Semiparametric Adaptive Estimation With Nonignorable Nonresponse Data

Kosuke Morikawa
Osaka University

Jae Kwang Kim
Iowa State University, jkim@iastate.edu

Follow this and additional works at: https://lib.dr.iastate.edu/stat_las_preprints
Part of the Statistical Methodology Commons, and the Statistical Models Commons

Recommended Citation
https://lib.dr.iastate.edu/stat_las_preprints/135

This Article is brought to you for free and open access by the Statistics at Iowa State University Digital Repository. It has been accepted for inclusion in Statistics Preprints by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Semiparametric Adaptive Estimation With Nonignorable Nonresponse Data

Abstract
When the response mechanism is believed to be nonignorable or not missing at random (NMAR), a valid analysis requires stronger assumptions about the data than do standard statistical methods. Semiparametric estimators have been developed under the correct model specification assumption for the response mechanism. In this paper, we consider a scheme for obtaining the optimal estimation for the parameters such as the mean and propose two semiparametric adaptive estimators that do not require any model assumptions except for the response mechanism. Asymptotic properties of proposed estimators are discussed, and we present an application to Korean Labor and Income Panel Survey data.

Keywords
Not missing at random (NMAR), Incomplete data, Estimating functions, Semiparametric Estimation

Disciplines
Statistical Methodology | Statistical Models

Comments
This is a pre-print made available through arxiv: https://arxiv.org/abs/1612.09207.
Semiparametric Adaptive Estimation With Nonignorable Nonresponse Data

Kosuke Morikawa*
Graduate school of Engineering Science, Osaka University
and
Jae Kwang Kim
Department of Statistics, Iowa State University

December 30, 2016

Abstract

When the response mechanism is believed to be nonignorable or not missing at random (NMAR), a valid analysis requires stronger assumptions about the data than do standard statistical methods. Semiparametric estimators have been developed under the correct model specification assumption for the response mechanism. In this paper, we consider a scheme for obtaining the optimal estimation for the parameters such as the mean and propose two semiparametric adaptive estimators that do not require any model assumptions except for the response mechanism. Asymptotic properties of proposed estimators are discussed, and we present an application to Korean Labor and Income Panel Survey data.

Keywords: Not missing at random (NMAR); Incomplete data; Estimating functions; Semiparametric Estimation.

*The research of the first author is supported by a grant from JSPS KAKENHI (Grant Number JP16J03875) and the research of the second author is partially supported by a grant from NSF (MMS-1324922).
1 Introduction

Handling missing data often requires some assumptions about the response mechanism. If the study variable does not affect the probability of the response, the response mechanism is called ignorable. If, on the other hand, the response probability of a study variable depends on that variable directly, the response mechanism is called nonignorable (Little & Rubin 2002). A nonignorable nonresponse is more troublesome than an ignorable one, because the response probability cannot be verified using the observed study variables only. Thus, to estimate the parameters in the response model under a nonignorable nonresponse, additional assumptions about the study variable are often required.

Let \(r \) be the response indicator of the study variable \(y \) with auxiliary variable \(x \), where \(r \) takes 1 if \(y \) is observed, and takes 0 otherwise. An ignorable nonresponse can be understood as the conditional independence of \(r \) and \(y \) given \(x \), namely \(r \perp y \mid x \). Diggle & Kenward (1994) proposed a fully parametric approach to analyze nonignorable nonresponse data; their method requires two parametric models: (i) an outcome model, \(y \mid x \); and (ii) a response model, \(r \mid x, y \). In practice, it is difficult to verify models (i) and (ii), because some of \(Y \) are not observed. In the fully parametric approach, model identification and model misspecification can be a problem, and sensitivity analysis has been recommended (Scharfstein et al. 1999, Rotnitzky et al. 2001, Verbeke et al. 2001, Tsiatis 2006). Sverchkov (2008) and Riddles et al. (2016) proposed a fully parametric approach that uses different model specifications based on (i) \(y \mid x, r = 1 \), and (ii) \(r \mid x, y \). Their approach is more practical, because one can verify a model for \(y \mid x, r = 1 \) from the responses; however, because it is a fully parametric approach, it is still subject to model misspecification.

Recently, some semiparametric approaches have been proposed for nonignorable nonresponses. Tang et al. (2003) proposed a maximum pseudolikelihood estimator that does
not require specification of the response mechanism, and a distinct condition is used to identify each model. Zhao & Shao (2015) extended the method of Tang et al. (2003) to generalized linear models, and their method does not require assumptions about the response model. Fitzmaurice et al. (2005) and Skrondal & Rabe-Hesketh (2014) proposed protective estimators that do not require specification of the response mechanism, but the application of this approach is limited to situations in which \(Y \) is binary. Kim & Yu (2011) proposed a semiparametric method for estimating \(E(Y) \) using a parametric response model, but a validation sample is required in order to estimate the parameters in the response model. Tang et al. (2014) used the method of empirical likelihood to extend the method of Kim & Yu (2011) to estimate more-general parameters. In Tang et al. (2016), the method of Qin et al. (2002) was used to construct a \(n^{1/2} \)-consistent estimator without a validation sample. Morikawa et al. (2016) used the kernel regression estimator to remove the parametric model assumption on model (i), \(y \mid x, r = 1 \). Chang & Kott (2008) and Wang et al. (2014) considered a generalized method of moments (GMM) estimator that uses only a response model, but their method is generally less efficient than the likelihood-based one. Recently, Shao & Wang (2016) proposed a semiparametric inverse propensity weighting method using the nonresponse instrumental variable assumption of Wang et al. (2014). Miao & Tchegen Tchetgen (2016) considered doubly robust estimators under a nonignorable nonresponse. Their estimator has consistency and asymptotic normality, if the conditional odds ratio model is true and if either the baseline outcome density model or the baseline response model is true. Thus, we note that in general, the doubly robust estimators require that two out of the three models be correctly specified.

In this paper we assume a parametric model for \([r \mid x, y] \) and give an optimal estimator for the model parameters describing the response mechanism. We derive the semiparametric efficiency bound (Tsiatis 2006) and propose two semiparametric estimators that each
attains the lower bound. The first estimator does not require any additional assumptions, but it is more efficient than the approach of [Morikawa et al., 2016]. The second is an adaptive estimator, such as the generalized linear estimator proposed by [Liang & Zeger, 1986]; although it requires specification of the model of $[y \mid x, r = 1]$, it has consistency and asymptotic normality, even if that specification is wrong. Furthermore, if the model specification is correct, it attains the lower bound.

2 Basic Setup

Let $(z_i, r_i), i = 1, \ldots, n$ be n realizations from a joint distribution of (Z, R), where $Z = (X^\top, Y)^\top$, X is a covariate vector, Y is a response variable, and R is a response indicator of Y, i.e., it takes 1 if Y is observed, and takes 0 otherwise. Also, let $G_R(Z)$ be the observed data when the response indicator is R, i.e., $G_1(Z) = Z$ and $G_0(Z) = X$. Suppose that a response model is $\pi(z; \phi)$ with a q-dimensional parameter $\phi \in \Phi$. For model identification, we assume that there exists X_1 in $X = (X_1^\top, X_2^\top)^\top$ such that X_2 is independent of R, given X_1 and Y. Such variable is referred to as nonresponse instrumental variable [Wang et al., 2014]. For the parametric model for π, we can consider several possibilities, such as a logistic model, a probit model, or a complementary log-log nonignorable model [Kim & Yu, 2011]. Also, let $\theta \in \Theta$ be a one-dimensional parameter such that $\theta = E\{U(Z)\}$, where U is a known function. For example, if we are interested in $E(Y)$ and $P(Y > a)$, then U is Y and $I(Y > a)$, respectively, where I is an indicator function and a is an arbitrary real number.

In this paper, we consider semiparametric estimation of (ϕ, θ). In particular, we find the most efficient estimator among the regular asymptotically linear (RAL) estimators [Bickel et al., 1998; Robins et al., 1994; Tsiatis, 2006]. An estimator in a semiparametric
model is called regular if it is regular in every regular parametric submodel. A finite-dimensional estimator \(\hat{\xi} \) in a parametric submodel is called regular if the data are generated by \(f(Z, G_R(Z); \xi_n) \), where, if \(\xi_n \) is a finite-dimensional parameter and \(n^{1/2}(\xi_n - \xi^*) \) converges to a constant, then \(n^{1/2}(\hat{\xi} - \xi_n) \) converges uniformly to its limiting distribution. Also, \((\hat{\phi}^\top, \theta)^\top \) is said to be an asymptotically linear estimator of \((\phi_0^\top, \theta_0)^\top \) if
\[
n^{1/2}((\hat{\phi} - \phi_0)^\top, \hat{\theta} - \theta_0)^\top = n^{-1/2} \sum_{i=1}^{n} \varphi(R_i, G_{R_i}(Z_i); \phi_0, \theta_0) + o_p(1),
\]
where the function \(\varphi \) is called the influence function of \((\hat{\phi}^\top, \hat{\theta})^\top \). In some cases, there exists a regular estimator, but not asymptotically linear. However, Hájek’s representation theorem shows that most efficient regular estimators are asymptotically linear, and thus it is reasonable to discuss efficiency among RAL estimators (Tsiatis 2006).

