Cyst Nematode Parasitism of Arabidopsis thaliana Is Inhibited by Salicylic Acid (SA) and Elicits Uncoupled SA-Independent Pathogenesis-Related Gene Expression in Roots

Thumbnail Image
Date
2008-04-01
Authors
Wubben, Martin John Evers
Jin, Jing
Baum, Thomas Josef
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Baum, Thomas
Distinguished Professor
Research Projects
Organizational Units
Organizational Unit
Plant Pathology and Microbiology
The Department of Plant Pathology and Microbiology and the Department of Entomology officially merged as of September 1, 2022. The new department is known as the Department of Plant Pathology, Entomology, and Microbiology (PPEM). The overall mission of the Department is to benefit society through research, teaching, and extension activities that improve pest management and prevent disease. Collectively, the Department consists of about 100 faculty, staff, and students who are engaged in research, teaching, and extension activities that are central to the mission of the College of Agriculture and Life Sciences. The Department possesses state-of-the-art research and teaching facilities in the Advanced Research and Teaching Building and in Science II. In addition, research and extension activities are performed off-campus at the Field Extension Education Laboratory, the Horticulture Station, the Agriculture Engineering/Agronomy Farm, and several Research and Demonstration Farms located around the state. Furthermore, the Department houses the Plant and Insect Diagnostic Clinic, the Iowa Soybean Research Center, the Insect Zoo, and BugGuide. Several USDA-ARS scientists are also affiliated with the Department.
Journal Issue
Is Version Of
Versions
Series
Department
Plant Pathology and Microbiology
Abstract

Compatible plant–nematode interactions involve the formation of an elaborate feeding site within the host root that requires the evasion of plant defense mechanisms by the parasite. Little is known regarding plant defense signaling pathways that limit nematode parasitism during a compatible interaction. Therefore, we utilized Arabidopsis thalianamutants perturbed in salicylic acid (SA) biosynthesis or signal transduction to investigate the role of SA in inhibiting parasitism by the beet cyst nematode Heterodera schachtii. We determined that SA-deficient mutants (sid2-1, pad4-1, and NahG) exhibited increased susceptibility to H. schachtii. In contrast, SA-treated wild-type plants showed decreased H. schachtii susceptibility. The npr1-2 and npr1-3 mutants, which are impaired in SA signaling, also showed increased susceptibility to H. schachtii, whereas the npr1-suppressor mutation sni1 showed decreased susceptibility. Constitutive pathogenesis-related (PR) gene-expressing mutants (cpr1 and cpr6) did not show altered susceptibility to H. schachtii; however, constitutive PR gene expression was restricted to cpr1 shoots with wild-type levels of PR-1 transcript present in cpr1 roots. Furthermore, we determined that H. schachtii infection elicits SA-independent PR-2 and PR-5 induction in wild-type roots, while PR-1 transcript and total SA levels remained unaltered. This was in contrast to shoots of infected plants where PR-1 transcript abundance and total SA levels were elevated. We conclude that SA acts via NPR1 to inhibit nematode parasitism which, in turn, is negatively regulated by SNI1. Our results show an inverse correlation between root basal PR-1 expression and plant susceptibility to H. schachtii and suggest that successful cyst nematode parasitism may involve a local suppression of SA signaling in roots.

Comments

This article is published as Wubben, Martin John Evers, Jing Jin, and Thomas Josef Baum. "Cyst nematode parasitism of Arabidopsis thaliana is inhibited by salicylic acid (SA) and elicits uncoupled SA-independent pathogenesis-related gene expression in roots." Molecular Plant-Microbe Interactions 21, no. 4 (2008): 424-432, doi: 10.1094/MPMI-21-4-0424.

Description
Keywords
Citation
DOI
Copyright
Collections