2004

Examining Genetic Differences in Farm Raised Pacific White Shrimp

K. L. Glenn
Iowa State University

T. Suwanasopee
Kasetsart University

D.L. Hank Harris
Iowa State University

T. Sornthep
Kasetsart University

Max F. Rothschild
Iowa State University

Recommended Citation
DOI: https://doi.org/10.31274/ans_air-180814-839
Available at: https://lib.dr.iastate.edu/ans_air/vol650/iss1/130

This Other Species is brought to you for free and open access by the Animal Science Research Reports at Iowa State University Digital Repository. It has been accepted for inclusion in Animal Industry Report by an authorized editor of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Examining Genetic Differences in Farm Raised Pacific White Shrimp

A.S. Leaflet R1971

K. L. Glenn, Research Associate II
T. Suwanasopee, Graduate Student at Kasetsart University,
D. L. Harris, Professor
T. Sornthep, Professor at Kasetsart University, and
M. F. Rothschild, Distinguished Professor

Summary and Implications
Genomic DNA was extracted from ten shrimp of the Pacific white shrimp or *Litopenaeus vannamei* species and used to find single nucleotide polymorphisms (SNPs) in the Alpha-amylase (*-AMY*) and the Cathepsin-L (*CTSL*) genes. This study lays the groundwork for future research to examine the association of genetic markers and the growth rate of farm raised pacific white shrimp.

Introduction
Pacific white shrimp, *Litopenaeus vannamei*, is a non-indigenous shrimp species that has become the leading farm-raised species in the Western Hemisphere, representing more than 95% of commercial production. The study objective was to find genetic markers called single nucleotide polymorphisms (SNPs) in both the Alpha-amylase (*-AMY*) and the Cathepsin-L (*CTSL*) genes. These SNPs are small genetic changes or variations that occur when a single nucleotide (A, T, C, or G) in the genetic sequence is altered. For example, the nucleotide letter A replaces one of the 3 other nucleotide letters: C, G, or T. These two particular genes were chosen because of their possible involvement with growth in the shrimp. Alpha-amylase is an enzyme that breaks down complex sugars and is associated with the digestive gland in crustaceans.

Materials and Methods
Ten shrimp were acquired from a breeding tank and tissue was obtained for DNA extraction. Regions of Alpha-amylase and Cathepsin-L were sequenced in the ten shrimp. Once sequence differences were found, then genetic tests were designed to classify the shrimp into their different genotypes. A genotype refers to the pair of genetic differences in a certain position of the gene sequence.

Results and Discussion
The gene names, genotypes and genotype frequencies are summarized in Table 1. Further research should examine the association between these SNPs and the growth rate of *Litopenaeus vannamei*.

Acknowledgements
This work was supported in part by the Thailand Research Fund, Sygen International, Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa and by Hatch Act and State of Iowa funds. We would like to thank Dr. Kwan-Suk Kim, Marcos Ramos, Laura Grapes, Renata Hernandez and Dr. Charles Otieno for their assistance.

Conclusions
These results suggest that Pacific White Shrimp are extremely genetically variable. This variability will aid shrimp breeders in making genetic improvement in the future.

<table>
<thead>
<tr>
<th>Genotype frequencies</th>
<th>11</th>
<th>12</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha-amylase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.2</td>
<td>0.7</td>
<td>0.1</td>
</tr>
<tr>
<td>2</td>
<td>0.2</td>
<td>0.8</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0.2</td>
<td>0.8</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0.89</td>
<td>0.11</td>
<td>0</td>
</tr>
<tr>
<td>Cathepsin-L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.71</td>
<td>0.145</td>
<td>0.145</td>
</tr>
<tr>
<td>2</td>
<td>0.4</td>
<td>0.5</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Table 1 Gene names, sequence differences and genotype frequencies.