Fujita type global existence: global nonexistence theorems for weakly coupled systems of reaction-diffusion equations

Thumbnail Image
Date
1993
Authors
Uda, Yoshitaka
Major Professor
Advisor
Howard A. Levine
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Mathematics
Welcome to the exciting world of mathematics at Iowa State University. From cracking codes to modeling the spread of diseases, our program offers something for everyone. With a wide range of courses and research opportunities, you will have the chance to delve deep into the world of mathematics and discover your own unique talents and interests. Whether you dream of working for a top tech company, teaching at a prestigious university, or pursuing cutting-edge research, join us and discover the limitless potential of mathematics at Iowa State University!
Journal Issue
Is Version Of
Versions
Series
Department
Mathematics
Abstract

In this thesis, we study the global existence and the global nonexistence (blow up in finite time) of nonnegative solutions of the initial value problem for a weakly coupled system of reaction-diffusion equations ≤ft\\eqalignu[subscript]t &= L[subscript]1u + t[superscript]s[subscript]1v[superscript]p[subscript]1 v[subscript]t &= L[subscript]2v + t[superscript]s[subscript]2u[superscript]p[subscript]2 . ( x,t)ϵ IR[superscript]N x (0,T);\eqalignu( x,0)&= u[subscript]0( x) ≥ 0 v( x,0)&=v[subscript]0( x)≥ 0 xϵ IR[superscript]Nwhere s[subscript]1,s[subscript]2≥0, p[subscript]1,p[subscript]2≥1 with p[subscript]1p[subscript]2 > 1, T ≤ [infinity] (the length of the existence interval) and the L[subscript]1,L[subscript]2 are uniformly elliptic second order differential operators with uniformly bounded coefficients. We present several results for the systems:;( S[subscript][delta])≤ft\\eqalignu[subscript]t &= [delta][delta] u + v[superscript]p[subscript]1 v[subscript]t &= [delta] v + u[superscript]p[subscript]2 . ( x, t)ϵ IR[superscript]N x (0,T)where 0 ≤ [delta] ≤ 1 and p[subscript]1,p[subscript]2 ≥ 1 with p[subscript]1p[subscript]2 > 1; ( S[subscript]L)≤ft\\eqalignu[subscript]t &= L[subscript]1u + v[superscript]p[subscript]1 v[subscript]t &= L[subscript]2v + u[superscript]p[subscript]2 . ( x, t)ϵ IR[superscript]N x (0,T)where p[subscript]1,p[subscript]2 ≥ 1 with p[subscript]1p[subscript]2 > 1 and ≤ft\\eqalignL[subscript]1u &≡ [sigma][subscript]spi,j=1N [partial][over] [partial] x[subscript] i≤ft(a[subscript]ij( x)[partial] u[over][partial] x[subscript] j) L[subscript]2v &≡ [sigma][subscript]spi,j=1N [partial][over] [partial] x[subscript] i≤ft(b[subscript]ij( x)[partial] v[over][partial] x[subscript] j) . x ϵ IR[superscript]Nwith the following assumptions:;(i) the coefficients a[subscript]ij, b[subscript]ij are sufficiently smooth (a[subscript]ij,b[subscript]ijϵ C[superscript][infinity](IR[superscript]N)). (ii) a[subscript]ij = a[subscript]ji; b[subscript]ij = b[subscript]ji. (iii) there exists a constant [nu]≥1 such that ≤ft\\eqalign[nu][superscript]-1 ǁ [xi] ǁ [superscript]2 &≤ [sigma][subscript]spi,j=1N a[subscript]ij( x)[xi][subscript]i[xi][subscript]j ≤ [nu] ǁ [xi] ǁ [superscript]2 [nu][superscript]-1 ǁ [xi] ǁ [superscript]2 &≤ [sigma][subscript]spi,j=1N b[subscript]ij( x)[xi][subscript]i[xi][subscript]j ≤ [nu] ǁ [xi] ǁ [superscript]2 . x, [xi] ϵ IR[superscript]N.;( S[subscript]t)≤ft\\eqalignu[subscript]t &= [delta] u + t[superscript]s[subscript]1v[superscript]p[subscript]1 v[subscript]t &= [delta] v + t[superscript]s[subscript]2u[superscript]p[subscript]2 . ( x,t)ϵ IR[superscript]N x (0,T)where s[subscript]1,s[subscript]2≥0 and p[subscript]1,p[subscript]2≥1 with p[subscript]1p[subscript]2>1.;( S[subscript]Lt) ≤ft\\eqalignu[subscript]t &= L[subscript]1u + t[superscript]s[subscript]1v[superscript]p[subscript]1 v[subscript]t &= L[subscript]2v + t[superscript]s[subscript]2u[superscript]p[subscript]2 . ( x,t)ϵ IR[superscript]N x (0,T)where s[subscript]1,s[subscript]2≥0 and p[subscript]1,p[subscript]2≥1 with p[subscript]1p[subscript]2>1. ( S[subscript]k\ell) ≤ft\\eqalignu[subscript]t &= u[subscript]x[subscript]i[subscript]1x[subscript]i[subscript]1 +·s+ u[subscript]x[subscript]i[subscript] kx[subscript]i[subscript] k + v[superscript]p[subscript]1 v[subscript]t &= v[subscript]x[subscript]j[subscript]1x[subscript]j[subscript]1 +·s+ v[subscript]x[subscript]j[subscript] \ellx[subscript]j[subscript] \ell+ u[superscript]p[subscript]2 . ( x,t)ϵ IR[superscript]N x (0,T)where 1≤ k, \ell ≤ N, \min(k,\ell) 1.

Comments
Description
Keywords
Citation
Source
Subject Categories
Keywords
Copyright
Fri Jan 01 00:00:00 UTC 1993