

91

185

w 175-

165- Bank A
— — Bank B

155
20 24

Time (hours)

Figure 6.20: Case C: Full length control rod positions-1

165

w 175-

— Bank C
— Bank D

165-

155
20 24

Time (hours)

Figure 6.21: Case C: Full length control rod positions-2

92

100

I
3 80-

40
20 24

Time (hours)

Figure 6.22: Case C: Part length control rod position

up a position in close vicinity of their initial value, 180 steps or 90 % out of the core.

This shows the heuristic strength of the rule set # 4 used in ACES for power control.

Although there is not an explicit rule that force the control variables to their original

positions, ACES does take FLCRs back which means that the next daily load cycle

would start with a similar initial state.

The lower power level was chosen to test the response of ACES to a stronger

xenon oscillation because of a stronger initiating event. As can be seen from Fig­

ures 6.20 and 6.21, FLCRs were inserted in this case more than case B, which was

expected to create a stronger AO shift. The strength of the xenon transient can be

understood from the change of the boron concentration shown in Figure 6.23. On

the other hand this change was not an oscillation but the xenon feedback following

93

940

920-

910-

900
20 24

Time (hours)

Figure 6.23: Case C: Boron concentration change

a power level change. The effect of taking the power back to 100 % again softens

the oscillations, and by creating a reverse oscillation, it dampens the magnitude of

oscillation. However, the oscillation was still stronger than the previous case, and

ACES responded to the AO shift with PLCRs. As can be seen in Figure 6.22, ACES

controlled the oscillation and began to pull PLCRs back toward the center of the

core through the end of the daily cycle.

Case D was designed to test ACES for a faster rate of power change, and its

handling ability for a stepwise increase of power. Instead of 10 % per hour rate, the

power decreased to 50 % with a rate of 25 % per hour. Surprisingly, ACES was able

to follow the load demand closer than the previous cases even though PLCRs were

moved which creates unpredictable reactivity changes. One of the reasons for the

94

100

reactor power
— — target power

40-]—I—I—1—I—
0 4 8 12 16 20 24

Time (hours)

Figure 6.24: Case D: Reactor power and load demand

closer power control is the delay of the xenon feedback. Within two hours, xenon

feedback does not have enough time to change the flux concentration significantly.

Second, as can be seen in Figure 6.24, the unpredictable reactivity effect of a PLGR

move may help the power control as illustrated in this case, or it may work against

it as shown previously. These completely opposite effects of a PLCR move originate

from the current flux distribution of the core, which is an unmeasurable quantity. As

seen in Figure 6.29, there has been a strong AO shift to the top of the core, which

was compensated by PLCRs. Therefore, it is reasonable to conclude that the PLCRs

are moved to the high flux region, and hence, negative reactivity is introduced into

the system, which helped the power control.

Although ACES responded to the strong AO transient through the rule set #

95

i
— 10—

-15
20 24

Time (hours)

Figure 6.25: Case D: Axial offset change

2, and pulled the PLCR to the top of the core, AO had shifted out of the target

band(Figure 6.25) as a unique example among the test cases. This was a result of

the fast transient. Even though AO is forced back into the target band immediately, it

shows an important characteristic of ACES. Because of the computational limitations

of the reactor model, ACES is designed to sample the reactor every minute. However,

the decision process of ACES takes much less time than a minute. We believe that if

ACES samples the reactor more frequently, it will less likely allow such an excessive

AO shift. Other than that one point out of the target band, the AO is kept within

limits throughout the daily cycle as is shown in Figure 6.25.

Another interesting response of ACES in this case was the FLCR positions when

the power reached 50 %(see Figures 6.26 and 6.27). They were inserted less than the

96

185

C- 175-

165- Bank
— — Bank

155
20 24

Time (hours)

Figure 6.26: Case D: Full length control rod positions-1

165

s
ca 175-

m

r": Bank
— — Bank

155
20 24

Time (hours)

Figure 6.27: Case D: Full length control rod positions-2

97

100

g.

1

90-

80-

m

g
& 50-

40
24 20

Time (hours)

Figure 6.28: Case D: Part length control rod position

previous case in which the power was also at the same level after the transient. This

should be due to the negative reactivity insertion as a result of PLCR motion during

the transient. The sudden FLCR withdrawals through the very end of the power

transient, following almost a total 15 steps of successive PLCR motion, can not be a

simple coincidence. This example shows how strong a PLCR motion may affect the

reactivity of the system. However, ACES was able to keep up with its goals, and was

able to handle an unexpected reactivity change of the core.

Following the 50 % steady state operation, ACES successfully controlled the

power by keeping up with the load demand with the given rate of power increase. It

kept the power at 75 % as an intermediate power level, and then, took the reactor to

full power as load demanded. The xenon oscillation following the transients was also

98

940

920-

910-

900
20 24

Time (hours)

Figure 6.29: Case D: Boron concentration change

kept under control as shown in Figures 6.28 and 6.29.

The final case was not our design. After testing ACES for various cases, it was

crucial to test it for an arbitrary load demand. ACES was tested against a typical

power load of a PWR given by Lamarsh [4]. The given transient had some unique

characteristics, such as having no steady state operation at low power. Instead, power

load decreased gradually, with a slower rate than with which we had previously tested

ACES. The load demand then increased back to full power, and stayed at this level

for 10 hours.

The deviations of power from the load demand were highest for this case, owing

to the duration of the transient, which was long enough to experience the xenon

feedback. When the unpredictable reactivity effects of the xenon feedback and the

99

100-

d
U)
o
k
$ 6 0 -
A

6 0 -

u -

«
S 60 — reactor power

— — target power

Time (hours)

Figure 6.30: Case E: Reactor power and load demand

T—I—I—I—I—I—I—I—I—I—I—I—I—I—I—I—I—I I r
0 4 8 12 16 20

Time (hours)

Figure 6.31: Case E: Axial offset change

100

185

M

t
175-

I -
m

Bank A
— — Bank B

155-
20 24

Time (hours)

Figure 6.32: Case E: Full length control rod positions-1

PLCR motions are combined, the power control was able to keep the deviation within

±3-4 % of the desired power(Figure 6.30). However, this should not be considered as a

big flaw for the expert system, since similar or bigger power errors were experienced

in an experiment of a load-follow mode demonstrations employing CAOC control

procedures performed by Sipush et al. at Indian Point, Unit 2 plant in New York

[10]. On the other hand, increasing the sampling frequency of the reactor is a possible

solution for improving the performance of the system. By frequent sampling, ACES

would detect the unpredictable reactivity changes before they cause considerable

changes in power level.

