Approximating a Three-Dimensional Fluidized Bed With Two-Dimensional Simulations

Thumbnail Image
Date
2008-10-01
Authors
Deza, Mirka
Battaglia, Francine
Heindel, Theodore
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Heindel, Theodore
University Professor
Research Projects
Organizational Units
Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Journal Issue
Is Version Of
Versions
Series
Department
Mechanical Engineering
Abstract

Fluidized beds can be used to gasify biomass in the production of producer gas, a flammable gas that can replace natural gas in process heating. Modeling these reactors with computational fluid dynamics (CFD) simulations is advantageous when performing parametric studies for design and scale-up. From a computational resource point of view, two-dimensional simulations are easier to perform than three-dimensional simulations, but they may not capture the proper physics. This paper will compare two- and three-dimensional simulations in a 10.2 cm diameter fluidized bed with side air injection to determine when two-dimensional simulations are adequate to capture the bed hydrodynamics. Simulations will be completed in a glass bead fluidized bed operating at 1.5Umf and 3Umf , where Umf is the minimum fluidization velocity. Side air injection is also simulated to model biomass injection for gasification applications. The simulations are compared to experimentally obtained time-averaged local gas holdup values using X-ray computed tomography. Results indicate that for the conditions of this study, two-dimensional simulations qualitatively predict the correct hydrodynamics and gas holdup trends that are observed experimentally for a limited range of fluidization conditions.

Comments

This is a conference proceeding from ASME 2008 International Mechanical Engineering Congress and Exposition 10 (2008): 387, doi:10.1115/IMECE2008-66378. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Tue Jan 01 00:00:00 UTC 2008