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A Pseudo-Likelihood Analysis for Incomplete Warranty Data

with a Time Usage Rate Variable and Production Counts

Yu Qiu, Daniel J. Nordman

Department of Statistics, Iowa State University

Stephen B. Vardeman

Department of Statistics, Department of Industrial and

Manufacturing Systems Engineering, Iowa State University

Abstract: The most direct purpose of collecting warranty data is tracking associated

costs. But they are also useful for quantifying a relationship between use rate and prod-

uct time-to-first-failure and for estimating the distribution of product time-to-first-failure

(which we model as depending upon use rate and a unit potential life length under con-

tinuous use). Employing warranty data for such reliability analysis purposes is typically

complicated by the fact that some parts of some warranty data records are missing. We in-

troduce pseudo-likelihood methodology for dealing with some kinds of incomplete warranty

data (like those available in a motivating real case from a machine manufacturer). Based

on this, we estimate a use rate distribution, the distribution of time to first failure, and the

time associated with a cumulative probability of first failure.

Keywords: delivery time, failure times, reliability, repair time, use rate

1 Introduction

Manufacturers often compile data on products which fail during a warranty period. The

resulting warranty database can, in principle, be applied to study the reliability of prod-

ucts, improve product quality, and adjust future policies for warranty coverage. However,

the statistical analysis of warranty data presents some difficult challenges. The main com-

plication is that typically information on failure times and other product characteristics

is available only for units in the warranty database (i.e., units failing during a warranty

1

This is an Accepted Manuscript of an article published by Taylor & Francis in IIE Transactions on February 8, 2013, available 
online: http://www.tandfonline.com/10.1080/0740817X.2013.770185



period). In important papers on the analysis of warranty data, Lawless (1998) and Karim

and Suzuki(2005) provided overviews of several approaches for estimating warranty costs

and failure time distributions. As suggested in those works, inference based on warranty

databases has received increasing attention over the past 25 years (cf. Suzuki (1985ab),

Kalbfleisch, Lawless and Robinson (1991), Lawless, Hu and Cao (1995), Kalbfleisch and

Lawless (1988a,1996), Hu and Lawless (1996ab, 1997), Wu and Meeker (2002), Alam and

Suzuki (2009)); see Lawless (1998) and Karim and Suzuki (2005) for further references.

However, we have found that existing analysis methods typically require records in a war-

ranty database to be complete. This is not always possible or realistic. That is, in addition of

lacking information for (non-failing) units naturally outside warranty database, the records

in a warranty database can also be incomplete and exhibit a range of messy types of missing

information. We present some possibilities in this regard with respect to a real warranty

database problem and propose methodology for dealing with these issues.

The motivation for our work comes from a machine manufacturer and concerns an

electronic assembly. For units requiring service within a one-year guarantee period, the in-

formation available in the real warranty database ideally includes: serial numbers, assembly

(i.e., manufacture) time, delivery time (i.e., field introduction upon sale), first repair time

and total running time (in hours) before first repair. Among these “times,” running time

is a time length, while the others denote points in time. To be consistent in the following

analysis, we express all times in units of months. We are interested in a unit’s running time

before repair and the calendar time between a unit’s delivery and repair. Ideally, the first

is directly available in the warranty database while the second is the difference between

delivery and repair times (both of which are also ideally found in the warranty database).

But not all the records in the real warranty database are complete. For varied unknown

reasons (that are hopefully unrelated to unit failure histories), some of the units represented

in the warranty database have missing information. For example, some records lack delivery

or repair times, while other records fail to include running times. We summarize all the

possible cases of complete and incomplete warranty records in Table 1.

In addition to the warranty database, also available in our motivating case are production
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records giving the number of units assembled each month prior to the close of data collection

(30 months in total).

The setting of appropriate warranty periods and use of warranty data of the type de-

scribed here create a variety of interesting and important statistical problems. This paper

focuses on two of these. The first is to estimate the distributions of failure time (as the

actual time difference between delivery and repair, or as a theoretical time until failure

under continuous running) and overall usage rate (the fraction of the time until failure that

a unit is actually used). In Section 2, we propose a class of probability models that link

calendar failure times, failure times under continuous running, and usage rates. In Section 3

Table 1: All warranty record types. (An “X” indicates a value available in the warranty

database. Running time is a time length, the remaining time variables are points in time.)

Assembly Time Delivery Time Repair Time Running Time Case Type

X X X X 1

X X X 2

X X X 3

X X 4

X X X 5

X X 6

X X 7

X 8

X X X 9

X X 10

X X 11

X 12

X X 13

X 14

X 15

16
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we formulate pseudo-likelihood methods to find estimates of model parameters in a manner

which accounts for varieties of missing information. These could, for example, be the basis

for comparisons across different product groups.

After considering estimation of parameters, the next concern is the estimation of prob-

ability of failure by a given time of service and the estimation of unit life length at a given

cumulative failure probability (that is important for judging how to set warranty policy).

We identify a methodology for extending inference beyond parameters to these important

functions of model parameters. In addition to providing point estimators of parameters in

failure time and usage rate distributions, the pseudo-likelihood approach also provides stan-

dard errors to quantify the precision of the point estimators and functions of them. Based

on these, confidence limits can be provided for both parameters and parametric functions.

In Section 4, we discuss the simulation of databases (with known parameters) more or

less consistent with our motivating case. We then use such simulated databases to examine

the effectiveness of our methodology. In Section 5, we apply our complete methodology

to a single simulated data set and illustrate the practical inferences that are possible. We

conclude by mentioning some possible extensions of the present work in Section 6.