Other than the given problem, ACES did what it is intended to do, and kept the

reactor power, and the axial offset under control during a 24 hour period. Addition-

101

165

M 175-
la

m

r": Bank C
— — Bank D

156
20 24

Time (hours)

Figure 6.33: Case E: Full length control rod positions-2

ally, the xenon oscillation occurring as a result of the power transients was controlled

as can be seen from PLCR position and boron concentration curves, Figs. 6.34 and

6.35, respectively. ACES successfully switched from boration to deboration and back

to boration during the power transient by using the rules # 3.1, 3.2, 3.4, and 3.7 as

seen in Figure 6.35.

The final evaluation point for an expert system should be the speed of the deci­

sion process. Additionally, it has been noted in this study that the sampling frequency

of the reactor in ACES is set to 1 minute by the limitations of the model, and that

more frequent sampling would solve the AO drift out of the target band experienced

in case D. In this respect, 0PS5 provides an effective tool, the Performance Measure­

ment and Evaluation package, which provides CPU time reports when necessary [50].

102

100

"M

I
m

g
& 50-

40
20 24

Time (hours)

Figure 6.34: Case E: Part length control rod position

940

p 920-

910-

900
24 20

Time (hours)

Figure 6.35: Case E: Boron concentration change

103

Table 6.4: CPU time for initialization of ACES

Timing CPU report on 24-JUL-1992 15:41:11.13

LHS RHS
PRODUCTION NAME FIRINGS TIME TIME
clean.old.crod.wmes 0 1 0
initialization 1 0 168
moving-selected-controljod 0 47 0
preference 0 2 0
stopjnoving.cr 0 35 0
initi alize.cont rol _vari ables 0 603 0
read.difFerentiaLworths 801 0 1633
end_of_data 1 88 3
insertion Jimit .on _moving_cr 0 1 0
set -crod-reacti vity .worths .and Jimits 0 103 0

This package is used for generating some timing reports of ACES, and the reports

are presented in its original form in Tables 6.4 through 6.6.

The CPU time consumed by ACES during the initialization process took a rel­

atively long time because of creating the active working memory for the first time.

The numbers given under the title of LHS and RHS times are the 10-millisecond

ticks of CPU time in VAX computer system, used for executing the given side of a

production. Therefore, the initialization of working memory costs a CPU time of

less than 27 seconds in VAX, including the conflict resolution process and accessing

the user interface for gathering the power load information. As it can be seen in

Table 6.4, the conflict resolution amounts to almost 33 % of the total time, and 90

% of it is spent for the productions that are not even fired. Since the initialization

process is performed only once in this scale, design criteria were to set the working

memory, not to save time.

On the other hand, unnecessary matchs that increase the time spent for the

104

conflict resolution process were avoided as much as possible for an ordinary control

cycle of ACES. Table 6.5 gives CPU time consumed during the steady state power

operation, which is possibly the fastest cycle in VAX. The total CPU time spent

in this cycle was 1.21 seconds. Out of 1.21 seconds, 0.4 seconds were spent for the

conflict resolution, and 0.1 seconds were spent for productions that didn't fire.

Table 6.5: CPU time for control cycle of ACES at steady state power

Timing CPU report on 24-JUL-1992 22:14:19.40

LHS RHS
PRODUCTION NAME FIRINGS TIME TIME
clean_old_crod_wmes 4 . 1 2
modify _response_in_transient_l 0 2 0
no.change 1 0 3
physical Jimit_on_moving_cr 0 1 0
preference 1 15 19
stop.moving_cr 0 2 0
initialize.controLvariables 1 4 28
reset-direction 0 1 0
calling_reactor.for 0 1 0
end_of_cr_moves 1 1 1
insertion Jimit _on _moving_cr 0 3 0
set_crodjreactivity_worths_andJimits 4 9 21
no_boron_control 1 0 5
no_axiaLofFset_control_needed 1 0 2

A control cycle during a power transient will definitely take more time since we

expect more rules to be fired. A sample cycle CPU time report is given in Table 6.6 for

transient cases. The total CPU time was 1.76 seconds for this case in VAX system.

Although this case may not be the longest cycle, it gives an idea about the time

domain for transient cases. There might be more CR movements which amounts to

1 tick for each step as is listed for the production named moving selected control rod

in Table 6.6. Therefore, the sampling frequency of ACES can easily be reduced to 5

105

Table 6.6: CPU time for control cycle of ACES during a power transient

Timing CPU report on 24-JUL-1992 22: 17:16.56

LHS RHS
PRODUCTION NAME FIRINGS TIME TIME
clean_old_crod_wmes 4 4 4
modify jesponseJn.transient-l 1 2 3
moving-selected.controljod 1 0 1
physical-limit _on_moving_cr 0 3 0
preference 2 25 24
stop_moving-cr 1 1 13
initialize.controLvariables 1 7 22
calling jeactor.for 0 1 0
end_of_cr_moves 1 0 1
insertion Jimit _on _moving_cr 0 1 0
set_crod_reactivity_worths_and_limits 5 15 30
providingjiegativejeactivity 1 0 4
boron_control_in_transient 1 1 11
providing-positivejeactivity 0 1 0
rio.axial_ofFset_control_needed 1 0 2

seconds with almost 3 seconds of safety margin, and a closer watch can be provided

for the AO and power control.

The CPU time evaluation also shows the importance of the generic characteristic

of ACES. In a design based on pattern recognition, we would have more rules to

handle every specific case, including some very similar ones. The conflict resolution

process would consider each one by one and would cost more CPU time. The generic

rules cut down the number of rules and the CPU time.

106

CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS

Conclusions

The purpose of this study was to explore the application of expert system tech­

nology to the spatial xenon oscillation control problem in a typical PWR. An expert

system, ACES has been developed to implement the Heuristic Constant Axial Offset

Control strategy for the control of spatial xenon oscillations in PWRs. ACES is de­

signed to be as realistic as possible with a set of generic rules to increase its area of

applicability.

ACES is designed to use only measurable reactor parameters during the decision

process, and to evaluate the reactor status for determination of necessary control ac­

tion without using any non-measurable "heuristic" constants. It samples the reactor

status in terms of available parameters, and evaluates these data to determine the

necessity of a control action. It uses the differential rod worth curves, and reactivity

worth of boron control as a knowledge base, and requires the user to supply this

information.

