estimate of usual intake distributions, it is 

the lower and upper percentiles of the distribution, rather than its first two moments, 

which are of interest. 

To illustrate the differences among the distributions, an arbitrary standard of 800 

kcal was adopted for energy. Under the distribution of one-day intakes, 12.8% of the 

observations are below the standard. These percentages are 6.1 and 2.1 for the four-day 

mean and usual intake distributions, respectively. Thus, a large error would be made if the 

distribution of four-day means were used as an approximation to the distribution of usual 

intakes. 

Table 6 contains some estimated percentiles for the dietary components. The. 

percentiles were computed from the estimated mean transformation function using the 

percentiles of the estimated distribution of usual intakes in normal scale. For example, the 

estimated mean and variance of vitamin C usual intake in normal space are zero and 

0.3082, respectively. Therefore, the estimated 95% point in normal space is 0.5552 • 1.645 

= 0.9132. Using the estimated h-transformation, the 95% point of the usual intake 

distribution in original space is 1,422. 

·The numbers in parentheses are approximate standard errors calculated using 

Taylor approximations. In normal space, the estimated quantile is 
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Table 6. Estimated percentiles for usual intakes 

Percentile 
Component 

0.01 0.05 0.10 0.50 0.90 0.95 0.99 

Calcium 201 278 327 550 867 977 1211 
(10) (9) (9) (9) (19) (24) (36) 

Energy 719 911 1023 1469 1991 2153 2476 
(25) (22) (20) (16) (28) (34) (47) 

Iron x 100 466 589 661 952 1363 1518 1871 
(17) (15) (14) (12) (27) (36) (60) 

Protein x 10 306 378 419 581 781 848 985 
(11) (9) (8) (6) (13) (16) (24) 

Vitamin A .;. 10 119 167 202 403 803 976 1406 
(7) (8) (8) (11) (34) ( 49) (92) 

Vitamin C x 10 162 253 327 726 1236 1422 1847 
(10) (14) (16) (15) (33) (44) (73) 

where Qx(P) is the estimated quantile in normal space, u~ is the estimated variance of 

usual intakes in normal space, t( ) is the standard normal cumulative distribution 

function and jJ.x is the estimated mean of usual intakes in normal space. The estimated 

variance of u~ can be computed using the estimated variances of the analysis of variance. 

Because jJ. is independent of o-2 , the estimated variance of Q (p) is 
X X X 

For the estimated five percent point of the vitamin C usual intake in normal space, 

V{Qx(p)} = (1.645) 2(0.004947) + 0.006101 = 0.001949, 
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where 

and we have used simple random sampling variance formulas. The estimated variance of 

the estimated quantile in original space is 

where the h-transformation is treated as fixed. For the five percent point for vitamin C 

we have 

4. FUTURE RESEARCH 

Several extensions of the methodology are being developed. Since most data are 

based on complex sample surveys, it is important that the method be extended to include 

data with weights other than n - 1 . This modification can be incorporated by including a 

weight term in the estimate of the empirical distribution function. See Francisco and 

Fuller (1991 ). The calculation of standard errors of estimates based on complex surveys 

also requires additional work. Replication variance estimation methods are being 

investigated. Many dietary intake surveys are based on observations from adjacent days. 
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Such surveys require estimators that account for the correlation structure among observed 

daily intakes for an individual. Also, an extension of the method to multivariate data is 

under study. 
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