Having outlined the structure of our warranty data and related inference issues, we end

this section by describing how our methodology fits into some existing literature for handling

warranty databases. In particular, there exist connections between our inference setting and

scenarios considered by Lawless, Hu and Cao (1995), Hu and Lawless (1996ab, 1997) and

Lawless (1998). Those works similarly considered fitting parametric models for failure time

distributions based on warranty data. But they also assumed that complete information

was available on failure times and other covariates for units in the warranty database. While

covariate information (e.g., assembly or delivery times) is also available in our motivating

warranty data, our warranty records are themselves incomplete and can lack both failure

times (i.e., “repair minus delivery” times) and other covariate values to varying degrees as

named in Table 1. Also, in the works mentioned above, the parametric models involved were

intended only to describe failure times (possibly specified conditionally on covariates), while

Section 2 develops probability models which directly and simultaneously describe failure
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time, overall usage rate, and actual running time. The latter is a variable directly available

in our database (though potentially missing for some units) with no immediate counterpart

in the previous work (e.g., analysis of auto warranty claims from Hu and Lawless (1996ab,

1997)). Finally, the existing works above developed a pseudo-likelihood for parametric

inference, where the pseudo-likelihood arose when attempting to incorporate non-failing

units (i.e., units not in the warranty database) into likelihood inference based on a partial

sample of non-failed units (i.e, to collect covariate values on these in addition to the warranty

database). Our pseudo-likelihood arises out of a similar need to quantify the informational

contribution of non-failed units, but we have no detailed information on units outside of the

warranty database, only totals of assembled units over each month of data collection. We

consequently provide a different formulation of a pseudo-likelihood based on the warranty

database and the monthly production totals, as described in Section 3. Additionally, it is

important to note that likelihood approaches of Philips and Sweeting (2001) and Alam and

Suzuki (2009), which require distributional assumptions on how non-warranty database

units are “censored” (assumptions difficult to verify based on warranty data alone), are

not directly applicable here. These methods use counts of non-failed units, all of which are

assumed to be in service (i.e., sold). In contrast, our production counts available in addition

to the warranty database only roughly suggest when non-failed units are assembled, not sold

into service, and this information is complicated by the fact that we lack assembly dates

for some units in the warranty database. Consequently as part of our pseudo-likelihood

method in Section 3, we estimate how much of each month’s production has not failed and

when these units are delivered into service, based on patterns in the warranty data.

2 Modeling

We need to develop some notation to describe the variables of interest and probability

models for these. For a given unit, define a random variable C, the “unit’s failure time,”

as the difference between delivery and first repair time . Also let random variable A be the

“unit’s actual use time,” the unit’s running time until first failure. It holds that C ≥ A and

a positive difference C − A allows the possibility that there are periods of non-use among
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periods of operation of a unit. As determined by the company’s warranty plan, the warranty

period is one year (12 months) in terms of C.

We aim first to develop a model for the joint distribution of (A,C). To this end, we

introduce two other variables for which model formulation is straightforward. For a given

unit, let

U = A/C ∈ [0, 1], (1)

denote the unit’s usage rate and let the continuous variable T denote the unit’s running

time until failure under a 100% use condition. The time T represents a theoretical and

unobservable variable related to a unit’s potential. A reasonable model for the relationship

between the theoretical failure time T and the actual running time A is

T = U θA = C−θA1+θ, (2)

where θ is a real-valued parameter. This formulation provides some important possible

interpretations in terms of θ. For θ > 0, a fractional usage rate U (less than 1) increases

the actual running time A above the running time T under 100% use, while A will be less

than T for θ < 0. Hence, the sign and magnitude of θ can suggest what failure modes are

operating (e.g. wear-out from continuous running or failure produced by frequent on/off

switches).

A model for the joint distribution of (A,C) for a given unit can be formulated from

assumptions which can be most readily framed in terms of variables T and U . For any unit,

suppose that T has a lognormal(µ, σ2) distribution with density

fT (t|µ, σ2) =
1

tσ
√

2π
exp(−(ln t− µ)2

2σ2
), t > 0

involving location and scale parameters µ and σ2 for log T . This is a common and flexible

failure-time model for describing lifetimes under continuous use (see Chapter 4 of Meeker

and Escobar, 1998). Also, suppose that the usage rate U has a beta(α, β) distribution with

density

fU (u|α, β) =
1

B(α, β)
uα−1(1− u)β−1 for 0 < u < 1

with shape parameters α > 0, β > 0, where

B(α, β) =
∫ 1

0
uα−1(1− u)β−1du =

Γ(α)Γ(β)
Γ(α + β)
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in terms of the gamma function Γ(·). The beta distribution is a flexible model for describing

proportions such as U . Finally, for any given unit, assume the potential running time T

under 100% use is independent of the usage rate U .

Under these assumptions, the joint density of (T, U) for a given unit can be easily

translated into a joint density for the observable values (a, c) of variables (A,C) given by

fA,C(a, c|µ, σ2, α, β, θ) = fT (c−θa1+θ)fU (c−1a)c−2−θa1+θ, 0 < a < c. (3)

From this, the marginal densities of times A and C can be derived as

fC(c|µ, σ2, α, β, θ) =
∫ c

0
fA,C(a, c|µ, σ2, α, β, θ)da

=
∫ 1

0
fT (cu1+θ|µ, σ2)fU (u|α, β)u1+θdu (4)

and

fA(a|µ, σ2, α, β, θ) =
∫ ∞

a
fA,C(a, c|µ, σ2, α, β, θ)dc

=
∫ 1

0
fT (uθa|µ, σ2)fU (u|α, β)uθdu. (5)

We note for future reference that while there are no closed forms for these marginal densi-

ties, particular values of these functions can be obtained from expressions (4) and (5) via

numerical integration.

In this framework, it is also possible to derive marginal distributions for other potentially

useful variables and joint distributions for pairs of variables, such as the length of ownership

and usage rate pair (C, U). However, for the purpose of model fitting, it is most useful

and relevant to consider the distribution of (A,C) for each unit, corresponding to values

potentially obtainable from the database. An important point is that, as mentioned in the

Introduction, this framework gives parametric probability models for lengths of ownership

C and running times A to failure in addition to usage rates U , which are not immediate

from models in previous warranty analyses (cf. Lawless, 1998). An advantage of the present

approach is that parameters values (µ, σ2, α, β, θ) allow easy description and interpretation

of life length models and ones conditioned on usage rate, as explained next.

Note additionally that

C =
T

Uθ+1

7



and therefore, conditional on usage rate U , the calendar time C that a unit operates before

failure has a lognormal distribution,

C|U ∼ lognormal(µ− (θ + 1) lnU, σ2).