The knowledge base is built into the active working memory of the expert sys­

tem instead of the productions. This enabled ACES to adapt its control parameters

to the reactor status during runtime. In addition, it increased the applicability of

ACES to any reactor since the knowledge base of ACES is kept as a set of measur­

107

able quantities, such as the control rod worth curves of a PWR. Provided that the

knowledge base is loaded in ACES, it is capable of controlling an arbitrary PWR for

an arbitrary load demand.

As a result of the nature of the xenon oscillation problem, a forward chaining

algorithm was found effective for this particular application. ACES used forward

chaining to search for the solution of the given core status. A given core status

is not recognized by a pattern recognition procedure in ACES, but it is evaluated

to solve for the necessary corrective action which may include no correction at all.

This unique feature of the design also enhanced the generic characteristic of ACES.

No quantification of error terms, or no ranging for parameters is used for creating

patterns unless they are well known and common for PWRs. The ± 5 % target band

of AO around the steady state value is the only ranging used in ACES, and it is a

very common parameter [10].

Although there is no other previous study directly comparable with ACES, it

has been tested against some cases used by Cho [36] and Chung [47] in their studies.

The test cases are extended for different power levels, and different transient rates

in ACES. ACES successfully controlled the PWR core model for the given test cases

even though the model overpredict the xenon feedback. Therefore, it is expected to

perform better in real applications. Finally, ACES is tested against an arbitrary load

demand given in the literature [4], and its performance is evaluated based on CPU

time consumption. It is shown that ACES can follow any load demand and can keep

the AO within the target band.

The following conclusions have been drawn from this study:

1. It is possible to use expert system technology in spatial xenon oscillation

108

control in PWRs.

2. The forward chaining is a useful technique for this particular application.

3. It is possible to implement an expert system controller based on only

measurable parameters of a reactor.

4. The expert system ACES implemented in this study is capable of control­

ling a load-follow PWR for any load demand provided that the control rod

worths are supplied as the knowledge base.

5. ACES is able to sample the reactor status much more frequently -twenty

times more in the VAX computer system- than the interval used in this

study, which ensures much finer power control than the ones shown in the

sample cases.

6. Designed as a generic code, ACES is free of "heuristic" constants, it adapts

its control parameters in runtime, and therefore, can be used in an arbi­

trary PWR.

As a final reminder, we would like to add that, beside the advantages of expert

systems, this technology helps to preserve the expertise in case of an interruption in

the inheritance of the knowledge. It will ensure an ongoing expert control in times

of personnel changes at the plant. On the other hand, even though expert system

technology is not now or may never be developed enough to simulate the human cre­

ativity, it has the ability to serve useful applications. Lacking of creativity, however,

only limits the application areas of expert systems, and being a slow transient, xenon

oscillations are not one of these limited areas.

109

Recommendations for Future Work

The ultimate goal of this study is to design a controller to replace the reactor

operator in the control of xenon oscillations. Unfortunately, the cost of a complete

verification of computer software and hardware, and the environmentally opinionated

insecure feeling of the general public limit the expert systems to be an advisory

controller for the time being. Therefore, ACES should be furnished with user friendly

graphic displays for presenting the results to the reactor operator. Although, ACES

currently displays the current status of the core, and suggests control actions, no

specific attention is paid to the form of the output.

Although ACES has been tested against several load schedules using a PWR

core model, it should be tested for more cases using a more detailed model. Also, the

sampling frequency of ACES should be increased to achieve better control, and to

reduce errors in load-follow. Today, most of the reactors have their own simulators

which are able to simulate any transient with enough accuracy. ACES should be

tested using these simulators prior to any real time applications.

Additionally, ACES has been tested only against a core configuration that simu­

lates the beginning of life conditions. However, the limitations on the boron concen­

tration changes at the end of life of a fuel cycle require special attention. Therefore,

ACES should be tested and modified -if necessary- for the end of life conditions of a

fuel cycle.

And finally, ACES is designed using a VAX cluster which may not be available

everywhere. A microcomputer version can be generated provided that the micro­

computer version of the 0PS5 compiler supports an interface with a conventional

language.

110

BIBLIOGRAPHY

[1] J. J. Duderstadt, L. J. Hamilton, Nuclear Reactor Analysis, (John Wiley and
Sons, New York, NY, 1976).

[2] J. R. Lamarsh, Introduction to Nuclear Reactor Theory, (Addison-Wesley,
Reading, MA, 1966).

[3] D. Randall, D. S. St. John, "Xenon Spatial Oscillations," Nucleonics, Vol. 16,
No. 3, 82 (1958).

[4] J. R. Lamarsh, Introduction to Nuclear Engineering, (Addison-Wesley, Reading,
MA, 1977).

[5] W. M. Stacey Jr., "Control of Xenon Spatial Oscillations," Nuclear Science and
Engineering, Vol. 38, No. 3, 229 (1969).

[6] P. Jackson, Introduction to Expert Systems, (Addison-Wesley, Reading, MA,
1990).

[7] A. A. Berk, LISP: The Language of Artificial Intelligence, (Van Nostrand Rein-
hold, New York, NY, 1985).

[8] H. Schildt, Artificial Intelligence... Using C, (Osborne McGraw Hill, Berkeley,
CA, 1978).

[9] P. H. Winston, Artificial Intelligence, (Addison-Wesley, Reading, MA, 1979).

[10] P. J. Sipush, R. A. Kerr, A. P. Ginsberg, T. Morita, L. R. Scherpereel, "Load-
Follow Demonstrations Employing Constant Axial Offset Power-Distribution
Control Procedures," Nuclear Technology, Vol. 31, No. 1, 12 (1976).

[11] D. C. Bauer, C. G. Poncelet, "Practical Xenon Spatial Control," Nuclear Tech­
nology, Vol. 21, No. 3, 165 (1974).

I l l

[12] J. March-Leuba, E. D. Blakeman, "A Study of Out-Of-Phase Power Instabilities
in Boiling Water Reactors," 1988 (unpublished).

[13] R. L. Crowther, "Nonlinear Xenon Effects in Boiling Water Reactors," Trans, of
Am. Nucl. Society, Vol. 11, 570 (1968).

[14] 0. A. Trojan, "Analysis of Spatial Flux Control in Heavy Water Reactors,"
Trans, of Am. Nucl. Society, Vol. 11, 571 (1968).