Classical approaches for nonignorable nonresponse data are based on correct specification for the distribution \(Y | X \) (Diggle & Kenward 1994). This requirement can be problematic because the specification cannot be verified under a nonignorable nonresponse. Chang & Kott (2008) proposed a semiparametric estimator for \(\phi \) that is based on the following estimating equations:
\[
\sum_{i=1}^{n} \left(1 - \frac{r_i}{\pi(z_i; \phi)}\right) g(x_i) = 0,
\]
where \(g : \mathbb{R}^d \to \mathbb{R}^q \) is an arbitrary function of \(X \). Note that although this estimator has consistency and asymptotic normality under certain regularity conditions, its optimality is not guaranteed. If \(q = d + 1 \), a typical choice for \(g \) is \(g(x) = (1, x^\top)^\top \). However, if \(p > d + 1 \), it is not clear how to determine the best \(g \) in terms of minimizing the asymptotic variance, although Chang & Kott (2008) proposed some functions for \(g \).

Recently, Riddles et al. (2016) proposed a more efficient estimator that uses a parametric model for \(Y | X, R = 1 \). Using the mean score theorem (Louis 1982), the maximum-
likelihood estimator can be obtained by solving

\[
n^{-1} \sum_{i=1}^{n} \left[r_i s_1(z_i; \phi) + (1 - r_i)E_0\{s_0(Z; \phi) \mid x_i\} \right] = 0,
\]

(3)

where \(s_r(z; \phi) \) is the score function of \(\phi \), that is,

\[
s_r(z; \phi) = \left\{ \frac{r - \pi(z; \phi)}{\pi(z; \phi)\{1 - \pi(z; \phi)\}} \right\} \frac{\partial \pi(z; \phi)}{\partial \phi}.
\]

\(\hat{\pi}(z; \phi) = \partial \pi(z; \phi)/\partial \phi \), and \(E_0(\cdot \mid x) \) is the conditional expectation of \(Y \) given \(X \) and \(R = 0 \). To compute \(E_0(\cdot \mid x) \), using Bayes’ formula, \(\text{Riddles et al. (2016)} \) proposed using

\[
n^{-1} \sum_{i=1}^{n} \left\{ r_i s_1(z_i; \phi) + (1 - r_i)\frac{E_1(O(Z; \phi)s_0(Z; \phi) \mid x_i)}{E_1(O(Z; \phi) \mid x_i)} \right\} = 0,
\]

(4)

where \(O(z; \phi) = \{1 - \pi(z; \phi)\}/\pi(z; \phi) \), and \(E_1(\cdot \mid x) \) is the conditional expectation on \(Y \) given \(X \) and \(R = 1 \). The conditional expectation is computed by assuming a parametric model \(f_1(y \mid x; \gamma) = f(y \mid x, r = 1; \gamma) \). This may increase the efficiency, however, misspecification of the \(f_1 \) model causes \(\theta \) to be inconsistent.

3 Efficiency Bound

In this section, we provide an estimator for \((\phi^\top, \theta)^\top\) that is the most efficient of all RAL estimators. Recall that our estimator satisfies (1). Thus, if the optimal influence function \(\varphi_{\text{eff}} \) is found, then by the central limit theorem, the semiparametric lower bound is given as \(E(\varphi_{\text{eff}} \varphi_{\text{eff}}^\top) \). We begin by giving the efficient influence function in Theorem 1. In the following discussion, we may abbreviate the parameter value or random variable, for example, \(\pi(Z; \phi_0) = \pi(Z) = \pi(\phi_0) \), unless this would lead to ambiguity. Proof of the following theorem is given in Appendix B.
Theorem 1. Let $S_{\text{eff}} = (S_1^\top, S_2^\top)$, where $S_1 = S_1(R, G_R(Z))$ and $S_2 = S_2(R, G_R(Z))$ are defined as

$$S_1(R, G_R(Z); \phi) = \left(1 - \frac{R}{\pi(Z; \phi)}\right) g^*(X),$$

$$S_2(R, G_R(Z); \phi, \theta) = \frac{R}{\pi(Z; \phi)}(\theta - U(Z)) + \left(1 - \frac{R}{\pi(Z; \phi)}\right) (\theta - U^*(X)),$$

with $O(z) = \{1 - \pi(z; \phi)\}/\pi(z; \phi)$. Then, the efficient influence function is $\varphi_{\text{eff}} = H^{-1} S_{\text{eff}}$, where

$$H = E(S_{\text{eff}}^{\otimes 2}) = E \left(\frac{\partial S_{\text{eff}}(\phi_0, \theta_0)}{\partial (\phi^\top, \theta)^\top}\right)$$

and $B^{\otimes 2} = BB^\top$. Therefore, the semiparametric efficiency bound is given by $\{E(S_{\text{eff}}^{\otimes 2})\}^{-1}$.

In particular, the asymptotic variance of $\hat{\theta}$ is $V = \text{var}\{S_2(\phi_0) - \kappa S_1(\phi_0, \theta_0)\}$, where $\kappa = E\{(E^*(U | X) - U(Z))\pi(\phi_0)^\top/\pi(\phi_0)\} E\{g^*(\phi_0)\pi(\phi_0)^\top/\pi(\phi_0)\}^{-1}$.

This theorem implies that if we can compute $E^*(\cdot | X)$, then equations (5) and (6) give an optimal estimator. This will be a solution of

$$\sum_{i=1}^n S_{\text{eff},i}(\phi, \theta) = \sum_{i=1}^n (S_1^\top(R_i, G_{R_i}(Z_i); \phi), S_2(R_i, G_{R_i}(Z_i); \phi, \theta))^\top = 0,$$

because in the regularity conditions defined in Appendix A, we assume H is nonsingular; also note that it is well known that multiplying a nonsingular matrix does not affect its asymptotic distribution.

Remark 1. Equation (5) is a special case of the estimator of Chang & Kott (2008). Thus, the optimal g function in (2) for the Chang & Kott (2008) method is given by $g^*(X)$ in (5).
Remark 2. Equation (6) has a form similar to that of the doubly robust estimator (Robins et al. 1994) that has been proposed when the response mechanism is missing at random; unfortunately, our estimator does not have the doubly robustness property.

The equation based on $S_1(\phi)$ gives an optimal estimator for ϕ, say $\hat{\phi}$. Then, by using $\hat{\phi}$, $S_2(\hat{\phi}, \theta)$ provides an optimal estimator for θ. However, the expectation is unknown and is to be estimated. To perform these computations, we may need to correctly specify the distribution of $Y \mid X$, which is subjective and unverifiable, as is stated in Section 1. We avoid this problem and propose two adaptive estimators that also attain the lower bound derived in Theorem 1.

4 Adaptive Estimators

We now propose two adaptive estimators for (ϕ_0, θ_0): (i) with a parametric working model for $f_1(y \mid x)$; (ii) with a nonparametric estimator for $f_1(y \mid x)$.

To discuss the first method, let $f_1(y \mid x)$ be known up to the parameter $\gamma \in \Gamma$, and let $\hat{\gamma}$ be the maximum-likelihood estimator obtained using only observed data, i.e., let it be a solution of

$$
\sum_{i=1}^{n} r_i \log \frac{\partial \log f_1(y_i \mid x_i; \gamma)}{\partial \gamma} = 0.
$$

(9)

This can be easily implemented, and its validity can be checked by using an information criterion, such as the Akaike information criterion (AIC) or the Bayesian information criterion (BIC). By using the idea similar to that used to derive (4), we can show that, for any function $g(Z)$,

$$
E^*(g(Z) \mid x; \gamma, \phi) = \frac{E_1(\pi^{-1}(Z; \phi)O(Z; \phi)g(Z) \mid x; \gamma)}{E_1(\pi^{-1}(Z; \phi)O(Z; \phi) \mid x; \gamma)}.
$$

(10)
Thus, the expectation can be estimated by using the assumed model \(f_1(y \mid x; \hat{\gamma}) \). Although it seems that misspecification of \(f_1(y \mid x) \) leads to inconsistency in \((\hat{\phi_0}, \hat{\theta_0})\), to our surprise, the estimator that uses the function on the right-hand side of (10) is consistent, even if it is misspecified. We note that if the model is correctly specified, the estimator attains the lower bound.

Theorem 2. Let \((\hat{\phi}^\top, \hat{\theta}^\top)^\top\) be the solution to \(\sum_{i=1}^n S_{\text{eff},i}(\phi, \theta, \hat{\gamma}) = 0 \), where \(S_{\text{eff},i}(\phi, \theta, \hat{\gamma}) \) is a solution of (8) using the estimation \(f_1(y \mid x; \hat{\gamma}) \). Under Conditions (C1)–(C9) given in Appendix A, \((\hat{\phi}^\top, \hat{\theta}^\top)^\top\) has consistency and asymptotic normality with variance

\[
E \left(\frac{\partial S_{\text{eff}}^*}{\partial (\phi^\top, \theta)} \right)^{-1} E \left(S_{\text{eff}}^* \otimes 2 \right) E \left(\frac{\partial S_{\text{eff}}^*}{\partial (\phi^\top, \theta)} \right)^{-1,^\top},
\]

where \(\gamma^* \) is the limit of \(\hat{\gamma} \), and \(S_{\text{eff}}^* = S_{\text{eff}}(\phi_0, \theta_0, \gamma^*) \), even if \(f_1(y \mid x; \hat{\gamma}) \) is misspecified. Also, the asymptotic variance of \(\hat{\theta} \) is given as

\[
V^* = \text{var} \{ S_2(\phi_0, \theta_0, \gamma^*) - \kappa^* S_1(\phi_0, \gamma^*) \},
\]

where \(\kappa^* = \kappa_1^* (\kappa_2^*)^{-1} \), \(\kappa_1^* = E \{(U^*(\gamma^*) - U) \hat{\pi}(\phi_0)^\top / \pi(\phi_0)\} \), and \(\kappa_2^* = E \{ g^*(\phi_0, \gamma^*) \hat{\pi}(\phi_0)^\top / \pi(\phi_0) \} \).