From this, the probability FC(t|µ, σ2, α, β, θ) of unit failure by a given time t > 0 after

delivery may be expressed as

FC(t|µ, σ2, α, β, θ) ≡ P (C ≤ t|µ, σ2, α, β, θ)

=
∫ 1

0
Φ

(
ln(t)− µ + (θ + 1) lnu

σ

)
fU (u|α, β)du (6)

in terms of the usage rate density fU and the standard normal cumulative distribution

function Φ(x) =
∫ x
−∞ e−y2/2/

√
2πdy, x ∈ R. (Again, while there is no closed form for

this cumulative probability, for particular t the integral in display (6) can be computed

numerically.) Inference about (6) is important in our motivating example and will be

considered later.

Additionally, the conditional log-normal distribution of C implies that, given a unit’s

usage rate U , the mean value of C on the log scale shifts by an increment depending on

log usage rate and the parameter θ ∈ R. Similarly, given U , the actual running time A is

also conditionally lognormal(µ+θ ln U, σ2) with the same shape parameter σ2 as that of the

distribution for T . Because 0 < U < 1, the conditional distributions of A and C given U

have means (on the log-scale) with behavior depending on θ. The conditional distributions

of both C|U and A|U have log-scale mean values smaller than that of the distribution of T

when −1 < θ < 0; when θ < −1, the conditional distribution of C|U has an log-scale mean

larger than that of the distribution of T , while the conditional distribution of A|U has a

log-scale mean smaller than that of the distribution of T ; and the conditional distributions

of C|U has a smaller log-scale mean than that of the distribution of T , while the conditional

distribution of A|U has a larger log-scale means than that of the distribution of T when

θ > 0.

Next we can develop a log-pseudo-likelihood (in the future we will abbreviate pseudo-

likelihood as PL) function corresponding to the available data for the purpose of estimating

the unknown parameters (µ, σ2, α, β, θ) by “maximum PL.” The term “pseudo” is used here
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because a usual likelihood function is not directly possible in the presence of the incomplete

nature of the motivating warranty database. The PL attempts to be an approximation of

the likelihood which would result from complete information.

3 PL Inference Methodology

We develop inference through an appropriate log-PL function that is a sum of log-PL terms,

one for each unit produced, including those not represented in the warranty database but

appearing in a separate data set of assembly counts. Such log-PL terms will express the

informational contribution of each unit for estimating the model parameters µ, σ, α, β, θ.

The form appropriate for each contribution to the PL depends upon whether the unit has

appeared in the warranty database and what information about the unit is available there.

Recall that Table 1 provides a listing and naming convention for the kinds of cases that

could potentially appear in the warranty database.

In Section 3.1, we first develop the log-PL contributions for those units in the warranty

database (failing during the 12-month warranty period and possibly having missing infor-

mation). For these warranty database units, their log-PL contributions would perhaps be

better described as “true log-likelihood” contributions, meaning that we do in fact specify

an exact probability of observing each unit in terms of the probability models of Section 2

and their parameters µ, σ, α, β, θ (i.e., the traditional sense of likelihood). However, we also

need to include the log-PL contributions for units which have not failed under warranty,

which is considered in Section 3.2 based on the monthly assembly counts in addition to the

warranty database. Because non-failing units lack failure information, we can only approxi-

mate their probability contributions (i.e., these cannot be specified purely in terms of model

probabilities but require some additional estimation steps), which are then “pseudo” and

not the usual log-likelihood contributions based purely on the models at hand. We shall

clarify this point in Section 3.2. For simplicity, we refer to all units having a “log-PL con-

tribution” and Section 3.3 describes some inference possibilities based on the final log-PL

function.
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3.1 Log-PL terms for units in the warranty database

In the following, we continue to denote the actual running time and calendar time to first

failure of a given unit as (A, C) and assume that all units are independent. Additionally,

we define some additional random variables for the use in the following. Let the “closing

time” be the time when the manufacturer stops to collect data and “starting time” be the

time when the manufacturer starts to collect data, and define the following variables for a

given unit:

H ≡ min(12, difference between closing time and delivery time), (7)

S ≡ min(12, difference between repair time and assembly time), (8)

R ≡ min(12, difference between closing time and assembly time), (9)

and

Q ≡ min(12, difference between repair time and starting time). (10)

In considering a unit from the warranty database, the above variables become useful in

formulating contributions to the log-PL, particularly when units lack information about

actual running time and calendar time to first failure (A,C). Recall, however, that war-

ranty database units vary in their level of missing information so that some variables above

may not be observed for certain units. We suppose that values of (H,S,R, Q) for a unit,

depending on the unit’s delivery and assembly times as well as starting and closing times of

data collection, are independent of the unit’s calendar and running times to failure (A,C),

which is a reasonable modeling assumption. The observed values of A, C,R, H, S, Q will be

denoted as a, c, r, h, s, q in the following.

For each of the 16 informational cases in Table 1, we provide a unit’s contribution to a

log-PL function. There are in total 12 distinct types of contributions to the log-PL to be

formulated (as some cases in Table 1 can be grouped and handled similarly). For clarity,

we separately enumerate and describe the 12 “types” below, using subscripts ji to denote

the ith unit in the jth type class, j = 1, ..., 12. We also let Nj denote the number of units

available in the jth type class. (For example, the subscript 1i denotes unit i for the first

type of contribution considered.)
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1. For a case 1 or case 9 unit in Table 1 where delivery time, repair time and actual

running time are known, we observe values (a1i, c1i) for each unit and suppose that

there are N1 such units involved. From the joint density (3) of (A,C), the contribution

of these units to the log-PL function is then

L1(µ, σ2, α, β, θ) =
N1∑

i=1

ln fA,C(a1i, c1i|µ, σ2, α, β, θ). (11)

2. For a case 2 or case 10 unit in Table 1, the delivery time and repair time are known,

so that a value c of calendar time C is observed, but actual running time A is not

observed. Hence, we cannot use the form (11) for these units. However, we can use

the marginal density (4) for the calendar time C. If there are N2 such case 2 and 10

units with observed values c2i, then their contribution to the log-PL is

L2(µ, σ2, α, β, θ) =
N2∑

i=1

ln fC(c2i|µ, σ2, α, β, θ).

3. For a case 15 unit in Table 1, a value a of the actual running time A is known, but

calendar time C is not. We now use the marginal density (5) for the running time A

(instead of C treated directly above). If there are N3 such case 15 units with observed

values a3i, then their contribution to the log-PL is

L3(µ, σ2, α, β, θ) =
N3∑

i=1

ln fA(a3i|µ, σ2, α, β, θ).