[15] R. Nabbi, "Analysis of the Xenon Feedback on the Core Dynamics of High-
Temperature Reactors During Heat Removal Transients without Reactor Shut­
down," Nuclear Technology, Vol. 64, No. 1, 5 (1984).

[16] A. M. Afanasev, B. Z. Tor lin, "Stability of the High-Level Field of Reactor
Neutrons with respect to Xenon Oscillations," Soviet Atomic Energy, Vol. 44,
No. 6, 566 (1978).

[17] S. V. Topp, R. P. Germann, "Xenon Oscillation Experiments in a Production
Reactor," Trans, of Am. Nucl. Society, Vol. 12, No. 2, 765 (1969).

[18] W. E. Graves, "Experience with Xenon Oscillations," Trans, of Am. Nucl. Soci­
ety, Vol. 12, No. 2, 644 (1969).

[19] D. Rawle, V. Rajagopal, C. G. Poncelet, R. J. Johnson, J. R. Himmelwright,
"Spatial Xenon Stability Measurements on the Connecticut Yankee Reactor,"
Trans, of Am. Nucl. Society, Vol. 12, No. 2, 766 (1969).

[20] J. C. Lee, K. A. Jones, W. L. McCoy, "Axial Stability Measurements at the
Rochester Gas and Electric Reactor," Trans, of Am. Nucl. Society, Vol. 14,
Suppl. 2, 15 (1971).

[21] D. D. Ebert, J. R. Humphries, R. M. Versluis, W. J. Lippold, "Maneuvering
Experience at Calvert Cliffs, Unit 1," Trans, of Am, Nucl. Society, Vol. 26,
Suppl. 1, 62 (1977).

[22] W. R. Corcoran, J. R. Humphries, H. J. Litke, J. D. LeBlanc, "Dumping of
Xenon Oscillations in the Maine Yankee Reactor," Nuclear Technology, Vol. 22,
No. 2, 252 (1974).

[23] W. R. Casto, "Safety Related Occurrences Reported in October and November
1972 (Axial Xenon Oscillations Controlled at a PWR)," Nuclear Safety, Vol. 14,
No. 2, 121 (1973).

112

[24] S. Schaefer, "Procedure for Damping of Xenon Oscillations," Northern States
Power Company, 1984 (unpublished).

[25] B. J. Delano, "Operational Flexibility of B&W PWR Control Systems for Load
Follow," Trans, of Am. Nucl. Society, Vol. 26, Suppl. 1, 64 (1977).

[26] J. Karppinen, "Spatial Reactor Control Methods," Nucl. Sci. and Engineering,
Vol. 64, No. 2, 657 (1977).

[27] A. M. Christie, C. G. Poncelet, "On the Control of Spatial Xenon Oscillations,"
Nucl. Sci. and Engineering, Vol. 51, No. 1, 10 (1973).

[28] S. Tzafestas, "Distributed Parameter Nuclear Reactor Optimal Control," Proc.
IRIA Symp. New Trends in Systems Analysis, Versailles, France, (1976).

[29] K. Surendran, "Quasistatic Control of Xenon Spatial Oscillations," Int. J. Sys­
tems Sci., Vol. 6, No. 3, 269 (1975).

[30] W. M. Stacey Jr., "A Numerical Study of Xenon-Power Spatial Oscillations,"
Trans, of Am. Nucl. Society, Vol. 11, 226, (1968).

[31] W. Hanke, "A Method for Solving the Xenon Oscillation Control Problem,"
Nucl. Sci. and Engineering, Vol. 72, No. 2, 265 (1979).

[32] W. M. Stacy Jr, "Optimal Control of Xenon-Power Spatial Transients," Nucl.
Sci. and Engineering, Vol. 33, No. 2, 162 (1968).

[33] H. D. Purandare, S. V. Lawande, "A Dynamic Programming Approach to Spatial
Control of Large CANDU Type Reactors," Bhabha Atomic Research Centre
(unpublished).

[34] E. J. Schulz, J. C. Lee, "Time-Optimal Control of Spatial Xenon Oscillations to
a Generalized Target," Nucl. Sci. and Engineering, Vol. 73, No. 2, 140 (1980).

[35] A. T. Chiang, P. E. Bennecke, R. A. Rydin, "Optimal Control of Xenon Spatial
Oscillations in Reactors," Trans, of Am. Nucl. Society, Vol. 24, 427 (1976).

[36] N. Z. Cho, L. M. Grossman, "Optimal Control for Xenon Spatial Oscillations in
Load Follow of a Nuclear Reactor," Nucl. Sci. and Engineering, Vol. 83, No. 1,
136 (1983).

[37] R. J. Onega, R. A. Kisner, "Parameter Identification in the Xenon Oscillation
Problem Using the Method of Maximum Likelihood," Trans, of Am. Nucl. So­
ciety, Vol. 30, 745 (1978).

113

[38] R. W. Pack, P. L. Chambré, "Observer for Spatial Xenon Oscillation Control,"
Trans, of Am. Nucl. Society, Vol. 19, 177 (1974).

[39] G. T. Park, G. H. Miley, "Application of Adaptive Control to a Nuclear Power
Plant," Nucl. Sci. and Engineering, Vol. 94, No. 2, 145 (1986).

[40] R. C. Berkan, B. R. Upadhyaya, L. H. Tsoukalas, R. A. Kisner, "Reconstructive
Inverse Dynamics Control and Application to Xenon-Induced Power Oscillations
in Pressurized Water Reactors," Nucl. Sci. and Engineering, Vol. 109, No. 2, 171
(1991).

[41] N. Noito, A. Sakuma, K. Shigeno, N. Mori, "A Real-Time Expert System for
Nuclear Power Plant Failure Diagnosis and Operational Guide," Nuclear Tech­
nology, Vol. 79, No. 3, 284 (1987).

[42] R. C. Erdmann, B. K-H. Sun, "An Expert System Approach for Safety Diagno­
sis," Nuclear Technology, Vol. 82, No. 2, 162 (1988).

[43] N. Barbet, M. Dumas, G. Mihelich, Y. Souchet, J. B. Thomas, "Expert Systems
for the Analysis of Transients on Nuclear Reactors: SEXTANT, A General-
Purpose Physical Analyzer," Nucl. Sci. and Engineering, Vol. 100, No. 4, 435
(1988).

[44] J. O. Yang, S. H. Chang, "A Diagnostic Expert System for the Nuclear Power
Plant Based on the Hybrid Knowledge Approach," IEEE Trans, on Nucl. Science,
Vol. 36, No. 6, 2450 (1989).