In addition, if the model is correctly specified, the estimator attains the semiparametric efficiency bound.

Unlike the estimator of Riddles et al. (2016), the parametric model \(f_1 \) is irrelevant when considering the consistency and asymptotic normality of our estimator. Therefore, we call \(f_1 \) a working model, as in Liang & Zeger (1986).

Numerical computation is needed to calculate the conditional expectation in (10). The expectation-maximization (EM) algorithm considered in Riddles et al. (2016) can be used with a minor modification. We can directly apply their method, once the weights \(w_{ij}^* \) defined in (15) of Riddles et al. (2016) are changed to

\[
w_{ij}^* = \frac{\pi^{-1}(x_i, y_j; \phi) O(x_i, y_j; \phi) f_1(y_j \mid x_i, \gamma) / C(y_j; \gamma)}{\sum_{k: \delta_k=1} \pi^{-1}(x_i, y_k; \phi) O(x_i, y_k; \phi) f_1(y_k \mid x_i, \gamma) / C(y_k; \gamma)},
\]
where \(C(y; \gamma) = \sum_{i: h_i=1} f_1(y \mid x_i; \gamma) \). The weight \(w_{ij}^* \) can be called fractional weights in the context of fractional imputation (Kim 2011). By using the above weights, \(E^*(g(Z) \mid x_i; \gamma, \phi) \) can be computed by \(\sum_{i=1}^n w_{ij}^* g(z_i) \).

There exists a class of the response mechanisms and \(f_1(y \mid x) \) for which the expectation can be computed analytically when the parameter of interest is the mean of the response variable, i.e., \(U(Z) = Y \). The following proposition would be useful in practice.

Proposition 1. Let \(f_1(y \mid x) \) be a function in the exponential family, that is,

\[
f_1(y \mid x; \tau, \psi) = \exp \left(y\tau - b(\tau) \right) c(y, \psi),
\]

and let its mean be \(\lambda \{ \mu(\tau \mid x; \gamma) \} = \gamma^\top x \), where \(\lambda \) is a link function, and \(b \) and \(c \) are known functions. Also, let the response mechanism can be written as

\[
\pi(x, y; \phi) = \frac{1}{1 + \exp \{ h(x; \phi_0) + \phi_1 y \}},
\]

where \(\phi = (\phi_0^\top, \phi_1)^\top \), and \(h \) is a known function. Then, it holds that

\[
g^*(x)^\top = -\frac{\dot{h}(x; \phi_0)^\top, \dot{b}(\phi_1 \psi + \tau)}{1 + d(\phi_1, \psi, \tau)}
\]

and

\[
E^*(Y \mid x) = \frac{\dot{b}(\phi_1 \psi + \tau) + d(\phi_1, \psi, \tau) \dot{b}(2\phi_1 \psi + \tau)}{1 + d(\phi_1, \psi, \tau)},
\]

where \(\dot{b}(\tau) = \partial b(\tau) / \partial \tau \) and \(d(\phi_1, \psi, \tau) = \exp \{ h(x; \phi_0) + (b(2\phi_1 \psi + \tau) - b(\phi_1 \psi + \tau))/\psi \} \).

The proof is given in Appendix B. In particular, assume that \(Y \mid X, R = 1 \) is normally distributed with mean \(\mu \) and variance \(\sigma^2 \), i.e., \(\tau = \mu = \gamma^\top x, \psi = \sigma^2, b(\tau) = \tau^2/2 \), and the response mechanism is logit\{\(\pi(x, y) \)\} = \(h(x; \phi_0) + \phi_1 y \). Then, it holds that

\[
g^*(x) = \frac{1}{1 + \exp \{ h(x; \phi_0) + \phi_1 (3\phi_1 \sigma^2/2 + \gamma^\top x) \}} \left(\frac{\dot{h}(x; \phi_0)}{\phi_1 \sigma^2 + \gamma^\top x} \right).
\]
and

\[E^*(Y \mid x) = \frac{(\phi_1\sigma^2 + \gamma^\top x) + \exp\{h(x; \phi_0) + \phi_1(3\phi_1\sigma^2/2 + \gamma^\top x)\}}{1 + \exp\{h(x; \phi_0) + \phi_1(3\phi_1\sigma^2/2 + \gamma^\top x)\}} \]

Thus, in this case, we can compute the conditional expectation analytically.

We now discuss the second adaptive estimation method based on the nonparametric estimation for \(f_1(y \mid x) \). Generally speaking, directly computing the expectation defined in (7) with the nonparametrically estimated \(f_1(y \mid x) \) would make the computation difficult. To avoid this problem, we consider methods of calculating the expectation directly. When \(x \) is discrete, such as when \(x \) is a dichotomous variable, the expectation can be computed by averaging the data conditioned by \(X = x \) and \(R = 1 \), e.g., for \(x = 0, 1 \),

\[
\hat{E}^*(g(x, Y) \mid x; \phi) = \frac{\sum_{j \in I_x} r_j \pi^{-1}(x, y_j; \phi)O(x, y_j; \phi)g(x, y_j)}{\sum_{j \in I_x} r_j \pi^{-1}(x, y_j; \phi)O(x, y_j; \phi)}
\]

is a consistent estimator of \(\tilde{10} \), where \(I_x = \{ j \in \{1, \ldots, n\} \mid X_j = x \} \).

A natural extension to the case when \(X \) contains continuous variables can be accomplished with the Nadaraya-Watson estimator. That is, for any function \(g(Z) \),

\[
\hat{E}^*(g(Z) \mid X) = \frac{\sum_{j=1}^n K_h(x - x_j) r_j \pi^{-1}(x, y_j; \phi)O(x, y_j; \phi)g(x, y_j)}{\sum_{j=1}^n K_h(x - x_j) r_j \pi^{-1}(x, y_j; \phi)O(x, y_j; \phi)}
\]

is consistent under some regularity conditions given in Appendix A. Here, \(K_h(x - w) = K((x - w)/h) \), \(K \) is a kernel function, and \(h \) is the bandwidth. Then, we have the following result for the adaptive estimators obtained with the Nadaraya-Watson estimation.

Theorem 3. Let \((\hat{\phi}^+, \hat{\theta})^+\) be a solution of \(\sum_{i=1}^n \hat{S}_{eff,i}(\phi, \theta) = 0\), where \(\hat{S}_{eff,i}(\phi, \theta)\) is a solution of (8) with the estimated conditional expectation defined in (16). Under Conditions (C1)–(C8) and (C10)–(C14) given in Appendix A, \((\hat{\phi}^+, \hat{\theta})^+\) satisfies consistency and asymptotic normality, and the estimator attains the semiparametric efficiency bound.
The proposed estimator is attractive because it does not need any assumptions on f_1, but it would not work well when the dimension of X is high. This is a common problem in nonparametric estimation.

Remark 3. When Y is also discrete, the fully nonparametric approach proposed in Appendix 2 of Riddles et al. (2016) can be used. For example, if both X and Y are binary, $\pi(x, y) = P(R = 1 \mid x, y)$ takes four possible values. Since the fully nonparametric approach is based on the maximum likelihood, it is the same as the solution of (4) if the estimates of all $\pi(x, y)$ satisfy $0 < \hat{\pi}(x, y) < 1$; otherwise, there are no solutions. However, the estimator of the fully nonparametric approach always has a solution. In that sense, the fully nonparametric approach is better than our proposed method. Our proposed estimator also does not have a solution when it does not satisfy the conditions. Surprisingly, however, the fully nonparametric approach has exactly the same solution as our proposed estimator. The proof is given in Appendix C. Therefore, when X and Y are discrete, the fully nonparametric approach always has a solution, and it gives the best estimator.

Estimation of the variance is also a difficult problem in semiparametric estimation, because it requires some nonparametric estimates other than the parameters of interest. To estimate such functions, a common approach is to use the Horvitz-Thompson type estimator with an estimated response mechanism, but it can be unstable (see Morikawa et al. 2016, §4). However, by using Theorem 1 and Theorem 2, a much more stable variance estimator for V^* can be obtained.

When we consider a parametric working model $f_1(y \mid x; \gamma)$, it follows that

$$
\hat{V} = n^{-1} \sum_{i=1}^{n} \{ S_2(R_i, G_{R_i}(Z_i); \hat{\theta}, \hat{\phi}, \hat{\gamma}) - \hat{\kappa} S_1(R_i, G_{R_i}(Z_i); \hat{\phi}, \hat{\gamma}) \}^{\otimes 2}
$$

(17)

converges to V^* in probability, as defined in (12), where $\hat{\kappa}$ is a consistent estimator for $\kappa^* = \kappa_1^* \kappa_2^{-1}$ in the nonparametric estimates, for κ_1^* and κ_2^* as defined in Theorem 2. To
estimate κ^*_1, we propose using the same method that we used to compute θ_0, i.e., let the expectation of $U(\phi_0, \gamma^*) = (U^*(\gamma^*) - U) \pi(\phi_0) / \pi(\phi_0)$ be our target function and solve the following equation:

$$\sum_{i=1}^{n} \left[r_i \left\{ \kappa^*_1 - U(z_i; \kappa^*_1, \hat{\phi}, \hat{\gamma}) \right\} \pi(z_i; \hat{\phi}) + \left(1 - \frac{r_i}{\pi(z_i; \hat{\phi})} \right) \left\{ \kappa^*_1 - E^*(U(Z, \kappa^*_1, \hat{\phi}, \hat{\gamma}) \mid x_i; \hat{\gamma}) \right\} \pi(z_i; \hat{\phi}) \right] = 0.$$

This is the best estimator for (ϕ, κ^*_1) in terms of the asymptotic variance, because the second term in U is known, and so we can apply Theorem 2. The best estimator for κ^*_2 can be obtained in the same way. When we use the method of Theorem 3 to estimate θ, a similar method can be used to estimate the variance.

