Minimum Fluidization Velocity and Gas Holdup in Fluidized Beds With Side Port Air Injection

Thumbnail Image
Date
2008-08-01
Authors
Franka, Nathan
Drake, Joshua
Heindel, Theodore
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Heindel, Theodore
University Professor
Research Projects
Organizational Units
Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Journal Issue
Is Version Of
Versions
Series
Department
Mechanical Engineering
Abstract

Fluidized beds can be used to gasify biomass in the production of producer gas, a flammable gas that can replace natural gas in process heating. Knowing how the fluidized bed hydrodynamics vary as reactor dimensions are scaled up is vital for improving reactor efficiency. This study utilizes 10.2 cm and 15.2 cm diameter fluidized beds with added side port air injection to investigate column diameter effects on fluidized bed hydrodynamics. Both inert (glass beads) and biomass (ground walnut shell and ground corncob) bed materials are used and the hydrodynamic differences with side port air injection are recorded. Minimum fluidization velocity is determined through pressure drop measurements. Time-averaged local and global gas holdup are recorded using X-ray computed tomography imaging. Results show that by varying the side port air flow rate as a percentage of the minimum fluidization flow rate, partial and complete fluidization is observed in both fluidized beds. Local gas holdup trends are also similar in both fluidized beds. These results will be used in future studies to validate computational fluid dynamics models of fluidized beds.

Comments

This is a conference proceeding from ASME 2008 Fluids Engineering Division Summer Meeting collocated with the Heat Transfer, Energy Sustainability, and 3rd Energy Nanotechnology Conferences 1 (2008): 51, doi:10.1115/FEDSM2008-55100. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Tue Jan 01 00:00:00 UTC 2008