[45] R. Bhatnagar, D. W. Miller, B. K. Hajek, J. E. Stasenko, "An Integrated Oper­
ator Advisor System for Plant Monitoring, Procedure Management, and Diag­
nosis," Nuclear Technology, Vol. 89, No. 3, 281 (1990).

[46] R. E. Uhrig, "Opportunities for Automation and Control of the Next Generation
of Nuclear Power Plants," Nuclear Technology, Vol. 88, No. 2, 157 (1989).

[47] S. K. Chung, "Implementation of an Expert System for Xenon Spatial Control
in Pressurized Water Reactors," Ph.D. Dissertation, Iowa State Univ., (1988).

[48] L. Brownston, E. Kant, R. Farrell, N. Martin, Programming Expert Systems
in 0PS5 : An Introduction to Rule Based Programming, (Addison-Wesley,
Reading, MA, 1985).

[49] Vax 0PS5 User's Manual. (Digital Equipment Corp., Maynard, MA, Feb. 1988).

114

[50] Vax 0PS5 Reference Manual. (Digital Equipment Corp., Maynard, MA, Feb.
1988).

[51] R. J. Onega, R. A. Kisner, "A Two-Point Xenon Oscillation Model Using a .
Variational Principal," Trans, of Am. Nucl. Society, Vol. 24, 431 (1976).

[52] J. Josephson, "Servo-Analysis and Stabilization of Xenon Oscillations in Large
Thermal Nuclear Reactor Power Plants," IEEE Trans, on Nucl. Sci., Vol. NS-25,
No. 1, 875 (1978).

[53] J. D. Teachman, R. J. Onega, "The Influence of Energy Group Structure and
Nonlinearities on the Calculation of Xenon-Induced Flux Oscillations," Nucl.
Sci. and Engineering, Vol. 83, No. 1, 149 (1983).

[54] W. F. Ames, Numerical methods for partial differential equations, (2nd Edition,
Academic Press, New York, NY, 1977).

[55] L. C. Schmid, Critical Assemblies and Reactor Research. (John Wiley and Sons,
New York, NY, 1971).

[56] Babcock-241 Standard Safety Analysis Report (B-SAR-241), (Babcock &;
Wilcox Co., Vols. 1-4, 1974).

115

APPENDIX A: SOURCE CODE OF ACES

ACES is written in 0PS5 and furnished with comments for each rule to increase

the understandability of the program. Rules are enumerated for referencing purposes.

Declarations

(VECTOR-ATTRIBUTE

POSTN ; This vector will contain the current control rod

; positions at any time

GOAL) ; This vector will contain the information for the

; flow of control

f

(EXTERNAL

I

; Functions

9

(RREAC FLOAT-ATOM (FLOAT-ATOM BY REFERENCE)

(FLOAT-ATOM BY REFERENCE) (FLOAT-ATOM BY REFERENCE))

I

(TREND INTEGER-ATOM (FLOAT-ATOM BY REFERENCE)

(FLOAT-ATOM BY REFERENCE))

I

(ABSOLUTE FLOAT-ATOM (FLOAT-ATOM BY REFERENCE))

»

(AOTREND INTEGER-ATOM (FLOAT-ATOM BY REFERENCE)

(FLOAT-ATOM BY REFERENCE) (FLOAT-ATOM BY REFERENCE))

»

(BORON INTEGER-ATOM (FLOAT-ATOM BY REFERENCE)

116

(FLOAT-ATOM BY REFERENCE))

(TINLET FLOAT-ATOM (FLOAT-ATOM BY REFERENCE)

(FLOAT-ATOM BY REFERENCE))

Subroutines

(INIT)

(LOAD)

(REACTOR)

(OUTPUT))

Literalizations of Working Memory Elements

(LITERALIZE DWORTHS

BANK

STEP

WORTH)

$

(LITERALIZE BORON

UNIT

WORTH

STEPS

CHANGE

DIRECTION)

I

(LITERALIZE POWER

FROM

TO

BY

RATE

CONST)

I

(LITERALIZE STATE

POWER

AXIAL,OFFSET

PERIOD

TEMP.IN

TEMP.OUT

B.CONC

TIME)

Knowledge base for differential worth curves

Name of the FLCR bank

Position of the bemk

Differential worth at the given position

Knowledge base for boron reactivity worth

Minimum unit of boron in ppm

Reactivity worth of a unit change

Amount of control in multiples of UNIT

Amount of control in ppm

Flag, 1 for boration, -1 for deboration

Knowledge base WME for the power schedule

Initial time that function P=at+b is valid

Final time for the same function

Sampling intervals, set to 1 minutes

Rate 'a' of the given function

Constant 'b' of the given function

State of the core which will be sampled

Current reactor power

Current axial offset of the core

Current reactor period

Current inlet temperature of the core

Current outlet temperature of the core

Current boron concentration in ppm

Current time

117

(LITERALIZE GOALS

GOAL)

I

(LITERALIZE AOCNTRL

AO.RATE

AO.SIGN

AOE)

»

(LITERALIZE PWRCNTRL

POWERI

POWERJ

PSIGN

TPSIGN

REACTIVITY

RSIGN)

Set of goals to satisfy

Current goal of ACES (vector)

Axial-offset control parameters

Constant 'a' of target(AO) = a * P
Flag, = TREND(current(AO).target(AO))

Flag, = AOTREND(current(AO),target(AO),2)

Power control parameters

Target power at current time

Target power at next time step

Flag, = TREND(current power, POWERI)

Flag, = TREND(POWERJ,POWERI)

Absolute value of target reactivity

Sign of the target reactivity

(LITERALIZE TEMPERATURE ; WME for temperature control

TEMP.REF

TEMP.IN)

I

(LITERALIZE CRODS

BANK

POSITION

NUMBER

PWORTH

NWORTH

MAX.POS

MIM.POS

PREF.DIR)

I

(LITERALIZE MOVEROD

BANK

DIRECTION

REACTIVITY

STEP

LIMIT

COUNT)

Average core temperature at full power

Proposed inlet temperature for the next step

Temporary WMEs for control rod bemks

Name of the control rod bank

Current position in steps

1 for FLCR-A, 2 for FLCR-B... and 5 for PLCR

Differential reactivity if withdrawn one step

Differential reactivity if inserted one step

Uppermost possible position (200)

Lowermost possible position (0)

Preferred direction of motion

Temporary variable for iteration in CR moves

Name of the control rod bemk to be moved

Direction of move, 1 upweurd, -1 downward

Target reactivity to satisfy

Current position of control rod bank

Maximum steps that a given bank can be moved

The number of steps that the bemk moved

(LITERALIZE SENDCR Temporary WME for data communication

118

POSTN) ; Current positions of all control rod banks

I

; The start-up production, sets the runtime options of 0PS5

>
(STARTUP

(ENABLE HALT)

(STRATEGY MEA)

(MAKE START)

(RUN))

; Rule set # 1; Initialization of WMEs at various phases of ACES

I

; Rule 1.1 : This rule performs the initialization of the reactor

; model, queries the data file name of differential rod worth

; knowledge base, and interface with user for power schedule.