5 Simulation Study

In order to evaluate the performance of our estimators with a finite sample, we conducted a Monte Carlo simulation with two scenarios, Scenario s for $s = 1, 2$. In each scenario, we used two covariate variables $X = (X_1, X_2)^\top$, set the response mechanism to logit{$\pi(x_1, y)$} = $\phi_0 + \phi_1 x_1 + \phi_1 y$, and generated the response variable from $Y \mid (x_1, x_2, r = 1) \sim N(\mu_s(x), 1)$.

In Scenario 1, both X_1 and X_2 are binary with generation probability 0.5 and $\mu_1(x) = 0.5I_{00} - 0.5I_{01} - 0.5I_{10} + I_{11}$, respectively, where $I_{ij} = I(X_1 = i, X_2 = j)$, and I is an indicator function. The parameter of the response model is $(\phi_0, \phi_1, \phi_2) = (-1, -0.5, 0.75)$. In Scenario 2, X_1 is generated from the same distribution as in Scenario 1, but X_2 is generated from $U(-1, 1)$, where $U(a, b)$ is a uniform distribution with minimum value a and maximum value b. The mean structure is log{$\mu_2(x)$} = $-1.7 - 0.4x_1 + 0.5x_2$ and $(\phi_0, \phi_1, \phi_2) = (-1.7, -0.4, 0.5)$. We note that in both scenarios, the response rate is about 70%, and X_2 is a nonresponse instrumental variable (Wang et al. 2014). We are interested in estimating response model parameter and the population parameter $\theta = E(Y)$. For
response models, only ϕ_2 is reported.

Data (R, X, Y) are generated as follows: (i) X is generated by the assumed model; (ii) R is generated by $P(R = 1 \mid \mathbf{x})$, which is equal to $E_1\{\pi^{-1}(x_1, Y) \mid \mathbf{x}\}^{-1}$ (thus, it can be computed by the assumed response model and f_1), because by Bayes’ formula,

$$E_1\{\pi^{-1}(x_1, Y) \mid \mathbf{x}\} = \int \pi^{-1}(x_1, y)f_1(y \mid \mathbf{x})dy = \int \pi^{-1}(x_1, y)\frac{\pi(x_1, y)f(y \mid \mathbf{x})}{P(R = 1 \mid \mathbf{x})}dy = \{P(R = 1 \mid \mathbf{x})\}^{-1}.$$

When f_1 belongs to the exponential family defined in (13), and the response model is the logistic model defined in (14), it follows that

$$P(R = 1 \mid \mathbf{x}) = \frac{1}{1 + \exp[h(\mathbf{x}) + \{b(\phi \psi + \tau) - b(\tau)\}/\psi]},$$

(iii) when $r = 1$, Y is generated by $f_1(y \mid \mathbf{x})$, and $r = 0$, Y is from

$$f_0(y \mid \mathbf{x}) = \frac{O(x_1, y)}{E_1\{O(x_1, Y) \mid \mathbf{x}\}}f_1(y \mid \mathbf{x}) = \exp\left\{\frac{y(\phi \psi + \tau) - b(\phi \psi + \tau)}{\psi} + c(y, \psi)\right\},$$

which implies $f_0(y \mid \mathbf{x})$ also belongs to the exponential family, and thus Y can be easily generated.

From each sample, we computed four estimators, as follows:

[1] MAR: A naive estimator based on the assumption that the missing data are missing-at-random:

$$\sum_{i=1}^{n} \delta_i(\theta - y_i)/\hat{\pi}_i = 0,$$ (18)

where $\hat{\pi}_i$ is an estimated response model under this assumption, that is, $\hat{\pi} = \{1 + \exp(-\hat{\phi}_0 - \hat{\phi}_1 x_1 - \hat{\phi}_2 x_2)\}^{-1}$, where $(\hat{\phi}_0, \hat{\phi}_1, \hat{\phi}_2)$ is the maximum-likelihood estimator.
[2] CK: The estimator of Chang & Kott (2008). We use the estimating equation (2), setting g as $(1, x_1, x_2)$; θ is estimated using the ϕ estimated by (18).

[3] RKI: The estimator of Riddles et al. (2016). In Scenario 1, there is no need for a parametric model f_1, and a nonparametric method similar to (15) is used; however, in Scenario 2, it is necessary to assume a misspecified parametric model f_1 that is normally distributed with a mean structure of $\gamma_0 + \gamma_1 x_1 + \gamma_2 x_2 + \gamma_3 x_1^2 + \gamma_4 x_1 x_2$. The other model is chosen by the AIC.

[4] New: Our proposed estimator. In Scenario 2, we also use the same misspecified model as is used for the RKI, say [Nm], and we also assume a correctly specified model [Nt] and the nonparametric estimator proposed in (15) [Nnp].

Monte Carlo samples of size $n = 500$ and 2,000 were independently generated 2,000 times. We used the correct model for the response mechanism, except with MAR.

Remark 4. Qin et al. (2002) also derived an estimator that is effective for nonignorable nonresponse data. However, their estimator is exactly the same as that of Chang & Kott (2008) when $q = d + 1$ and the response model is logistic, where q and d are the dimensions of ϕ and x, respectively. The proof is shown in Appendix C. For this reason, we omitted the results using the estimator of Qin et al. (2002).

Tables 1 and 2 show the Monte Carlo simulation results for Scenarios 1 and 2, respectively. In Tables 1 and 2, the bias and standard errors (S.E.) of the point estimators are presented for each case. In the CK method, we encountered some numerical problems in Scenario 1, and there was no solution because the estimate of ϕ did not converge. This was true even for a large sample. The following is a summary of the simulation results shown in Tables 1 and 2:
Table 1: Monte Carlo bias and S.E. of the four estimators, based on 2,000 Monte Carlo samples for Scenario 1. All values $\times 1000$.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Size</th>
<th>Parameter</th>
<th>MAR</th>
<th>CK</th>
<th>RKI</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ϕ_2</td>
<td>-278</td>
<td>7</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>S.E.</td>
<td>1254</td>
<td>198</td>
<td>187</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td></td>
<td>θ</td>
<td>-314</td>
<td>-140</td>
<td>-3</td>
<td>-5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S.E.</td>
<td>64</td>
<td>391</td>
<td>88</td>
<td>85</td>
</tr>
<tr>
<td>#NA</td>
<td></td>
<td>0</td>
<td>785</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ϕ_2</td>
<td>-254</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>S.E.</td>
<td>1147</td>
<td>89</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td>θ</td>
<td>-314</td>
<td>-112</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S.E.</td>
<td>31</td>
<td>356</td>
<td>42</td>
<td>42</td>
</tr>
<tr>
<td>#NA</td>
<td></td>
<td>0</td>
<td>722</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

#NA: total number of not applicable (due to numerical problems).
Table 2: Monte Carlo bias and S.E. of the six estimators, based on 2,000 Monte Carlo samples for Scenario 2. Nm, Nt, and Nnp are our proposed estimators. All values $\times 1000$.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Size</th>
<th>Parameter</th>
<th>MAR</th>
<th>CK</th>
<th>RKI</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nm</td>
<td>Nt</td>
<td>Nnp</td>
<td>Nm Nt Nnp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bias</td>
<td>15</td>
<td>31</td>
<td>9</td>
<td>7 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S.E.</td>
<td>100</td>
<td>93</td>
<td>91</td>
<td>87 87</td>
</tr>
<tr>
<td>ϕ_2</td>
<td>500</td>
<td>Bias</td>
<td>-300</td>
<td>-10</td>
<td>9</td>
<td>-7 -23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S.E.</td>
<td>94</td>
<td>104</td>
<td>125</td>
<td>99 100</td>
</tr>
<tr>
<td>θ</td>
<td>2</td>
<td>Bias</td>
<td>4</td>
<td>24</td>
<td>3</td>
<td>3 -1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S.E.</td>
<td>44</td>
<td>42</td>
<td>43</td>
<td>41 41</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>Bias</td>
<td>-297</td>
<td>0</td>
<td>19</td>
<td>1 -6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S.E.</td>
<td>47</td>
<td>53</td>
<td>63</td>
<td>49 49</td>
</tr>
</tbody>
</table>

Table 3: Coverage probability based on 2,000 Monte Carlo samples. New is the estimator in Scenario 1 and the others are in Scenario 2. All values $\times 100$.

<table>
<thead>
<tr>
<th>Size</th>
<th>New</th>
<th>Nm</th>
<th>Nt</th>
<th>Nnp</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>94.25</td>
<td>93.40</td>
<td>94.20</td>
<td>87.20</td>
</tr>
<tr>
<td>2000</td>
<td>95.05</td>
<td>94.65</td>
<td>95.35</td>
<td>92.35</td>
</tr>
</tbody>
</table>
[1] In all scenarios, the naive estimator using the MAR assumption is significantly biased, since this assumption does not hold.

[2] The CK method does not work well in Scenario 1, because both X_1 and X_2 are binary, and constraints only on the binary covariates are not sufficient for estimating ϕ. However, its performance is good in Scenario 2.

[3] The RKI method and our estimators perform well in Scenario 1. However, in Scenario 2, the estimates for θ are somewhat positively biased in RKI due to the misspecification of f_1.

