Application of Bayesian Belief Network for Agile Kanban Backlog Estimation

Eric D. Weflen
Iowa State University, eweflen@iastate.edu

Kevin Korniejczuk
Iowa State University, kevink@iastate.edu

Sharon M.Y. Lau
Iowa State University, slau@iastate.edu

Steven S. Kryk
Iowa State University, skryk@iastate.edu

Cameron A. MacKenzie
Iowa State University, camacken@iastate.edu

See next page for additional authors

Follow this and additional works at: https://lib.dr.iastate.edu/imse_conf

Part of the *Industrial Engineering Commons*, *Industrial Technology Commons*, *Manufacturing Commons*, *Other Operations Research, Systems Engineering and Industrial Engineering Commons*, and the *Systems Engineering Commons*

Recommended Citation
https://lib.dr.iastate.edu/imse_conf/122

This Presentation is brought to you for free and open access by the Industrial and Manufacturing Systems Engineering at Iowa State University Digital Repository. It has been accepted for inclusion in Industrial and Manufacturing Systems Engineering Conference Proceedings and Posters by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Application of Bayesian Belief Network for Agile Kanban Backlog Estimation

Abstract
Traditional Delivery Estimation • High level of maintenance • Difficult to predict lead times • New tasks added constantly • Tasks cancelled • Reprioritization • Current tools adapted to Agile Kanban

Disciplines
Industrial Engineering | Industrial Technology | Manufacturing | Other Operations Research, Systems Engineering and Industrial Engineering | Systems Engineering

Comments
This presentation is from Proceedings of the 2018 IISE Annual Conference held on May 19-22, 2018 at Orlando, Florida. Eric Weflen, Kevin Korniejczuk, Sharon Lau, Steve Kryk, Cameron MacKenzie, Iris V. Rivero Application of Bayesian Belief Network for Agile Kanban Backlog Estimation. Posted with permission.

Authors
Eric D. Weflen, Kevin Korniejczuk, Sharon M.Y. Lau, Steven S. Kryk, Cameron A. MacKenzie, and Iris V. Rivero

This presentation is available at Iowa State University Digital Repository: https://lib.dr.iastate.edu/imse_conf/122
Application of Bayesian Belief Network for Agile Kanban Backlog Estimation

Eric Weflen, Kevin Korniejczuk, Sharon Lau, Steve Kryk, Cameron MacKenzie, Iris V. Rivero

Industrial and Manufacturing Systems Engineering
Iowa State University, Ames, IA USA 50011
What is Agile Kanban? [1,2]

- Different from Kanban for JIT manufacturing!
- Visualization of workflow
- Limit work in process (WIP)

What is Agile Kanban?
Traditional Delivery Estimation

- Use “Story Point” estimation

 Brush Teeth Breakfast Run 5 mi

 0, 1, 2, 3, 5, 8, 13, 20, 50, 100

- Calculate Velocity (points/day)
- Use Velocity to estimate when task leave backlog

Traditional Delivery Estimation

• High level of maintenance
• Difficult to predict lead times
 • New tasks added constantly
 • Tasks cancelled
 • Reprioritization
• Current tools adapted to Agile Kanban
Bayesian Networks
(influence diagrams)

Graphical representation of a complex uncertainty

Decision → Uncertainty → Deterministic or Consequence
Research Question

Can a Bayesian Belief Network be used to estimate lead time for tasks to leave the backlog?
Model – Data Collection

- Need historical team data
- Tracked Kanban team at Andersen Crop.
- Team used Story Point estimation
- Collected data for 4 weeks
- Estimated conditional probabilities for 5 uncertainties
Decision – Backlog Position

- New project arrives
- Team needs to decide where in the ordered list the new project should be placed
- Alternatives: Position 5, 10, 15, 20, or 25
Backlog Position #5

- New Tasks Added
- Average Team Daily Velocity
- Tasks Canceled
- Reprioritized Backlog
- Average Backlog Item Size

Table: Days Until Work Starts on Task

<table>
<thead>
<tr>
<th>Days Until Work Starts on Task</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0 to 5</td>
<td>8.92</td>
</tr>
<tr>
<td>5 to 10</td>
<td>54.7</td>
</tr>
<tr>
<td>10 to 15</td>
<td>28.5</td>
</tr>
<tr>
<td>15 to 20</td>
<td>7.81</td>
</tr>
<tr>
<td>20 to 25</td>
<td>0</td>
</tr>
<tr>
<td>25 to 30</td>
<td>0</td>
</tr>
<tr>
<td>30 to 35</td>
<td>0</td>
</tr>
<tr>
<td>35 to 40</td>
<td>0</td>
</tr>
<tr>
<td>40 to 45</td>
<td>0</td>
</tr>
<tr>
<td>45 to 50</td>
<td>0</td>
</tr>
<tr>
<td>50 to 60</td>
<td>0</td>
</tr>
<tr>
<td>60 to 70</td>
<td>0</td>
</tr>
<tr>
<td>70 to 100</td>
<td>0</td>
</tr>
<tr>
<td>100 to 700</td>
<td>0</td>
</tr>
</tbody>
</table>

9.26 ± 4
Results - Cumulative Density Function

CDF: Lead Time

Probability Work Starts (%)

Lead Time (Business Days)

- Position 5
- Position 10
- Position 15
Conclusions

• Account for risks missed by story point estimation
• Reduce maintenance overhead
• Further work needed to verify accuracy