; It fires only once.

(p initialization

{ <go> (START)}
>

(CALL INIT)

(WRITE I Please enter the file name for CR worths.. | (CRLF))
(BIND <file> (ACCEPT))

(OPENFILE DW <file> IN)

(MAKE SENDCR)

(CALL LOAD 100.0 0.0)

(MAKE GOALS "goal read.data))

: Rule 1.2 : This rule reads control rod worth data from input file

; in the order of bank name, position, emd worth, reads nil

; for an empty line to mark the end of data, fires as much as

; necessary for initialization of ACES active working memory,

(p read_differential_worths

{ <goal> (GOALS

"goal read.data)}

-->

(MODIFY <goal> "goal read_data)

(MAKE DWORTHS "bank (ACCEPTLINE DW nil nil nil)))

»

; Rule 1.3 : Initializes boron worth and reference temperature

119

; from the same data file, fires only once.

(p end_of_data

{ <goal> (GOALS

"goal read.data)}

{ <dwr> (DWORTHS

"bank nil)}
>

(REMOVE <goal> <dwr>)

(MAKE BORON "unit (ACCEPT DW)

"worth (ACCEPT DW)

"steps 0

"change 0

"direction 1)

(MAKE TEMPERATURE "temp.ref (ACCEPT DW)))

Rule 1.4 : Sets current reactivity worths of control rods,

and limits. Fires once for each FLCR bemk when the FLCR

positions are seunpled and whenever em FLCR is moved.

For withdrawals, positive reactivity is set to differential

worth at the current position of the bank, emd

for insertions, negative reactivity is set to differential

worth at one step down of the current position,

(p set_crod_reactivity_worths_and_limits

{ <cr> (CRODS

"bank { <crbank> <> pier }

"position <z>

"number <num>

"pworth nil)}

(DWORTHS

"bank <crbank>

"step <z>

"worth <upw>)

(DWORTHS

"bemk <crbeuik>

"step (COMPUTE <z> - 1)

"worth <downw>)

{ <scr> (SENDCR)}

->

(BIND <pos> (LITVAL POSTN))

(BIND <post> (COMPUTE <pos> + <num> - 1))

120

(MODIFY <scr> "<po8t> <z>)

(MODIFY <cr> "pworth <upw>

"nworth <downw>

"max.pos 200

"min.pos 0))

Rule 1.5 : After the sampling of the reactor, this rule

reinitializes all control parameters and flags used in

evaluation of the core status, and produce output

for current core status. It fires only once for each

control cycle.

(p initialize_control_variables

(STATE

"power <pr>

"period <per>

"axial.offset <fao>

"temp.in <tin>

"temp.out <tout>

"b_conc <ppm>

"time <t>)

(POWER

"from <= <t>

"to > <t>

"by <step>

"rate <a>

"const)

{ <aocntrl> (AOCNTRL

"ao_rate <faor>)}

-(PWRCNTRL)

-(GOALS)

{ <plcr> (CRODS

"beuik pier

"position <zplcr>)]

>

{ <scr> (SENDCR)}

{ <terap> (TEMPERATURE

~temp_ref <tav>)}

(BIND <tnext> (COMPUTE <t> + <step>))

(BIND <pi> (COMPUTE + <a> * <t>))

(BIND <pj> (COMPUTE + <a> * <tnext>))

121

(BIND <rs> (COMPUTE 0.0848 // <per>))

(BIND <re> (RREAC <pj> <pr> <8tep>))

(BIND <tr> (COMPUTE <re> - <rs>))

(BIND <dtc> (COMPUTE <tout> - <tin>))

(BIND <tfao> (COMPUTE <faor> * <pi>))

(BIND <aobl> (COMPUTE <tfao> + 5.0))

(BIND <aob2> (COMPUTE <tfao> - 5.0))

(WRITE (CRLF) I Time (mins) : | <t> (TABTO 25)

I Period (s) : | <per>
(CRLF) I Power ('/,) : | <pr> (TABTO 25)

I AO (•/,) : I <fao>
(CRLF) I Targets (%) : | <pi> (TABTO 41) <tfao>

(CRLF) I Control Parameters : I (CRLF) I

(CRLF) I FLCR pos'ns I (TABTO 21) IPLCR pos'n I (TABTO 35)

I Boron conc. (ppm) I (TABTO 57) Unlet Temp. (C) I

(CRLF) (SUBSTR <scr> postn inf) (TABTO 21) <zplcr>

(TABTO 35) <ppm> (TABTO 57) <tin> (CRLF) (CRLF))

(CALL OUTPUT <t> <pr> <fao> <ppm> (SUBSTR <scr> postn inf)

<zplcr> <pi> <tfao> <tiri> <tout> <aobl> <aob2>)

(MODIFY <aocntrl> "aoe (AOTREND <fao> <tfao> 2.0)

"ao.sign (TREND <fao> <tfao>))

(MODIFY <temp> "teirp_in (TINLET <tav> <dtc>))

(MAKE PWRCNTRL "poweri <pi>

"powerj <pj>

"reactivity (ABSOLUTE <tr>)

"psign (TREND <pr> <pi>)

"tpsign (TREND <pj> <pi>)

"rsign (TREND <tr> 0.0))

(MAKE GOALS "goal ao.control))

; Rule set # 2 : Axial-Offset control

; Rule 2.1 : Transfers the control to next step since the AO

; is within the control band emd no control is necessary,

(p no_axial_offset_control_needed

{ <goal> (GOALS

"goal ao.control)}

(AOCNTRL

"aoe 0)

122

>

(MODIFY <goal> "goal correct))

I

; Rule 2.2 : If the core AO is out of the control band, this

; rule moves the PLCR one step in the direction of AO error,

(p axial_offset_control

{ <goal> (GOALS

"goal ao.control)}

{ <aoc> (AOCNTRL

"aoe { <fl> <> 0 })}

{ <cr> (CRODS

"bank pier

"position <z>)}

— >

(MODIFY <cr> "position (COMPUTE <z> + <fl>))

(MODIFY <goal> "goal correct))

Rule set # 3 : Boron Control

Rule 3.1 ; This rule increases the amount of boron control

during the power treuisient by one unit before checking for

using boron at this step, and transfers the control to

boron control, may fire only once for each cycle during

a power tremsient.