[4] In all scenarios, our proposed estimators perform better than any other methods. We note that in Scenario 2, the estimators of N_t and N_{np} have the smallest variance, but the bias of the nonparametric estimator of θ is a little larger than that of the other estimators; however, it decreases as the sample size increases. The Nm model is consistent even if the model on f_1 is misspecified; however, it is less efficient than the other proposed estimators.

Table 3 shows the estimated coverage probability of our proposed estimators, for significance level $\alpha = 0.05$. We used (17) to estimate the variance of our estimators. Our proposed variance estimator works well, except for nonparametric methods, because it is biased when the sample size is not very large. However, as the sample size increases, the coverage probability approaches to 95%.

6 Analysis of Real Data

In this section, our proposed estimators are applied to the Korea Labor and Income Panel Survey (KLIPS), which has been analyzed multiple times [Kim & Yu 2011, Wang et al.].
The data represent \(n = 2,506 \) Korean residents; the response variable \(y \) is income (10\(^6\) Korean Won) in year 2008. There are four covariates: \(x_1 \): age; \(x_2 \): income in the previous year (2007); \(x_3 \): gender; and \(x_4 \): education level. In our analysis, we considered three data points to be outliers, and they were excluded in our analysis.

Since the data are completely observed, we made eight artificial incomplete datasets by assuming the eight response models considered in \(\text{Kim} \& \text{Yu} \) (2011): M1 (linear ignorable):

\[
\logit(\pi) = 4.93 - x_1;
\]

M2 (linear nonignorable):

\[
\logit(\pi) = 1.61 - 0.5x_1 + 0.75y;
\]

M3 (nonlinear nonignorable, quadratic in \(x_1 \)):

\[
\logit(\pi) = 3.7 - 0.5x_1 - 0.1x_1^2 + 0.6y;
\]

M4 (jump nonignorable):

\[
\pi = 0.5I(y \leq 1.6) + I(y > 1.6);
\]

M5 (nonlinear nonignorable, quadratic in \(y \)):

\[
\logit(\pi) = -0.22 + 0.1x_1 + 0.1y + 0.2y^2;
\]

M6 (probit nonignorable):

\[
\pi = \Phi(0.71 - 0.25x_1 + 0.5y),
\]

where \(\Phi \) is the cumulative distribution function of the normal distribution;

M7 (complementary log-log nonignorable):

\[
\pi = 1 - \exp\{-\exp(-1.8 + 0.2x_1 + 0.8y)\};
\]

and M8 (nonlinear nonignorable, interaction):

\[
\logit(\pi) = -0.2 - 0.1x_1 + 0.2y + 0.2x_1y.
\]

For all data sets, the response rate is about 70%.

We assumed the response model

\[
\logit\{\pi(x_1, y; \phi)\} = \phi_0 + \phi_1 x_1 + \phi_2 x_1^2 + \phi_3 y + \phi_4 y^2;
\]

which implies, for models M4, M6, M7, and M8, that our response model misspecified the true model. We assumed that the use of a working model \(f_1 \) would be better, since there are four covariate variables and the sample size is not very large. Thus, \(f_1 \) is specified as the normal distribution with mean structure \(\mu(x) = \gamma_0 + \sum_{ij} \gamma_{ij} x_i x_j \), and one model is chosen by the AIC. The mean income in 2008 was 1.648, as calculated using the complete data.

The resulting estimates and estimated confidence intervals are shown in Table 4. It can be seen that our estimators and estimated confidence interval work well for all datasets, including when the model is misspecified.
Table 4: Estimates, bias, and confidence interval with significance level $\alpha = 0.05, 0.01$ are reported for datasets M1–M8, based on real data. Bias values $\times 1000$.

<table>
<thead>
<tr>
<th>Missing</th>
<th>Bias</th>
<th>CI(0.05)</th>
<th>CI(0.01)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>-5</td>
<td>(1.605, 1.682)</td>
<td>(1.592, 1.694)</td>
</tr>
<tr>
<td>M2</td>
<td>-8</td>
<td>(1.603, 1.677)</td>
<td>(1.592, 1.688)</td>
</tr>
<tr>
<td>M3</td>
<td>2</td>
<td>(1.600, 1.700)</td>
<td>(1.584, 1.716)</td>
</tr>
<tr>
<td>M4</td>
<td>-3</td>
<td>(1.605, 1.685)</td>
<td>(1.592, 1.698)</td>
</tr>
<tr>
<td>M5</td>
<td>5</td>
<td>(1.614, 1.693)</td>
<td>(1.601, 1.705)</td>
</tr>
<tr>
<td>M6</td>
<td>-7</td>
<td>(1.604, 1.679)</td>
<td>(1.593, 1.690)</td>
</tr>
<tr>
<td>M7</td>
<td>-3</td>
<td>(1.609, 1.682)</td>
<td>(1.597, 1.694)</td>
</tr>
<tr>
<td>M8</td>
<td>-6</td>
<td>(1.606, 1.679)</td>
<td>(1.594, 1.691)</td>
</tr>
</tbody>
</table>

7 Discussion

We have derived a semiparametric efficiency bound for $(\phi^T, \theta)^T$ under a nonignorable nonresponse. We also proposed two types of adaptive semiparametric estimators that each attain the lower bound. One uses a working model on $f_1(y \mid x) = f(y \mid x, r = 1)$. If the model is correctly specified, our proposed estimator attains the bound, and it has consistency and asymptotic normality even if it is misspecified. Validity of the working model can be checked by using an existing information criteria, such as the AIC or BIC, because the model is based on observed data. The second estimator utilizes the Nadaraya-Watson estimator, which is nonparametric; it always attains the bound. Other nonparametric estimators, such as the nonparametric Bayes, and techniques of machine learning can be used instead of the Nadaraya-Watson estimator. The second estimator is
better than the first one because it attains the lower bound, even though it does not need
the specification of f_1; however, it does not work well when the dimension of X is high. We
have also clarified the relationships between the our estimator and previous ones, including
that of Qin et al. (2002), Chang & Kott (2008), and Riddles et al. (2016).

The proposed method is based on the correct specification of the response model. There
may be various candidates for the response model, and thus the appropriate information
criteria for choosing the response model will be a topic of future research. Instead of
specifying a single response model, one can consider multiple response models, and obtain
consistency when one of the specified response models is correct. This multiple robustness
property has been investigated in the ignorable nonresponse setup (Han 2014). Extension
of multiple robustness to the nonignorable nonresponse case will also be a topic of our
future research.

Appendix A

Following conditions are needed to guarantee Theorem 1–3:

(C1). There exists a nonresponse instrumental variable X_2, i.e., $X = (X_1^T, X_2^T)^T$, and X_2
is independent of R given X_1 and Y.

(C2). The response probability $\pi(x_{1i}, y_i)$ is bounded below. That is, $\pi(x_{1i}, y_i) > K$
for some $K > 0$ for all $i = 1, \ldots, n$, uniformly in n.

(C3). $W_i = (X_i, Y_i, R_i)$ are independently and identically distributed.

(C4). Φ and Θ are compact.
(C5). $S_{\text{eff}}(\phi, \theta)$ defined in (5), (6), and (8) is continuously differentiable at each $(\phi, \theta) \in \Phi \times \Theta$ with probability one, and there exists $d(W)$ such that $\|S_{\text{eff}}(\phi, \theta)\| \leq d(W)$ for all $(\phi, \theta) \in \Phi \times \Theta$ and $E\{d(W)\} < \infty$.

(C6). $E\{S_{\text{eff}}(\phi, \theta)\} = 0$ has a unique solution $(\phi_0, \theta_0) \in \Phi \times \Theta$.

(C7). $\partial S_{\text{eff}}(\phi, \theta)/\partial (\phi^T, \theta)$ is continuous at (ϕ_0, θ_0) with probability one, and there is a neighborhood $\Phi_N \times \Theta_N$ of (ϕ_0, θ_0) such that $\|E\{\sup_{(\phi, \theta) \in \Phi_N \times \Theta_N} \partial S_{\text{eff}}(\phi, \theta)/\partial (\phi^T, \theta)\}\| < \infty$.

(C8). $E\{\partial S_{\text{eff}}(\phi, \theta)/\partial (\phi^T, \theta^T)\}$ is nonsingular at (ϕ_0, θ_0).

(C9). Γ is compact, $S_\gamma(\gamma) = \partial \log f_1(y \mid x; \gamma)/\partial \gamma$ is continuously differentiable at $\gamma \in \Gamma$ with probability one, there exists $e(W)$ such that $\|S_\gamma(\gamma)\| \leq e(W)$ for all $\gamma \in \Gamma$ and $E\{e(W)\} < \infty$, $E\{S_\gamma(\gamma)\} = 0$ has a unique solution $\gamma_0 \in \Gamma$, $\partial S_\gamma(\gamma)/\partial \gamma^T$ is continuous at γ_0 with probability one, and there is a neighborhood Γ_N of γ_0 such that $\|E\{\sup_{\gamma \in \Gamma_N} \partial S_\gamma(\gamma)/\partial \gamma^T\}\| < \infty$.

(C10). Let \mathcal{X} be a compact set that is contained in the support of x, let $f_1(x) > 0$, and let $E_1\{\pi(x_1, Y_1; \phi_0) \mid x\} > 0$ for all $x \in \mathcal{X}$.

(C11). The kernel $K(u)$ has bounded derivatives of order k, satisfies $\int K(u)du = 1$, has zero moments of order $\leq m - 1$, and has a nonzero m-th order moment.