4. For a case 3 or case 11 unit in Table 1, where the repair time is missing, we know

the calendar time C should be at least the observed value a of running time A.

Additionally, we know that the unit’s calendar time C cannot be more than the

observed value h of the variable H from (7), representing the minimum of 12 months

(since only units failing within the warranty period are in the database) and the

difference between the delivery time and the closing time. The probability contribution

of such a unit to the PL is then

fA(a|µ, σ2, α, β, θ)P
(
a < C < h|µ, σ2, α, β, θ

)

=
∫ h

a
fA,C(a, c|µ, σ2, α, β, θ)dc.
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If there are N4 case 3 and 11 units with values a4i and h4i, then their contribution to

the log-PL is

L4(µ, σ2, α, β, θ) =
N4∑

i=1

ln
( ∫ h4i

a4i

fA,C(a4i, c|µ, σ2, α, β, θ)dc
)
. (12)

(The integrals here must be computed numerically.)

5. For a case 5 unit in Table 1, where the delivery month is missing, we again know the

calendar time C should be at least the observed running time a and must be less than

observed (available) value s of the variable S from (8), the minimum of 12 months

and the difference between the repair and assembly times for the unit. If there are

N5 case 5 units available, with observed values a5i and s5i, then their contribution to

the log-PL is

L5(µ, σ2, α, β, θ) =
N5∑

i=1

ln
(∫ s5i

a5i

fA,C(a5i, c|µ, σ2, α, β, θ)dc
)
,

analogously to (12).

6. For a case 7 unit in Table 1, where both the delivery time and repair time are missing,

we know the calendar time C should be at least the observed running time a and must

be less than observed value r of the variable R from (9), the minimum of 12 months

and the difference between the assembly and closing times. If there are N6 case 7

units available with observed values a6i and r6i, then their contribution to the log-PL

is

L6(µ, σ2, α, β, θ) =
N6∑

i=1

ln
(∫ r6i

a6i

fA,C(a6i, c|µ, σ2, α, β, θ)dc
)
. (13)

7. For a case 13 unit in Table 1, where both delivery time and assembly time are missing,

we know the calendar time C should be at least the observed running time a and less

than the observed value q of Q from (10), representing the minimum of 12 months

and the difference between the repair and starting times. If there are N7 case 13 units

available with observed values a7i and q7i, then their contribution to the log-PL is

L7(µ, σ2, α, β, θ) =
N7∑

i=1

ln
(∫ q7i

a7i

fA,C(a7i, c|µ, σ2, α, β, θ)dc
)
. (14)
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8. For a case 4 or 12 unit in Table 1, both repair time and running time are missing. For

such a unit, we do not know the value of A and only know that the calendar time C is

less than the observed h value of the variable H from (7), representing the minimum

of 12 months and the difference between the delivery and closing times. If there are

N8 case 4 and 12 units available with observed values h8i, then their contribution to

the log-PL is

L8(µ, σ2, α, β, θ) =
N8∑

i=1

lnFC(h8i|µ, σ2, α, β, θ), (15)

using the cumulative failure distribution FC of C from (6).

9. For a case 6 unit in Table 1, where both delivery time and running time are missing,

we do not know the value of A and only know that the calendar time C is less than

the observed value s of S from (8), representing the minimum of 12 months and the

difference between the repair and assembly times. If there are N9 case 6 units available

with observed values s9i, then their contribution to the log-PL is

L9(µ, σ2, α, β, θ) =
N9∑

i=1

ln FC(s9i|µ, σ2, α, β, θ)

computed analogously to (15).

10. For a case 14 unit in Table 1, where only repair time is known, we only know that

the calendar time C is less than the observed value q of the variable Q from (10),

representing the minimum of 12 months and the difference between the repair and

starting times. If there are N10 case 14 units available with observed values of q10i

from (10), then their contribution to the log-PL is

L10(µ, σ2, α, β, θ) =
N10∑

i=1

lnFC(q10i|µ, σ2, α, β, θ).

This is the version of (14) where values for A are unknown.

11. For a case 8 unit in Table 1, where only the assembly time is known, we only know

that the calendar time C is less than the observed value r of the variable R from (9),

representing the minimum of 12 months and the difference between the closing and
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assembly times. If there are N11 such units available with observed values of r11i,

then their contribution to the log-PL is

L11(µ, σ2, α, β, θ) =
N11∑

i=1

ln FC(r11i|µ, σ2, α, β, θ).

This is the version of (13) where values for A are unknown.

12. For a case 16 unit in Table 1, none of the four variables ideally in the database is

known. The only information available is that (assuming that data collection spans

at least 12 months) the unit failed within the warranty 12 month period. If there are

N12 case 16 units, then their contribution to the log-PL is

L12(µ, σ2, α, β, θ) = N12 lnFC(12|µ, σ2, α, β, θ).

3.2 Log-PL terms for units not in the warranty database

As mentioned in Section 1, there are 30 months of production in the motivating example.

Let Mi denote the number of units assembled in month i and let M∗
i denote the number of

units assembled in month i which are not in the warranty database. Here we index months

as i = 0, 1, 2, ..., 30 and month 0 is the closing month (the month when the manufacturer

stops collecting data), month 1 is the month immediately before the closing month, and

so on. For each month of assembly i, we need to incorporate the M∗
i non-failed units into

inference about failure time models and parameters. To not do so would cause bias in

estimation and misleading inference, especially when large numbers of assembled units M∗
i

do not fall into the warranty database (cf. Kalbfleisch & Lawless, 1988a,1989).

However, the first complication is that we lack information for placing some units in

the warranty database (which have missing assembly information) into their corresponding

assembly months. That is, while total counts Mi are available each month, we do not know

how many units in the warranty database were assembled in month i, namely Mi−M∗
i , and

therefore do not know the number of non-failed units M∗
i for each assembly month. Hence,

we need to form estimators M̂∗
i of the unknown counts, as described in Section 3.2.1. The

second complication is that even if the monthly assembly counts M∗
i for units not in the

warranty database were known, delivery times are unknown for these units. This means we
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do not know exactly when the units are sold (if at all) or placed into service. Forms for PL

terms for units not in the warranty database must accommodate this lack of information.