(p modify_response_in_transient_l

{ <goal> (GOALS

— >

"goal

{
 (BORON

"steps

"direction

(AOCNTRL

"ao„sign

(PWRCNTRL

"tpsign

(MODIFY

(MODIFY <goal>

correct)}

<s>

<d>)}

<err>)

(COMPUTE <err> * <d> * -1))

"steps (COMPUTE <s>

'goal b_control))

+ 1))

Rule 3.2 ; This rule decreases the amount of boron control

123

; during the power transient by one unit before checking for

; using boron at this step, and transfers the control to

; boron control, may fire only once for each cycle during

; a power treuisient.

(p modify_response_in_transient_2

{ <goal> (GOALS

"goal correct)}

{
 (BORON

"steps { <s> > 1 }

"direction <d>)}

(AOCNTRL

"ao.sign <err>)

(PWRCNTRL

"tpsign (COMPUTE <err> * <d>))
>

(MODIFY
 "steps (COMPUTE <s> - 1))

(MODIFY <goal> "goal b.control))

»

; Rule 3.3 : This rule sets the amount of boron control to zero

; during the power transient by one unit before checking for

; using boron at this step, and transfers the control to

; boron control, may fire only once for each cycle during

; a power transient.

(p set_response_to_zero

{ <goal> (GOALS

"goal correct)}

{
 (BORON

"steps > 0

"direction <d>)}

(AOCNTRL

"ao.sign <err>

"aoe <err>)

(PWRCNTRL

"tpsign (COMPUTE <err> * <d>))
>

(MODIFY
 "steps 0)

(MODIFY <goal> "goal b.control))

; Rule 3.4 : This rule switches the direction of boron control

; when its necessary, may fire only once for each cycle.

124

(p switch_the_direction

{ <goal> (GOALS

"goal correct)}

{
 (BORON

"steps 0

"direction <d>)}

(AOCNTRL

"ao_sign <err>

"aoe <err>)

(PWRCNTRL

"tpsign (COMPUTE <err> * <d>))

-->

(MODIFY
 "direction (COMPUTE <d> * -1))

(MODIFY <goal> "goal b.control))

»

; Rule 3.5 : This rule resets the direction of boron response

; after the reactor reaches to steady state following a

: transient, may fire only once in a cycle,

(p reset.direction

{ <goal> (GOALS

"goal correct)}

(PWRCNTRL

"tpsign 0)

{
 (BORON

"direction <> 1)}
>

(MODIFY
 "direction 1)

(MODIFY <goal> "goal b.control))

; Rule 3.6 ; Transfers the control to boron control if no

; change is necessary in the amount of boron control

(p no.change

{ <goal> (GOALS

"goal correct)}

>

(MODIFY <goal> "goal b.control))

; Rule 3.7 ; This rule changes the boron concentration

; as much as 's' steps in the direction 'd' during

: a power transient, modifies the target reactivity

; and transfers the control to power control rules.

125

(p boron_coiitrol_in_transient

{ <goal> (GOALS

"goal b_control)>

{ <pc> (PWRCNTRL

"reactivity <r>

"tpsign { <hao> <> 0 }

"rsign <rs>)}

{
 (BORON

"worth <wr>

"steps <s>

"direction <d>)}
>

(BIND <steps> (COMPUTE <s> * <hao> * <d>))

(BIND <rne*> (COMPUTE (<r> * <rs>) + <steps> * <wr> • -1))

(MODIFY
 "change <8teps>)

(MODIFY <pc> "reactivity (ABSOLUTE <rnew>)

"rsign (TREND <rnew> 0.0))

(MODIFY <goal> "goal set.preference move.crods send.info))

*

; Rule 3.8 ; This rule determines the amount of boron control during

; the steady state operation, and transfers the control

; directly to the communication rules,

(p boron_control_in_steady_state

{ <goal> (GOALS

"goal b.control)}

{ <pr> (PWRCNTRL

"tpsign 0

"reactivity <r>

"rsign <rs>)}

{
 (BORON

"worth { <wr> < <r> })}

>

(BIND <st> (BORON <wr> <r>))

(MODIFY
 "change (COMPUTE <st> * <rs> * -1))

(MODIFY <goal> "goal send.info))

; Rule 3.9 : This rule transfers the control to power control

; during the steady state, since no control is required

(p no_boron_control

{ <goal> (GOALS

126

-->

"goal b_control)}

(MODIFY <goal> "goal set.preference move_crods send.info))

Rule set # 4 : Power control using flcrs

Rule 4.1 : This rule finds the control rod bank which is at the

downmost position to introduce positive reactivity to the

system by withdrawal, and creates the necessary WHEs to

move it

(p providing_positive_reactivity

{ <goal> (GOALS

move.crods)}

>

"goal

(PWRCNTRL

"reactivity

"rsign

(CRODS

"bank

"position

"pref_dir

"pworth

"max.pos

(BIND <pos>

(MODIFY <goal>

(MAKE HOVEROD

<tr>

1)

{ <crbank> <> pier }

<z>

1
< <tr>

{ <zmax> > <z> })

(LITVAL GOAL))

"goal move.cr (SUBSTR <goal> <pos> inf))

"bemk <crbank>

"direction 1

"reactivity <tr>

"step <z>

"limit (COMPUTE <zmax> - <z>)

"count 0))

; Rule 4.2 : This rule finds the control rod bemk which is at the

; upmost position to provide negative reactivity by inserting

; the rod, and creates the necessary WMEs to move it.

(p providing_negative_reactivity

•C <goal> (GOALS
"goal move.crods)}

(PWRCNTRL

127

"reactivity <tr>

"rsign -1)

(CRODS

"bank

"position

"pref_dir

"nworth

"min.pos

{ <crbank> <> pier }

<z>

-1

< <tr>

{ <zmin> < <z> })

(BIND <pos> (LITVAL GOAL))

(MODIFY <goal> "goal move.cr (SUBSTR <goal> <pos> inf))

(MAKE MOVEROD "bank <crbank>

"direction -1

"reactivity <tr>

"step (COMPUTE <z> - 1)

"limit (COMPUTE <z> - <zmin>)

"count 0))

; Managing the FLCR movements

; Rule 4.3 : This rule sets FLCR directional preference by

; comparing their relative positions.