(C12). For all y, $\pi(\cdot; y; \phi_0)$, $\hat{\pi}(\cdot; y; \phi_0)$, and $U(\cdot; y; \theta_0)$ are differentiable to order k and are bounded on an open set containing \mathcal{X}.
Let $a_1(z) = 1$, $a_2(z) = s_0(z; \phi_0)$, and $a_3(z) = U(z)$. Then, there exists $v \geq 4$ such that $E_1\{||\pi^{-1}(Z; \phi_0)O(Z; \phi_0)a_i(Z)||^v \mid x\}f_1(x)$ are bounded for all $x \in \mathcal{X}$.

As $h \to 0$, $n^{1-\frac{2}{v}}h^d/\ln n \to \infty$, $n^{1/2}h^{d+2k}/\ln n \to \infty$, and $n^{1/2}h^{2m} \to 0$.

Appendix B

In this section, we provide a proof for Theorems 1-3; for simplicity, we will assume $U(Z) = Y$. In order to discuss semiparametric theory, we specify the joint distribution $Z = (X^T, Y)^T$ by $f(z; \eta)$, where η is an infinite-dimensional nuisance parameter, and η_0 is the true value. By “full model” we refer to the class of models in which the data are completely observed, and by “obs model” we refer to those in which some Y are missing; that is, a full model consists of functions $h(Z)$ and an obs model consists of $h(R, G_R(Z))$. Furthermore, for each full and obs model, let us denote the nuisance tangent space by Λ^F and Λ, respectively, and its orthogonal complement by $\Lambda^F \perp$ and $\Lambda \perp$, respectively. Let S_ϕ be the score function with respect to ϕ. Consider a Hilbert space $\mathcal{H} = \{h^{(q+1)\times 1} \mid E(h) = 0; \|h\| < \infty\}$ with inner product $\langle h_1, h_2 \rangle = E(h_1^\top h_2)$, where the expectation is taken under the true model. See Bickel et al. (1998) and Tsiatis (2006) for more details. When U comprises other functions, the proof is almost the same.

In order to derive the efficient score for (ϕ, θ), we introduce a proposition proved in Rotnitzky & Robins (1997), as follows. Let B and D be functions of $(R, G_R(Z))$, and let B^* and D^* be functions of Z. Also, let us define following three linear operators: $g(B^*) = E(B^* \mid R, G_R(Z))$, $m(B^*) = E\{g(B^*) \mid Z\}$, and $u(B^*) = RB^*/\pi(Z)$. Then, the efficient score for (ϕ, θ) can be derived by the following Lemma. See Proposition A1 in Rotnitzky & Robins (1997) for the proof.
Lemma B1. The efficient score for \((\phi, \theta)\) can be written as

\[
S_{\text{eff}} = u(D^*_\text{eff}) - \Pi[u(D^*_\text{eff}) \mid \Lambda_2] + A_{2,\text{eff}} = g\{m^{-1}(D^*_\text{eff})\} + A_{2,\text{eff}} ,
\]

where \(\Pi[h \mid \Lambda_2]\) is the projection of \(h\) onto \(\Lambda_2\), \(\Lambda_2 = [h(R, G_R(Z)) : E(h(R, G_R(Z)) \mid Z) = 0]\), and \(D^*_\text{eff}\) is a unique solution of

\[
\Pi[m^{-1}(D^*) \mid \Lambda_F^\perp] = (Q, S_{\text{eff}, \theta})^\top ,
\]

where \(Q = \Pi[m^{-1}[E\{g(S^F_\phi) \mid L]\} \mid \Lambda_F^\perp],\ A_{2,\text{eff}} = (\Pi[S_\phi \mid \Lambda_2]^\top, 0)^\top = (g(S^F_\phi) - g[m^{-1}[E\{g(S^F_\phi) \mid L]\}]^\top, 0)^\top,\) and \(S_{\text{eff}, \theta}\) is the efficient score function of \(\theta\) in the full model.

This Lemma implies that the efficient score can be represented by \((A.1)\) with \(D^*_\text{eff}\) satisfying condition \((A.2)\). Thus, in the nonignorable nonresponse case, \(\Lambda_F^\perp\) is to be calculated, and it can be done in a way similar to that shown in Section 4.5 of Tsiatis (2006).

Lemma B2. The nuisance tangent space \(\Lambda_F\) and its orthogonal complement \(\Lambda_F^\perp\) in the full model are written as follows:

\[
\Lambda_F = [h(Z) \in \mathcal{H} \text{ such that } E\{Yh(Z)\} = 0],
\]

\[
\Lambda_F^\perp = [k(Y - \theta_0), \text{ where } k \in \mathbb{R}^{q+1}].
\]

Finally, we give an explicit formula to calculate the projection onto \(\Lambda_2\).

Lemma B3. For \(h(R, G_R(Z)) = Rh_1(Z) + (1 - R)h_2(X)\), it holds that

\[
\Pi(h \mid \Lambda_2) = \left(1 - \frac{R}{\pi(Z)}\right) E^*(h_2(X) - h_1(Z) \mid X).
\]

Proof of Lemma B3. Obviously, the right-hand side of \((A.5)\) belongs to \(\Lambda_2\). Thus, it remains to be checked that for any \(g,\)

\[
\left\langle h - \left(1 - \frac{R}{\pi(Z)}\right) E^*(h_2(X) - h_1(Z) \mid X), \left(1 - \frac{R}{\pi(Z)}\right) g(X) \right\rangle = 0,
\]

24
which can be proved easily.

We now give proofs of Theorem 1–3, and Proposition 1.

Proof of Theorem 1. Note that \(S_{\text{eff}}^{F_{\theta \perp}} = Y - \theta_0 \) by Lemma B2, since there exists only one influence function, and it is the efficient one under the assumption that \(\theta \) does not require any assumptions on the distribution of \(Z \) (see Tsiatis 2006, Chap. 5). By the projection theorem, there exists a unique \(k = (k_1, k_2^\top)^\top \), where \(k_1(\neq 0) \in \mathbb{R} \) and \(k_2 \in \mathbb{R}^q \), such that \(D_{\text{eff}}^* = k(Y - \theta_0) \).

Then, we calculate \(A_{2, \text{eff}} \). The score function of \(\phi \) is

\[
S_{\phi} = g(S_{\phi}^F) = \frac{\hat{R}(\phi)}{\pi(\phi)} - (1 - R)E_0 \left(\frac{\hat{\pi}(\phi)}{1 - \pi(\phi)} \bigg| X \right).
\]

By Lemma B3, \(\Pi(S_{\phi} | \Lambda_2) = -(1 - R/\pi(Z))g^*(X) \). Thus, \(A_{2, \text{eff}} = (0, -(1 - R/\pi(Z))g^*(X)) \).

Again, by using Lemma B3, it follows that \(\Pi[u(D_{\text{eff}}^*) | \Lambda_2] = -(1 - R/\pi(Z))E^*(Y - \theta_0 | X) \), by which (A.1) becomes

\[
S_1 = k_2 \left\{ \frac{R(Y - \theta_0)}{\pi(\phi_0)} + \left(1 - \frac{R}{\pi(\phi_0)} \right) E^*(Y - \theta_0 | X) \right\} - \left(1 - \frac{R}{\pi(Z)} \right) g^*(X) \quad (A.6)
\]

and

\[
S_2 = k_1 \left\{ \frac{R(Y - \theta_0)}{\pi(\phi_0)} + \left(1 - \frac{R}{\pi(\phi_0)} \right) E^*(Y - \theta_0 | X) \right\}. \quad (A.7)
\]

This \(S_{\text{eff}} = (S_1, S_2^\top) \) can be transformed into \(\tilde{S}_{\text{eff}} = (\tilde{S}_1, \tilde{S}_2^\top) = AS_{\text{eff}} \),

\[
\tilde{S}_1 = \left(1 - \frac{R}{\pi(\phi_0)} \right) g^*(X),
\]

\[
\tilde{S}_2 = \frac{R(Y - \theta_0)}{\pi(\phi_0)} + \left(1 - \frac{R}{\pi(\phi_0)} \right) E^*(Y - \theta_0 | X)
\]

with a nonsingular matrix \(A \),

\[
A = \begin{bmatrix} -I_q & -k_2^\top/k_1 \\ 0^\top & k_1^{-1} \end{bmatrix}.
\]

25
where I_q is a q-dimensional identity matrix. The score function multiplied by a nonsingular constant matrix does not have an influence on the asymptotic distribution. Thus, we have the desired efficient score.