Consequently, we are forced to estimate the probability contribution, say pi(µ, σ2, α, β, θ),

of a non-failed unit assembled in month i, which depends on the parameters. An estimator

p̂i(µ, σ2, α, β, θ) is described in Section 3.2.2. We then let ln p̂i(µ, σ2, α, β, θ) denote the log-

PL contribution for each of the M̂∗
i non-failed units estimated to be assembled in month i,

i = 0, . . . , 30, and the overall contribution to the log-PL becomes

L∗(µ, σ2, α, β, θ) =
30∑

i=0

M̂∗
i ln p̂i(µ, σ2, α, β, θ) (16)

for all units not in the warranty database. Finally, L∗(µ, σ2, α, β, θ) is added to warranty

data-based log-PL contributions from Section 3.1 to produce a final log-PL function for

inference in Section 3.3. To re-iterate our discussion at the beginning of Section 3, we note

the distinction that estimation of a probability term (e.g., ln p̂i(µ, σ2, α, β, θ) for a non-

warranty database unit) creates true pseudo-likelihood contribution, which differs from a

“true likelihood” contribution (for warranty database units) described in Section 3.1 (where

probabilities are stated in terms parameters but are not estimated). However, we continue

to refer to all units as having a “log-PL contribution” for simplicity.

3.2.1 Estimation of monthly assembly counts for non-failed units

For case 1-8 units, assembly months are known, so we can directly subtract their counts

from the assembly counts Mi of the corresponding months. But we cannot make similar

adjustments to account for the other case 9-16 units represented in the warranty database

(due to missing assembly information). Rather, we can only estimate appropriate adjust-

ments, based on patterns observed in the warranty database under the assumption that the

pattern can be extended to units not in the warranty database.

For each month i = 0, 1, 2, ..., 30, we compute an estimator M̂∗
i of the number of units

assembled in month i and not in the warranty database M∗
i as

M̂∗
i = Mi −Mi,1-8 − M̂i,9-12 − M̂i,13-14 − M̂i,15-16
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where

Mi,1-8 = number of case 1-8 units assembled in month i,

M̂i,9-12 = estimated number of case 9-12 units assembled in month i,

M̂i,13-14 = estimated number of case 13-14 units assembled in month i,

and

M̂i,15-16 = estimated number of case 15-16 units assembled in month i.

Since case 9-16 units in the warranty database lack assembly times, we formulate the esti-

mators M̂i,9-12, M̂i,13-14, M̂i,15-16 by a process of careful “matching” against other warranty

cases which do have assembly month information, as developed next.

For case 9-12 units, we do not know the assembly months. Instead, only the delivery

months are known. So to estimate the assembly month for each 9-12 case unit, we first look

to case 1-4 units in Table 1 which have both the assembly months and delivery months,

and get the counts nij ≡ number of case 1-4 units delivered in month j and assembled in

month i, 0 ≤ j ≤ i ≤ 30 and consider the fraction

bij =
nij

njj + n(j+1)j + n(j+2)j + · · ·+ n30j
(17)

as an estimate of the proportion of case 9-12 units delivered in month j which are assembled

in month i. Then an estimated number of case 9-12 units assembled in month i is

M̂i,9-12 =
i∑

j=0


bij ×

number of case 9-12 units in warranty

database delivered in month j


 .

For case 13 and 14 units, we similarly look to case 1-2 and case 5-6 units which have

both the assembly month and repair month and find counts mij ≡ number of case 1-2 and

5-6 units repaired in month j and assembled in month i, 0 ≤ j ≤ i ≤ 30, and consider the

fraction

cij =
mij

mjj + m(j+1)j + m(j+2)j + · · ·+ m30j

as an estimate of the proportion of case 13-14 units repaired in month j which are assembled

in month i. Then an estimated number of case 13-14 units assembled in month i is
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M̂i,13-14 =
i∑

j=0


cij ×

number of case 13-14 units in warranty

database repaired in month j


 .

For case 15 and 16 units, we look to the case 1-8 units and determine counts li ≡ number

of units assembled in month i, 0 ≤ i ≤ 30 and consider the fraction

di =
li

l0 + l1 + l2 + · · ·+ l30

as an estimate of the proportion of case 15-16 units assembled in month i in the warranty

database. Then estimated number of case 15-16 units assembled in month i is

M̂i,15-16 = di × number of case 15-16 units in warranty database.

What we have suggested above is using estimates for the expected values of counts in

place of unavailable observed counts. A more sophisticated analysis might assign probabil-

ities to each possible configuration of how units without assembly months are distributed

and use those in a likelihood term. But the simpler analysis suggested here is adequate for

our present purposes, and we shall not pursue this more complicated possibility.

3.2.2 Formulation of a PL-contribution for non-failed units

The above process leaves us with adjusted counts M̂∗
i of units assembled in month i where

these units do not fail under the 12 month warranty period and still function at either the

end of their warranty periods or the closing time for data collection. Then we need to find

an appropriate term for these non-failed units for entry into the log-PL function. However,

a further complication is that we are missing the delivery months for these non-failed units,

so we do not exactly know when they are sold, if at all.

Consider those units assembled in a particular month but not in the warranty database

(i.e., not yet accounted for in the log-PL function). Suppose that we had the probabilities

νij = probability that a unit assembled in month i is delivered in month j

for 0 ≤ j ≤ i ≤ 30 and that
∑i

j=0 νij = 1; the latter condition implies that a unit assembled

in month i will be sold/delivered among the months 0 ≤ j ≤ i and we will discuss this
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condition in more detail at the end of this section. In this case, we could represent the

probability, say pi(µ, σ2, β, α), that a given unit assembled in month i would not appear in

the warranty database as

pi(µ, σ2, β, α) ≡
i∑

j=0

νijP (C > min(j, 12)|µ, σ2, β, α), (18)

recalling that 12 months is the warranty period. Again, we might then use M̂∗
i times

ln pi(µ, σ2, β, α) to represent the contribution of month i’s assemblies not appearing in the

warranty database to the log-PL function. However, we cannot obtain or formulate the

probabilities (18) directly, because the vij terms are unknown and cannot be expressed in

terms of the probability models for failure time or usage rate developed in Section 2. The

only information available about the distribution of times between assembly and delivery

is in the warranty database, which we use to estimate vij terms and form an estimate or

approximation p̂i(µ, σ2, β, α) of (18).

