You Don't Like Moles?

Harold Gunderson

Iowa State College

Follow this and additional works at: http://lib.dr.iastate.edu/farmsciencereporter

Part of the Agriculture Commons

Recommended Citation

Gunderson, Harold (1944) "You Don't Like Moles?," Farm Science Reporter: Vol. 5 : No. 2 , Article 7.
Available at: http://lib.dr.iastate.edu/farmsciencereporter/vol5/iss2/7

This Article is brought to you for free and open access by the Iowa Agricultural and Home Economics Experiment Station Publications at Iowa State University Digital Repository. It has been accepted for inclusion in Farm Science Reporter by an authorized editor of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
When cold wintry winds are wheezing around her, the cow is not likely to drink as much as she will if she can drink in a comfortable place. Though the air temperature in which the cow stands is important, she will drink more if she doesn’t have to sip her needed water out of an icy tank.

The Iowa Station has shown that the type of ration which the cow is fed greatly influences the amount of water which she drinks. This same result has been shown in other experiments also. If the cow is getting silage or green feed with a lot of moisture in it, the cow will drink proportionately less than she will if she is entirely on dry feed. There is a tendency to balance up the total amount of water in the feed and that drunk. If the feed has more moisture in it, then the cow drinks that much less.

Do Calves Need Water?

Do young calves on skim milk need water? Some light on the answer to this question is given by an experiment conducted by the Idaho Station. There, a record was kept of the amount of water 26 Holstein calves drank, in addition to that which was in the milk they were fed. The amount of free water consumed weekly per calf was 1.3 pounds at 6 weeks of age, 29 pounds at 9 weeks, 48 pounds at 12 weeks, 62 pounds at 15 weeks, 83 pounds at 18 weeks, 146 pounds at 21 weeks and 234 pounds at 26 weeks of age.

These figures indicate that the very young calf does not need water in addition to the milk which it drinks. When the calf reaches the age of about 6 weeks, providing it with water then becomes essential. The amount which is needed increases rapidly as the calf gets older. Unless water is provided then and in amounts needed, the calves will not grow properly, nor will they maintain their best health.

Adequate watering of our dairy herds is just as important as the feeding. We need to make sure that it is properly done.

You Don’t Like MOLES?

Then Kill Them With Gas or Traps...

Because of its food habits, the common mole is actually an extremely beneficial animal, but the average gardener is hard to convince of this after his lawn has been wrecked, his flower beds disrupted and his potatoes disturbed by one of these burrowing animals.

Moles feed primarily on earthworms, insects and insect larvae such as white grubs, wireworms, cutworms and other soil-infesting forms. The mole daily eats his own weight in insects. From this standpoint the animal is beneficial, but in its search for food, a single mole may construct as much as 75 yards of tunnel in a single night.

The raised runways and occasional mounds of earth are unsightly in lawns and detrimental to flower beds and vegetable gardens. Frequently a mole will burrow right down a row of flowers or vegetables, disturbing the roots and opening cracks in the soil which cause the plants to dry out and die.

Moles are sometimes accused of eating flower bulbs and tubers, but in most cases they are not responsible for this damage. Their runways are used by pocket gophers, mice, shrews, rats and other animals. These trespassers feed on the roots and are usually responsible for injuries to cultivated plants.

Moles can be controlled, although perseverance, close observation and skill are needed to eradicate them from a lawn or garden. Only the most important control measures will be discussed here, although other methods have proved effective under certain conditions.

How to Use Traps

A number of different mole traps are available. Since they all differ in design, it is best to follow the manufacturer’s directions closely in using any trap. The following procedure may be used successfully with most mole traps:

1. Locate the main runway by rolling or tramping down all of the raised runways. Watch carefully at hourly intervals to determine which one is raised first. This is probably the main runway and is the one over which the trap should be set.

2. The trap may be placed anywhere along the runway, but a straight section of burrow is preferable. For most mole traps, loosen the soil with a fork or trowel where the trap will be set. The action of the trap will be easier and faster. Tramp down the main runway again before setting the trap. If only the short section of runway where the trap is set is tramped down, the mole may go around it; if the entire runway is flattened, he will be less cautious.

3. If the mole is not caught in 24 hours, he has probably abandoned that runway. Tramp down all the runways again, and reset the trap on another which is being used.