Proof of Theorem 2. Let $\xi = (\phi^T, \theta)^T$. Recall that each $\hat{\gamma}$ and $\hat{\xi}$ is a solution of $\sum_{i=1}^{n} \partial \log f_1(y_i | x_i; \gamma) / \partial \gamma = \sum_{i=1}^{n} S_{\gamma i}(\gamma) = 0$ and $[\mathbf{0}]$, respectively. By using standard asymptotic theory,

$$
\begin{bmatrix}
\hat{\gamma} - \gamma_0 \\
\hat{\xi} - \xi_0
\end{bmatrix} = -I^{-1} n^{-1} \sum_{i=1}^{n} \begin{bmatrix}
S_{\gamma i}(\gamma_0) \\
S_{\text{eff}, i}(\gamma_0, \xi_0)
\end{bmatrix},
$$

where

$$
I = E \begin{bmatrix}
\partial S_{\gamma}(\gamma_0) / \gamma^T \\
\partial S_{\text{eff}}(\gamma_0, \xi_0) / \gamma^T
\end{bmatrix} = E \begin{bmatrix}
\partial S_{\gamma}(\gamma_0) / \gamma^T & O \\
\partial S_{\text{eff}}(\gamma_0, \xi_0) / \gamma^T & \partial S_{\text{eff}}(\gamma_0, \xi_0) / \xi^T
\end{bmatrix}.
$$

Let the (i, j) block of I be I_{ij}. Then,

$$
I^{-1} = \begin{bmatrix}
I_{11}^{-1} & O \\
-I_{21}^{-1} I_{22} I_{11}^{-1} & I_{22}^{-1}
\end{bmatrix}.
$$

Here, it follows that $I_{21} = O$ from

$$
E \left\{ \left(1 - \frac{R}{\pi(\phi_0)} \right) \frac{\partial g^*(\gamma_0, \phi_0)}{\partial \gamma} \right\} = O
$$

and

$$
E \left\{ \left(1 - \frac{R}{\pi(\phi_0)} \right) \frac{\partial U^*(\gamma_0, \phi_0)}{\partial \gamma} \right\} = O^T.
$$

Therefore, we have,

$$
I^{-1} = \begin{bmatrix}
I_{11}^{-1} & O \\
0 & I_{22}^{-1}
\end{bmatrix}.
$$

\[\square\]
Proof of Proposition 1. It follows from the definition of \(g^\star \) and \(f_1 \) that
\[
\begin{align*}
g^\star(x) &= \frac{E_1\{O(\phi; x, Y)(\hat{h}(x; \phi_0)^\top, Y) \mid x\}}{E_1\{\pi^{-1}(\phi; x, Y)O(\phi; x, Y) \mid x\}} \\
&= \frac{\hat{h}(x; \phi_0)^\top E_1\{\exp(\phi_1 Y) \mid x\}, E_1\{Y \exp(\phi_1 Y)\}}{E_1\{1 + \exp(h(x; \phi_0) + \phi_1 Y)\} \exp(\phi_1 Y) \mid x\},
\end{align*}
\]
where \(\hat{h}(\phi_0) = \partial h(\phi_0)/\partial \phi_0 \). Thus, \(E_1\{\exp(\phi_1 Y) \mid x\} \) and \(E_1\{Y \exp(\phi_1 Y) \mid x\} \) are to be computed. Since \(E_1\{\exp(\phi_1 Y) \mid x\} \) is the generating moment function of \(Y \mid x \), it holds that
\[
E_1(\exp(\phi_1 Y) \mid x) = \exp\left(\frac{b(\phi_1 \psi + \theta) - b(\theta)}{\psi}\right)
\]
and
\[
E_1(Y \exp(\phi_1 Y) \mid x) = \hat{b}(\phi_1 \psi + \theta) \exp\left(\frac{b(\phi_1 \psi + \theta) - b(\theta)}{\psi}\right).
\]
Substituting these results into (A.8), we obtain the proof. Computation of \(E^\star(Y \mid x) \) can be done in a similar way.

Proof of Theorem 3. Let \(f_1(x) \) be a conditional distribution of \(X \) given \(R = 1 \), and let \(\hat{g}^\star(x) = \hat{D}/\hat{C}, D = E_1\{\pi^{-1}(Z; \phi)O(Z; \phi) \mid x\}f_1(x)P(R = 1) \), and \(C = E_1\{\pi^{-1}(Z; \phi)O(Z; \phi)s_0(Z; \phi) \mid x\}f_1(x)P(R = 1) \). From the same arguments that were used to prove Lemma 1 in Morikawa et al. (2016), it can be shown that
\[
\frac{\hat{C}(\phi)}{D(\phi)} = \frac{C(\phi)}{D(\phi)} + \frac{1}{D(\phi)} \left\{ (\hat{C}(\phi) - C(\phi)) - \frac{C(\phi)}{D(\phi)}(\hat{D}(\phi) - D(\phi)) \right\} + o_p(n^{-1/2}).
\]
Therefore, it holds that
\[
\hat{g}^\star(\phi; x) = g^\star(\phi; x) + \frac{(nh^d)^{-1}}{D(\phi)} \sum_{j=1}^n r_j K_h(x - x_j) \pi^{-1}(\phi; x, y_j)O(\phi; x, y_j)
\]
\[
\times \{s_0(\phi; x, y_j) - g^\star(x)\} + o_p(n^{-1/2}).
\]
Thus,

$$n^{-1} \sum_{i=1}^{n} \{1 - r_i / \pi(\phi; z_i)\} \hat{g}^*(\phi; x_i) = n^{-1} \sum_{i=1}^{n} \{1 - r_i / \pi(\phi; z_i)\} g^*(\phi; x_i)$$

$$+ n^{-2} \sum_{i \neq j} \left\{ \frac{(1 - r_i / \pi(\phi; z_i)) r_j h^{-d} K_h(x_i - x_j) \pi^{-1}(x_i, y_j) O(\phi; x_i, y_j)}{D(\phi; x_i)} \right\}$$

$$\times \left\{ s_0(\phi; x_i, y_j) - g^*(\phi; x_i) \right\} + o_p(n^{-1/2})$$

$$= n^{-1} \sum_{i=1}^{n} \{1 - r_i / \pi(\phi; z_i)\} g^*(\phi; x_i) + \left(\frac{n}{2} \right)^{-1} \sum_{i<j} [\zeta_{ij} + \zeta_{ji}] / 2 + o_p(n^{-1/2}),$$

where

$$\zeta_{ij} := \frac{(1 - r_i / \pi(\phi; z_i)) r_j h^{-d} K_h(x_i - x_j) \pi^{-1}(\phi; x_i, y_j) O(\phi; x_i, y_j) \{ s_0(\phi; x_i, y_j) - g^*(\phi; x_i) \}}{D(\phi; x_i)}.$$

Let $w = (x^T, y, r)^T$ and $h(w_i, w_j) := (\zeta_{ij} + \zeta_{ji})/2$. According to U-statistic Theory (van der Vaart 1998), we have

$$\left(\frac{n}{2} \right)^{-1} \sum_{i<j} h(w_i, w_j) = \frac{2}{n} \sum_{i=1}^{n} E\{ h(w_i, w_j) \mid w_i \} + o_p(n^{-1/2}).$$

We first show that $E(\zeta_{ij} \mid w_i) = 0$. It holds because

$$E[R \pi^{-1}(\phi; x_i, Y) O(\phi; x_i, Y) \{ s_0(\phi; x_i, Y) - g^*(\phi; x_i) \} \mid x_i]$$

$$= f_1(x_i) E_1 \{ (\pi^{-1}(\phi; x_i, Y) O(\phi; x_i, Y) - \pi^{-1}(\phi; x_i, Y) O(\phi; x_i, Y)) g^*(\phi; x_i) \mid x_i \}$$

$$= 0.$$

(A.9)
For $E(\zeta_{ji} \mid \mathbf{w}_i)$, it does not vanish, in fact,

$$E(\zeta_{ji} \mid \mathbf{w}_i) = r_i \int \left\{ 1 - E \left(\frac{\pi(\phi_0; \mathbf{Z})}{\pi(\phi; \mathbf{Z})} \mid \mathbf{x} \right) \right\} \pi^{-1}(\phi; \mathbf{x}, y_i)O(\phi; \mathbf{x}, y_i)\{s_0(\phi; \mathbf{x}, y_i) - g^*(\phi; \mathbf{x})\}$$

$$\times h^{-d}K_h(\mathbf{x} - \mathbf{x}_i)f(\mathbf{x})d\mathbf{x}$$

$$= r_i \mathbf{G}(z_i; \phi) + O(h^{2m}),$$

where $\mathbf{G}(z_i; \phi) = G_1(x_i; \phi)G_2(z_i; \phi)$ and

$$G_1 = 1 - E \left(\frac{\pi(\phi_0; \mathbf{Z})}{\pi(\phi; \mathbf{Z})} \mid x_i \right),$$

$$G_2 = \frac{\pi^{-1}(\phi; z_i)O(\phi; z_i)\{s_0(\phi; z_i) - g^*(\phi; x_i)\}}{E_1{\pi^{-1}(\mathbf{Z}; \phi)O(\mathbf{Z}; \phi) \mid x_i} P(R = 1 \mid x_i)}.$$

By the regularity condition (C14), $O(h^{2m}) = O(n^{-1/2})$. As a result, our estimating equation can be asymptotically expanded as

$$n^{-1} \sum_{i=1}^{n} \left\{ \left(1 - \frac{r_i}{\pi(\phi; z_i)} \right) g^*(\phi; x_i) + r_i \mathbf{G}(z_i; \phi) \right\} + o_p(n^{-1/2}). \quad (A.10)$$

It seems that the asymptotic variance may increase due to the second term $r \mathbf{G}(\phi)$, but this solution also attains the lower bound. Once we got an unbiased estimating equation $
 \sum_{i=1}^{n} \varphi(z_i; \phi) = 0$, the asymptotic variance would be given as $\text{Var}\{E(\hat{\varphi}(\phi_0))^{-1}\varphi(\phi_0)\}$, where $\hat{\varphi}(\phi_0) = \partial\varphi(\phi_0)/\partial\phi^T$. Thus, to prove the fact, it is enough to show that $\mathbf{G}(\phi_0) = 0$ and $E(R\hat{\mathbf{G}}(\phi_0)) = \mathbf{O}$. The former equation is trivial, so we only show the latter equation. The latter equation can be written as $E(R\hat{\mathbf{G}}(\phi_0)) = E(R\mathbf{G}_1(\phi_0)\hat{\mathbf{G}}_2(\phi_0)) + E(R\mathbf{G}_2(\phi_0)\hat{\mathbf{G}}_1(\phi_0))$. It follows the first term is zero from $G_1(\phi_0) = 0$. Also, the second term is $E(R\mathbf{G}_2(\phi_0)\hat{\mathbf{G}}_1(\phi_0)) = E\{E(R\mathbf{G}_2(\phi_0) \mid \mathbf{X})\hat{\mathbf{G}}_1(\phi_0)\} = \mathbf{O}$. The last equation holds by the same reason as (A.9). Therefore, $r \mathbf{G}(\phi)$ does not effect on the asymptotic variance and our estimator also attains the semiparametric efficiency bound.
Appendix C