Analogously to (17), if we define

eij =
nij

ni0 + ni1 + · · ·+ nii

as an estimate of the proportion of warranty database units assembled in month i which

are delivered in month j, then roughly

eij ≈
νijFC(t∗j |µ, σ2, α, β, θ)
i∑

j=0
νijFC(t∗j |µ, σ2, α, β, θ)

, for t∗j = min(j, 12),

as the right-hand side represents the conditional probability of a unit being delivered

in the month j given that it fails under warranty and is assembled in month i. Re-

call that FC(t|µ, σ2, α, β, θ) = P (C ≤ t|µ, σ2, α, β, θ) = 1 − P (C > t|µ, σ2, α, β, θ) for

t > 0. Since the denominator is a fixed number, we can expect that approximately

eij ∝ νijFC(t∗j |µ, σ2, α, β, θ) or reciprocally,

νij ∝ eij

FC(t∗j |µ, σ2, α, β, θ)

so that upon normalization

νij ≈
eij

FC(t∗j |µ,σ2,α,β,θ)

i∑
j=0

eij

FC(t∗j |µ,σ2,α,β,θ)

.
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Using this data-based approximation for vij terms, we obtain an estimate p̂i(µ, σ2, α, β, θ)

of (18) given by

p̂i(µ, σ2, α, β, θ) =
i∑

j=0

eij
1−FC(t∗j |µ,σ2,α,β,θ)

FC(t∗j |µ,σ2,α,β,θ)

i∑
j=0

eij

FC(t∗j |µ,σ2,α,β,θ)

= 1− 1
i∑

j=0

eij

FC(t∗j |µ,σ2,α,β,θ)

,

(using the fact that
∑i

j=0 eij = 1). A sensible term to represent the contribution of a

non-failed unit assembled in month i in the log-PL is then ln p̂i(µ, σ2, α, β, θ). Recall from

Section 3.2.1 that M̂∗
i is an estimate of the number of non-failed unit assembled in month i.

By weighting these estimated counts by their approximate log-PL contributions, we obtain

a final version of (16) as

L∗(µ, σ2, α, β, θ) =
30∑

i=0

M̂∗
i ln


1− 1

i∑
j=0

bij

FC(t∗j |µ,σ2,α,β,θ)


 , (19)

to represent the log-PL contribution of all units not in the warranty database. As previously,

FC is computed numerically from (6).

We note that the log-PL component in (19) roughly resembles a formulation proposed

by Lawless (1998), whereby the probability contribution of non-failed units is specified

conditionally in terms of covariates whose distribution must then be estimated or empirically

determined. In our framework, a similar probability (18) is stated conditionally in terms of

a non-failed unit’s assembly and delivery months with a corresponding distribution (i.e., vij

terms above) requiring estimation. Unlike the Lawless framework however, we do not have

a supplementary sample of non-failed units to inform estimation of the assembly/delivery

month distribution, and so we use information solely within the warranty database. Recall

that the condition
∑i

j=0 νij = 1 used above to formulate (18) implies that a unit assembled

in month i = 0, . . . , 30 will be sold/delivered among the months 0 ≤ j ≤ i. This condition

is not strictly met for units outside of the warranty database, which may be delivered after

the closing time of data collection. But, this is an approximation consistent with available
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information in the warranty database. Intuitively, its effect might be to bias estimation of

the cumulative probability function FC(·) in the direction of optimism about unit lifetimes.

In Section 4, we will see that at least in one example case (where realistically simulated data

violate this condition), any distortion in inference caused by creating the log-PL contribution

(19) under this condition is small.

To end this section, we note that Majeske, Caris and Herrin (1997) and Lu (1998) also

mention the estimation of “sales lag” (the difference between assembly time and delivery

time). This aspect is related to our work in that our formulation and estimation of νij ’s

above provides a concrete approach for incorporating sales lag of units into failure time

analysis. See Karim and Suzuki (2004), Karim and Suzuki (2005, sec. 10), and Karim

(2008) for inference scenarios involving other time lags with warranty data (e.g., lags in the

reporting of claims).

3.3 Final log-PL function and inference

Adding the log-PL contributions
∑12

i=1 Li(µ, σ2, α, β, θ) from the warranty database from

Section 3.1 and the log-PL contributions L∗(µ, σ2, α, β, θ) from Section 3.2 for assembled

units not in the warranty database, we arrive at a final approximate log-PL function

L(µ, σ2, α, β, θ) for the parameters (µ, σ2, α, β, θ),

L(µ, σ2, α, β, θ) =
12∑

i=1

Li(µ, σ2, α, β, θ) + L∗(µ, σ2, α, β, θ). (20)

Then for a particular data set we can (numerically):

1. find a vector of parameters (µ̂, σ̂2, α̂, β̂, θ̂) maximizing L(µ, σ2, α, β, θ) that can be

used as a “maximum PL estimate” of (µ, σ2, α, β, θ). (This vector provides a “best”

fit to the data.)

2. compute the inverse of the 5 × 5 matrix H of the second partial derivatives of the

function −L, evaluated at the PL estimates of the parameters. This provides an esti-

mate of the variance-covariance matrix for the maximum PL estimator. In particular,

the square roots of the diagonal elements of H−1 correspond to standard errors of
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elements of (µ̂, σ̂2, α̂, β̂, θ̂).

3. combine the estimate and the approximate variance-covariance matrix via the delta

method to give estimates, standard errors and then confidence limits for interesting

functions of (µ, σ2, α, β, θ) such as the usage rate cumulative density FU (u|α, β) or the

cumulative failure time distribution function FC(t|µ, σ2, α, β, θ), t > 0 for C given in

(6). (More details are provided in the Appendix.)

We will see in the next section how the methodology performs in a small simulation study.

4 Simulation Study

For confidentiality reasons, we are not able to present results for actual company data.