4. In many cases, moles use their own and other burrows interchange-
Gas in the Runways

Calcium cyanide or car exhaust gas may be used to kill moles. Calcium cyanide must be used in a garden dust gun or a cyanide dust gun, so as to distribute the material through the runway quickly. Car exhaust gas may be used by attaching a section of garden hose to the exhaust pipe of an automobile or tractor.

It is unnecessary and undesirable to tramp down the runways when using cyanide or car exhaust gas. All runways must be treated quickly and thoroughly. Open the runway; insert the nozzle of the dust gun or the end of the garden hose; introduce the gas rapidly; and close the runway. Repeat the process about every 10 feet until all parts of all runways are treated. Since the burrows are near the surface, the gas escapes rapidly and must be introduced at frequent intervals along the tunnel in order to kill the mole.

It is not unusual to see signs of mole activity during gassing of the runways, since the mole attempts to escape. The mole then can be scooped out of the ground with a spade or fork and killed.

Poisons of Little Value

Poisons are rarely effective in controlling moles. It is difficult to develop an acceptable substitute for the living grubs, worms and insects on which they feed. A large number of pellets introduced into the runway may have a repellent effect, causing the mole to abandon that portion.

Lead Arsenate, Moth Balls

Moth balls are offensive to moles. When introduced into the runways, they usually force the mole to abandon the treated burrows and extend its activities to previously uninfested portions of the lawn or garden.

Seed treatments are ineffective in controlling moles, since moles are not interested in seeds but in the insects attacking them. Seed treatments which prevent or hinder seed decay discourage insects and render the area less attractive to moles.

Lead arsenate has been successfully used to prevent mole infestation in lawns and gardens. This treatment has been used extensively in states east of Iowa but has not been thoroughly tested here. It apparently prevents the establishment of moles in the treated area but seems to have little or no effect on those already present.

The lead arsenate is applied at the rate of 1 pound per 100 square feet of lawn. It may be mixed with dry sand and applied with a lawn fertilizer cart or suspended in water and applied with a sprinkling can. If applied dry, the poison must be soaked into the ground by watering with a garden hose. Lead arsenate should not be applied to strawberry beds or to ground intended for strawberries, since it reduces the yield.

If a large area of lawn or garden is to be protected, reports from other states indicate that a band of lead arsenate 2 feet wide acts as an effective barrier. The poison is used at the same rate, i.e., 1 pound would cover a strip 2 feet wide and 50 feet long.

Calcium cyanide pumped into the runways at intervals of 10 feet, using a cyanide gas gun or garden dust gun, usually is effective. Car exhaust gas may be used in the same way. A garden hose may be fastened to the exhaust pipe of car to carry gas into the mole runway.

A single lead arsenate treatment may protect an area for 1 to 5 years, depending on the amount of rainfall, rapidity of leaching, type and character of the soil and on other factors.

Care for Your Canner

By LOUISE J. PEET

CONSERVING the 1944 food crop is going to require long hours of service from your pressure canner.

Because it probably put in many hours of overtime last year, the canner should be inspected and put in first-class repair now before the canning season starts. That will make the canning job easier. Then some care should be taken in cleaning the canner, especially the lid, during the canning season.

 Probably the most important thing to remember about lid care after you've had the pressure gauge checked for accuracy — and that should be done now before the season starts — is that the lid should not be soaked in water when it is cleaned. Soaking may damage the mechanism so essential to proper operation of the canner.

Using a cloth dipped in warm soapy water is a good way to clean the lid. A cloth wrung out in clear water may be used to rinse it. Then the lid should be dried thoroughly.

The petcock should be unscrewed when the lid is being cleaned. And after the cleaning is done, you should be able to see light through the opening in the lid where the petcock fits. The petcock should always be opened before the lid is removed.

Each time the canner is cleaned, the safety valve, too, should be taken apart. The passageway into the canner can be cleaned out with a little brush. For this, baking soda may be used in the cleaning water. If the parts are corroded, fine steel wool may be used to clean them.

Another important fact to remember in cleaning the lid is that scratches on the rim will prevent the close contact necessary between the lid and the rim of the canner.

When putting on a lid which fastens by means of lugs, opposite lugs should be tightened together. A drop of sewing machine oil on each lug will make it easier to unscrew later.

Best service will be obtained if the canner is allowed to cool slowly after it has been used.

http://lib.dr.iastate.edu/farmscireporter/vol5/iss2/7