Riddles’ estimator and our proposed estimator

Assume that X_1, X_2, and Y are binary estimators of the response probability π_{x_1y} (fully nonparametric model) and that they do not exceed unity. Let us denote the total number of each element of $\{i \mid R_i = 0, X_{1i} = a, X_{2i} = b, Y_i = c\}$, $\{i \mid R_i = 1, X_{1i} = a, X_{2i} = b, Y_i = c\}$, and $\{X_{1i} = a, X_{2i} = b, Y_i = c\}$ by ℓ_{abc}, m_{abc}, and n_{abc}, respectively. Note that ℓ_{abc} is unobservable, but $\ell_{ab} = \ell_{abc0} + \ell_{abc1}$ can be observed. We will consider two estimators: that of Riddles et al. (2016) and our proposed estimator. Riddles’ estimator is a solution of

$$\sum_{i=1}^{n} \left\{ r_i \left(\frac{I_{00i}, I_{01i}, I_{10i}, I_{11i}}{\pi_{x_1y_i}} \right)^\top - (1 - r_i) \hat{E}_0 \left(\frac{\left(I_{00i}, I_{01i}, I_{10i}, I_{11i} \right)^\top}{1 - \pi_{x_1y_i}} \right) \right\} = 0,$$

where $I_{aci} = I(X_{1i} = a, Y_i = c)$ for $a, c = 0, 1$, and $\hat{E}_0(\cdot \mid x_1, x_2)$ is a nonparametric estimator of the expectation $E_0(\cdot \mid x_1, x_2)$. By using the same idea as in (15), it follows that if $x_{1i} = \alpha$ and $x_{2i} = \beta$,

$$\hat{E}_0 \left(\frac{I_{aci}}{1 - \pi_{\alpha Y}} \mid x_1 = \alpha, x_2 = \beta \right) = I(a = \alpha) \frac{m_{a\beta c}/\pi_{ac}}{\sum_{k=0}^{1} m_{a\beta k}(1 - \pi_{ak})/\pi_{ak}}.$$

Thus, the equation for I_{ac} can be simplified to

$$\frac{m_{a,c}}{\pi_{ac}} - \sum_{\beta=0}^{1} \ell_{a\beta} \frac{m_{a\beta c}/\pi_{ac}}{\sum_{k=0}^{1} m_{a\beta k}(1 - \pi_{ak})/\pi_{ak}} = 0, \quad (A.11)$$

where $m_{a,c} = m_{a0c} + m_{a1c}$.

Next, consider our proposed estimator, which is a solution of

$$\sum_{i=1}^{n} \left(1 - \frac{r_i}{\pi_{x_1y_i}} \right) \hat{E}^* \left(\frac{\left(I_{00i}, I_{01i}, I_{10i}, I_{11i} \right)^\top}{1 - \pi_{x_1y_i}} \right) \mid x_{1i}, x_{2i} = 0.$$
By using the same arguments as we used above, this can be simplified to

$$\sum_{\beta=0}^{1} \left(n_{a\beta} - \frac{m_{a0\beta}}{\pi_{a0}} - \frac{m_{a1\beta}}{\pi_{a1}} \right) \frac{m_{a\beta c}/\pi_{ac}^2}{\sum_{k=0}^{1} m_{a\beta k}(1 - \pi_{ak})/\pi_{ak}^2} = 0. \quad (A.12)$$

We will now show that (A.11) and (A.12) have the same solution. We first solve (A.12). For \(a = 0, 1 \), from (A.12), we have that \(\pi_{a0} \) and \(\pi_{a1} \) are solutions of

$$n_{a0} - m_{a00}/\pi_{a0} - m_{a01}/\pi_{a1} = 0,$$

$$n_{a1} - m_{a01}/\pi_{a0} - m_{a11}/\pi_{a1} = 0,$$ \quad (A.13)

which can be easily solved. Next, by (A.11), we have that \(\pi_{a0} \) and \(\pi_{a1} \) are solutions of the following simultaneous equations: \(m_{a00}P_0 + m_{a10}P_1 = m_{a0} \) and \(m_{a01}P_0 + m_{a11}P_1 = m_{a1} \), where \(P_0 = \ell_{a0}.(\sum_{k=0}^{1} m_{a0k}(1 - \pi_{ak})/\pi_{ak})^{-1} \) and \(P_1 = \ell_{a1}.(\sum_{k=0}^{1} m_{a1k}(1 - \pi_{ak})/\pi_{ak})^{-1} \). We can solve this to obtain \(P_0 = P_1 = 1 \). In fact, for \(\xi_0 \), \((m_{a01} - m_{a00}m_{a01}^{-1}m_{a11})P_0 = m_{a1} - m_{a0}m_{a01}^{-1}m_{a11} = m_{a01} - m_{a00}m_{a01}^{-1}m_{a11} \), and the same holds for \(P_1 \). From this, we have \(\sum_{k=0}^{1} m_{a0k}(1 - \pi_{ak})/\pi_{ak} = \ell_{a0} \) and \(\sum_{k=0}^{1} m_{a1k}(1 - \pi_{ak})/\pi_{ak} = \ell_{a1} \). These two equations imply (A.13), because \(\ell_{aj} = n_{aj} - m_{aj0} - m_{aj1} \) for \(j = 0, 1 \). Therefore, (A.11) and (A.12) have the same solution.

Qin et al. (2002)’s and Chang & Kott (2008)’s estimator

Let \(\pi(z; \phi) \) be a response mechanism, known up to \(\phi \in \Phi \subset \mathbb{R}^p \), and let it be a logistic model: \(\pi(z; \phi) = [1 + \exp\{h(z; \phi)\}]^{-1} \). Suppose that for the following equation, there exists a function \(f : \mathcal{X} \to \mathbb{R}^{p-1} \) and a unique solution \(\hat{\phi} \):

$$\sum_{i=1}^{n} \left(1 - \frac{r_i}{\pi(z_i; \phi)} \right) g(x_i) = 0. \quad (A.14)$$
where \(\mathbf{g}(\mathbf{x}) = (1, \mathbf{f}(\mathbf{x})^\top)^\top \). Then, the solution is exactly the same as that in Qin et al. (2002) that is constrained by \(\omega_i \geq 0, \sum_{i=1}^{n} r_i \omega_i = 1, \sum_{i=1}^{n} r_i \omega_i (\pi(z_i; \phi) - W), \) and

\[
\sum_{i=1}^{n} r_i \omega_i \mathbf{g}(\mathbf{x}_i) = n^{-1} \sum_{i=1}^{n} \mathbf{g}(\mathbf{x}_i) =: \bar{\mathbf{g}}.
\]

Let \(d_i(\lambda_1, W, \phi) := 1 + \lambda_1^\top (\mathbf{g}(\mathbf{x}_i) - \bar{\mathbf{g}}) + \lambda_2 (\pi(z_i; \phi) - W). \) According to (7)–(10) in Qin et al. (2002), the estimator is a solution of the following simultaneous equations:

\[
\sum_{i=1}^{n} r_i \frac{\mathbf{g}(\mathbf{x}_i) - \bar{\mathbf{g}}}{d_i(\lambda_1, W, \phi)} = 0, \tag{A.15}
\]

\[
\sum_{i=1}^{n} \frac{r_i}{d_i(\lambda_1, W, \phi)} \pi(z_i; \phi) - W = 0, \tag{A.16}
\]

\[
\sum_{i=1}^{n} \frac{r_i}{d_i(\lambda_1, W, \phi)} \partial \log \pi(z_i; \phi) / \partial \phi - \lambda_2 \sum_{i=1}^{n} \frac{r_i}{d_i(\lambda_1, W, \phi)} \frac{\partial \pi(z_i; \phi)}{\partial \phi} = 0, \tag{A.17}
\]

\[
\lambda_2 = \frac{(n/n_r - 1)}{(1 - W)}, \tag{A.18}
\]

where \(n_r = \sum_{i=1}^{n} r_i. \) Note that the parameters to be estimated are \(\lambda_1, W, \) and \(\phi. \)

It follows from (A.17) and the assumption that the response model is logistic that

\[
\sum_{i=1}^{n} r_i \{1 - \pi(z_i; \phi)\} \frac{\partial \pi(z_i; \phi)}{\partial \phi} = \lambda_2 \sum_{i=1}^{n} \frac{r_i}{d_i(\lambda_1, W, \phi)} \frac{\partial \pi(z_i; \phi)}{\partial \phi} \tag{A.19}
\]

Thus, if we set \(\lambda_1 = 0, W = n_r/n, \lambda_2 = n/n_r, \) and \(d_i(\lambda_1, W, \phi) = \lambda_2 \pi(z_i), \) this implies that (A.19) or (A.17) holds. By substituting these results into (A.15) and (A.16), we have (A.14). Note that we assumed that the equation has a unique solution and the probability that the estimator of Qin et al. (2002) has a unique solution goes to one as the sample size goes to infinity, and thus, this is the solution.
References

33