Hence, both for illustrating our methodology and demonstrating its effectiveness we will

use simulated data with characteristics more or less like those of our motivating case. This

simulation study is illustrative only, not comprehensive (because an extremely large number

of factors impact the generation of the warranty and non-warranty data as will be illustrated

in the following). In a real application, however, we suggest using the PL-method to obtain

parameter estimates for the data at hand and perform a simulation study, similar to the one

next presented, to assess the performance of the method (and the impact of the assumptions

made) for the data configuration and problem that the user is addressing.

4.1 Simulation Design

To begin to describe our data simulation, Table 2 provides hypothetical production counts

essentially consistent with counts in the motivating case. As before, month 0 means the

closing month, month 1 means the month immediately before the closing month, and so on.

We simulate data for 32550 units in total.

For each unit, we assign a delivery delay (delivery delay means the time the unit takes

to be delivered after being assembled). We will model this with the discrete distribution in

Table 3 (that is, again, essentially consistent with the real case).

Simulation using the distribution of Table 3 for 32550 units produced as in Table 1
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Table 2: Hypothetical counts of units assembled in each of 30 months.

Month Count Month Count Month Count

30 50 19 1500 9 50

29 250 18 1000 8 150

28 1000 17 1000 7 250

27 1500 16 1500 6 500

26 2000 15 1500 5 1000

25 2500 14 2500 4 1500

24 1000 13 500 3 1500

23 500 12 500 2 1000

22 50 11 1000 1 5000

21 50 10 1000 0 2500

Table 3: The probability distribution for delivery delay (months waiting to be delivered

after assembly).

Month Delay Probability Month Delay Probability

0 2/30 6 1/30

1 12/30 7 1/30

2 6/30 8 1/30

3 2/30 9 1/30

4 1/30 10 1/30

5 1/30 11 1/30

gives both an assembly month and a delivery month for every unit. Then for each unit we

generate values for U and T based on a specific set of parameters. These produce values

for A and C using equations (1) and (2) and determine which units produce records in the

warranty database and what the repair months are for those units.

Based roughly on the fractions of units of the 16 different cases in the real warranty

database as represented in Table 4, we then randomly assign units into the 16 cases. This
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leads to simulated data like the real data (i.e., having various configurations of missing

information), but for which we know the “truth.” We can then see if our methodology can

reliably estimate true parameters used to simulate data.

Table 4: Fractions of 16 data types in the real case.

1 0.6 9 0.004

2 0.06 10 0.122

3 0.005 11 0.003

4 0.006 12 0.001

5 0.003 13 0.005

6 0.09 14 0.015

7 0.01 15 0.002

8 0.06 16 0.014

4.2 Estimation Results

To illustrate our methods, we considered one set of parameters and simulated 50 sets of

warranty data for this set of parameters; these parameters were chosen based on the es-

timates from the motivating (actual company) data. Fifty simulation runs were chosen

out of computational considerations (recall any evaluation of the log-PL function requires

a separate numerical integration for each unit to determine its probability contribution).

Software we developed in the R statistical system was then applied to the artificial data (for

monthly production counts totaling to 32550) and produced maximum PL estimates for the

parameters. We summarize results in Table 5.

Average estimates (over 50 simulations) of all parameters are close to the corresponding

original parameter values. Also the standard deviations of the estimates are very small.

These facts indicate that our method of estimating the parameters is both accurate and

precise.

For each simulated data set, we also constructed nominally 95% confidence limits for

each parameter, and checked if the confidence limits bracketed the true parameter values.
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Table 5: Averages and standard deviations of the 50 parameter estimates for one set of

parameters {µ = 5, σ = 2, α = 0.45, β = 3.4, θ = −0.5}.
Parameter Value Ave. of Estimates S.D. of Estimates

µ = 5 5.08 0.04

σ = 2 1.98 0.01

α = 0.45 0.46 0.02

β = 3.4 3.49 0.03

θ = −0.5 −0.56 0.02

We summarize the numbers (out of 50) of 95% confidence intervals containing the true

parameter values in Table 6. Also, we provide the mean and median lengths for the 95%

intervals in Table 7. These Tables 6 and 7 provide some evidence that not only does our PL

methodology provide effective point estimates for model parameters, but it also provides

effective sample/empirical quantification of the quality of those estimates.

Table 6: Numbers (out of 50) of nominally 95% confidence intervals containing the true

parameter values.

Parameter Number of Intervals Covering

µ 46

σ 47

α 49

β 45

θ 48

To demonstrate the importance of incorporating terms in the log-PL for non-failed units

(not appearing in the warranty database), we made the maximum PL estimates for the pa-

rameters based only on the simulated warranty database. Those are summarized in Table 8.

From Table 8, we see that, although the estimates are still stable (have small standard de-

viations) except for α, the estimates themselves are far from the real parameter values.

This supports our assertion that to accurately estimate the distributions of usage rate and
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Table 7: Mean and median lengths for the nominally 95% confidence intervals.

Parameter Mean and Median

µ 0.170

σ 0.048

α 0.102

β 0.110

θ 0.121

failure time for units manufactured and delivered over time, it is necessary to include log-PL

contributions for assembled units which do not fail and hence are not represented in the

warranty database.

Table 8: Averages and standard deviations of the 50 parameter estimates using only war-

ranty database (excluding additional assembly count information) for one set of parameters.

{µ = 5, σ = 2, α = 0.45, β = 3.4, θ = −0.5}
Parameter Value Ave. of Estimates S.D. of Estimates

µ = 5 5.95 0.03

σ = 2 0.83 0.07

α = 0.45 2.58 0.14

β = 3.4 3.97 0.09

θ = −0.5 −0.82 0.03

Note that the model used in this simulation departs fairly strongly from the approxi-

mation
∑i

j=0 νij = 1 used in developing PL terms for units not in the warranty database

(as discussed in Section 3.2.2, we formulate PL contributions for non-failed units under the

assumption that assembled units will be delivered before the closing time of data collection,

but know that this cannot be strictly true of all units). In fact, Table 9 shows that the

expected numbers of units produced in months 0 through 12 delivered after the closing time

are appreciable. So it would seem that this simulated case is a good test of the extent to

which the approximation is likely to degrade estimation and bias estimates of values of FC(·)

25



Table 9: Expected numbers of units assembled in particular months actually delivered after

the closing time.

0 2333 6 83

1 2666 7 33

2 333 8 15

3 400 9 3

4 350 10 33

5 200

to the low side (making estimates of the failure time distribution consistently optimistic).

