Soybean Yield Response to Rhizobium Inoculation on Converted Grass Pasture

Joel L. DeJong
Iowa State University, jdejong@iastate.edu

Wayne B. Roush
Iowa State University, wroush@iastate.edu

Follow this and additional works at: http://lib.dr.iastate.edu/farms_reports

Part of the Agricultural Science Commons, Agriculture Commons, and the Agronomy and Crop Sciences Commons

Recommended Citation
http://lib.dr.iastate.edu/farms_reports/130

This report is brought to you for free and open access by Iowa State University Digital Repository. It has been accepted for inclusion in Iowa State Research Farm Progress Reports by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Soybean Yield Response to Rhizobium Inoculation on Converted Grass Pasture

Abstract
Much of the soybean plant’s nitrogen requirement is supplied through nitrogen fixation when atmospheric nitrogen is converted into a usable form for the plant. Nitrogen fixation is critical for producing higher yield in soybean. For nitrogen fixation to occur, nitrogen-fixing bacteria (genus Rhizobium) need to be present in the soil. If soils do not already contain a high population of Rhizobium, these bacteria can be added either as a liquid or granular peat inoculant, or as a peat-based powder. The different forms can be seed applied or used in-furrow.

Keywords
RFR A1166

Disciplines
Agricultural Science | Agriculture | Agronomy and Crop Sciences
Soybean Yield Response to Rhizobium Inoculation on Converted Grass Pasture

RFR-A1166

Joel DeJong, field agronomist
ISU Extension and Outreach
Wayne Roush, farm superintendent

Introduction
Much of the soybean plant's nitrogen requirement is supplied through nitrogen fixation when atmospheric nitrogen is converted into a usable form for the plant. Nitrogen fixation is critical for producing higher yield in soybean. For nitrogen fixation to occur, nitrogen-fixing bacteria (genus *Rhizobium*) need to be present in the soil. If soils do not already contain a high population of *Rhizobium*, these bacteria can be added either as a liquid or granular peat inoculant, or as a peat-based powder. The different forms can be seed applied or used in-furrow.

The ISU Western Research and Demonstration Farm identified a field that had been in pasture since 1995, but is now being returned to crop production. This time period likely reduced the population of soil borne *Rhizobium*. Two soybean *Rhizobium* inoculants were compared with a no inoculant free check in this field in 2011.

Materials and Methods
Three treatments with four replications were compared in this study. Layout design was a randomized complete block design. Soybean seeds were either untreated or inoculated with *Rhizobium* products Magnify LST or BioBoost Plus. Both products were seed applied. The Magnify LST seed treatment rate was 2 oz. per 50 lb of seed. BioBoost Plus was applied to the soybean seed at 3.5 oz. per 50 lb of seed. Both were planted shortly after inoculant was applied. All treatments were no-till planted on May 6. Plots were 8 rows wide with 30-in. row spacing and lengths of plots ranged from 750 to 791 ft. All seeds were treated with Innovate, a fungicide plus insecticide seed treatment. The 17-80-80 fertilizer was spread on March 28. Glyphosate was applied at 40 oz. per acre on June 4. Prior to planting, the sod was killed with herbicides the previous fall. Soybeans were harvested on October 9 and yields were measured with a weigh wagon. Yield results can be found in Table 1.

Results and Discussion
Yield results in Table 1 show that the use of soybean inoculants with *Rhizobium* increased harvested soybean yield on this site that had been out of soybean production for many years. Both *Rhizobium* products increased yield equally. Both were significantly better than the check treatment without *Rhizobium* inoculated seed.

Acknowledgements
We would like to thank Bryan Stueve from the Berne Co-op and Preston Grobe for supplying the inoculants for this project.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Spring soybean stand count</th>
<th>Yield (bushels/acre)</th>
<th>Yield significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>128,333</td>
<td>54.6</td>
<td></td>
</tr>
<tr>
<td>BioBoost Plus</td>
<td>129,083</td>
<td>59.1</td>
<td>**</td>
</tr>
<tr>
<td>Magnify LST</td>
<td>138,667</td>
<td>59.2</td>
<td>**</td>
</tr>
</tbody>
</table>

** = statistical difference at P<0.05.
LSD (least significant difference) = 1.5 bushels/acre at P<0.05.