To investigate this possibility we make the plot in Figure 1. Pictured there is the

actual failure time cumulative distribution function FC(·|µ, σ2, α, β, θ) with the 50 estimates

FC(·|µ̂, σ̂2, α̂, β̂, θ̂) and their average. It is clear that any bias in the estimated failure time

cumulative distribution function is small. This is at least some evidence that the effect of

the approximation
∑i

j=0 νij = 1 can be negligible.
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Figure 1: Actual cumulative failure probability function (heavy dashed) compared with the

50 estimates (light solid) and their average (heavy solid).
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5 Example Data Analysis

Here we illustrate the practical inference possibilities using our methodology, based on a

single simulated data set with total of 32550 products and 2476 warranty database cases.

To see if the non-missing warranty data (i.e., the case 1 units in Table 1 are adequate

to describe the data structure, we can plot the usage rate distribution with real parameter

values for the purpose of comparing with the histogram of the usage rates of case 1 units in

the warranty database. This is illustrated in Figure 2, and the fit is not good. So it is clearly

not adequate to estimate the usage rate distribution using only non-missing warranty data.
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Figure 2: Beta distribution with real parameter values compared to histogram from the

simulated case 1 warranty data.

We can also estimate the probability FC(t|µ, σ2, α, β, θ) = P (C ≤ t|µ, σ2, α, β, θ) that

a unit will fail by at least a time t after being delivered, given in (6). This estimate

FC(t|µ̂, σ̂2, α̂, β̂, θ̂) is plotted as the center curve in Figure 3. Reading from the plot, we can

see that our fitted model estimates a 3.3% failure fraction in a one year warranty period.

This is consistent with the size of the simulated warranty database in comparison to the

total production counts, since a large part of production is near the closing time of data

collection, and many units do not yet have 12 months of use at the closing time. In Figure 2,

we can also estimate the calendar time, denoted by F−1
C (p|µ, σ2, α, β, θ), by which time a
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Figure 3: Estimated FC(t) curve (heavy black in the middle) and sets of 95% confidence

limits of failure time for a given cumulative failure probability (solid) and cumulative failure

probability for a given time (dashed).

fraction p of units will have failed by selecting a probability value p on the vertical axis and

reading off a corresponding time from the estimated probability curve. For example, the

time by which p = 3% of units have failed is estimated to be F−1
C (0.03|µ̂, σ̂2, α̂, β̂, θ̂) ≈ 11

months.

Figure 3 also provides some indications of the uncertainty associated with inferences

about the cumulative failure probability FC(t|µ, σ2, α, β, θ), t > 0, (and, reciprocally, the

failure percentiles F−1
C (p|µ, σ2, α, β, θ) for various p) by providing sets of 95% confidence

limits. One reads confidence limits for FC(t) from the solid curves above time t and reads

confidence limits for F−1
C (p) from the dashed curves across from p. For example, approxi-

mate 95% limits for FC(10) are [0.026, 0.029] while the approximate 95% limits for F−1
C (0.02)

are [6.9, 7.8]. These limits are potentially very important in practical inference, and are

produced using the method mentioned in Section 3.3 and discussed in more detail in the

Appendix. From Figure 3, we see confidence intervals increase in length with t or p, which

indicates more uncertainty as time goes by.
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6 Conclusion

In this paper we have presented a method to estimate the parameters of a model for war-

ranty data, based on incomplete information. We developed a log-PL function to compute

estimates and get confidence limits for parameters and parametric functions, such as the

probability of failing within any specific time or the time corresponding to any specific

cumulative failure probability.

There are several possibilities for future work and considerations in this area. First

(motivated by the real case), we might specify a mixture distribution for the usage rates,

for example, as a mixture of two beta distributions. By doing this, we might account for two

fundamentally different applications of the units. Second (again motivated by the real case),

we might model the possibility that characteristics of a product (as manufactured) change

at a known or unknown point in production. Third, we might apply Bayesian methods in

place of our fairly ad hoc adjustment of likelihood functions in light of missing information

on delivery months, and by doing this, possibly get more effective estimation methods.
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A Details of Inferences Based on the Log-PL

Here we provide more details about inferences for a general real-valued function of the model

parameters, g(µ, σ2, α, β, θ).

Using the maximum pseudo-likelihood estimate (the MPLE)

φ̂
T

= argmax L(φ).

of φT = (µ, σ2, α, β, θ) (see Section 3.3), the resulting MPLE for g(φ) is g(φ̂). Let H(φ) be

the negative Hessian matrix of L(φ) from (20). Then [H(φ̂)]−1 functions as an estimated
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variance-covariance matrix for φ̂. With g′(·) = (∂g(·)
∂µ , ∂g(·)

∂σ , ∂g(·)
∂α , ∂g(·)

∂β , ∂g(·)
∂θ )T and the “delta

method” (the propagation of error formula), approximate 95% confidence limits for g(φ)

are given by

g(φ̂)± 1.96×
√

(g′(φ̂))T [H(φ̂)]−1g′(φ̂).

As mentioned in Section 3.3, particular choices of a parametric function g(·) will yield

either the probability of failing P (C ≤ t|φ) = FC(t|φ) within any specific (given) time

t > 0 (see (6)) or the time F−1
C (p|φ) corresponding to any specific (given) cumulative

failure probability 0 < p < 1. To see this, for a fixed t or fixed 0 < p < 1, write

g̃(φ) = FC(t|φ), ḡ(φ) = F−1
C (p|φ).

In Section 5, confidence intervals for the quantity FC(t|φ) were computed using g̃ in the

above interval formula, where partial derivatives g̃′(φ̂) were approximated numerically. Note

that, by the implicit function theorem and treating FC(t|φ) as a function of (φ, t),

ḡ′(φ̂) = −∂FC(t|φ)
∂φ

(
dFC(t|φ)

dt

)−1
∣∣∣∣∣
(φ,t)=(φ̂,ĉ)

= − g̃′(φ̂)

fC(ĉ|φ̂)
,

where ĉ = F−1
C (p|φ̂) and the density fC(·|φ) has the form of (4). Confidence intervals for

F−1
C (p|φ) can be computed using ḡ instead of g in the interval formula.
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