(p preference

{ <goal> (GOALS

"goal set.preference)}

•C <crl> (CRODS

"beoik { <bl> <> pier }

"position <zi>)}

{ <cr2> (CRODS

"bank { <b2> <> pier <> <bl> }

"position { <z2> <= <zl> })}

{ <cr3> (CRODS

"bank { <b3> <> pier <> <bl> <> <b2> }

"position { <z3> <= <z2> })}

{ <cr4> (CRODS

"bank { <b4> <> pier <> <bl> <> <b2> <> <b3> }

"position <= <z3>)}

— >

(BIND <pos> (LITVAL GOAL))

(BIND <pos2> (COMPUTE <pos> + 1))

128

(MODIFY <goal> "goal (SUBSTR <goal> <pos2> inf) nil)

(MODIFY <crl> "pref.dir -1)

(MODIFY <cr2> "pref.dir 0)

(MODIFY <cr3> "pref.dir 0)

(MODIFY <cr4> "pref.dir 1))

I

; Rule 4.4 ; This rule moves the selected rod one step at a

; time up to total of 5 steps, as long as limitation

; are not exceeded.

(p moving.selected_control_rod

(GOALS

"goal move.cr)

{ <movecr> (MOVEROD

"bank <crbank>

"direction <dir>

"reactivity <tr>

"step <z>

"limit { <lim> 0 0}

"count { <count> < 5 })}

(DWORTHS

"bank <crbank>

"step <z>

"worth { <dw> < <tr> })

>

(MODIFY <movecr> "reactivity (COMPUTE <tr> - <dw>)

"step (COMPUTE <z> + <dir>)
"limit (COMPUTE <lim> - 1)

"count (COMPUTE <count> +1)))

I

; Rule 4.5 : This rule stops moving the selected control rod bank

; when the target reactivity is provided.

(p stop_moving_cr

{ <goal> (GOALS

"goal move_cr)}

{ <pwrcntrl> (PWRCNTRL)}

{ <movecr> (MOVEROD

"bemk <crbemk>

"direction <dir>

"reactivity <tr>

"step <z>

129

"count <count>)}

(DWORTHS

"bank <crbank>

"step <z>
"worth { <w> > <tr> })

{ <cr> (CRODS

"bemk <crbank>

"position <old.z>)}

(MODIFY <goal> "goal set.preference)

(MODIFY <pwrcntrl> "reactivity <tr>)

(MODIFY <cr> "position (COMPUTE <old_z> + <dir> * <count>)

"pworth nil)

(REMOVE <movecr>))

Rule 4.6 : This rule stops moving the selected bemk since

the 5 steps limit is met. It returns the control to

power control.

insertion_limit_on_moving_cr

{ <goal> (GOALS

"goal move.cr)}

{ <pwrcntrl> (PWRCNTRL)}

{ <movecr> (MOVEROD

"bank <crbank>

"direction <dir>

"reactivity <tr>

"count 5)}

{ <cr> (CRODS

"bemk <crbank>

"position <old_z>)}

(MODIFY <goal> "goal set.preference)

(MODIFY <pwrcntrl> "reactivity <tr>)

(MODIFY <cr> "position (COMPUTE <old.z> + <dir> * 5)

"pworth nil

"nworth nil)

(REMOVE <movecr>))

Rule 4.7 ; This rule stops moving the selected control rod bank

when the upper or lower limit is reached.

130

(p physical_limit_on_moving_cr

{ <goal> (GOALS

"goal move.cr)}

{ <pwrcntrl> (PWRCNTRL)}

{ <movecr> (HOVEROD

"bank <crbeuik>

"direction <dir>

"reactivity <tr>

"count <count>

"limit 0)}

{ <cr> (CRODS

"bank <crbeuik>

"position <old_z>)}

>

(MODIFY <goal> "goal set.preference)

(MODIFY <pwrcntrl> "reactivity <tr>)

(MODIFY <cr> "position (COMPUTE <old_z> + <dir> * <count>)

"pworth nil

"nworth nil)

(REMOVE <movecr>))

Rule 5.8 : This rule transfers the control to communication

rules when no more FLCR moves are necessary,

(p end_of_cr_moves

{ <goal> (GOALS

"goal move.crods)}

-(MOVEROD)

-->

(BIND <pos> (LITVAL GOAL))

(BIND <pos2> (COMPUTE <pos> + 1))

(MODIFY <goal> "goal (SUBSTR <goal> <pos2> inf) nil))

Rule set # 5: Send the proposed reactivity chemges to the

simulator, or communicate with the Reactor

Rule 5.1 ; This rule removes the control rod WMEs in order

to be ready for the next cycle.

(p clean_old_crod_wmes

(GOALS

"goal send_info)

131

{ <cr> (CRODS

"bemk { <crbank> <> pier })}

->

(REMOVE <cr>))

Rule 5.2 : This rule wraps up the current state, sends data

to REACTOR.FOR and creates new state for next cycle of

the control.

(p calling.reactor.for

{ <goal> (GOALS

"goal send_info)}

{ <pwrcntrl> (PWRCNTRL)}

{ <send> (SENDCR)}

{ <bor> (BORON

"change <dppm>)}

{ <plcr> (CRODS

"bank pier

"position <zpl>)}

-(CRODS

"bank <> pier)

{ <st> (STATE)}

(TEMPERATURE

"tenç)_in <tin>)
— >

(CALL REACTOR (SUBSTR <send> postn inf) <zpl> <dppm> <tin>)

(MODIFY <bor> "change 0)

(REMOVE <pwrcntrl> <st> <goal> <plcr>))

Rule 5.3 ; This rule is a garbage collection rule. Removes

WME that defines the old power schedule,

(p remove_power_history_data

(STATE

"time <t>)

{ <pow> (POWER

"to <= <t>)}

— >

(REMOVE <pow>))

132

APPENDIX B: SUPPORT ROUTINES OF ACES

ACES is furnished with a set of FORTRAN?? routine to perform numerical

tasks, and user interface. Therefore, these routines are a part of ACES. We listed

the source codes of these external routines of ACES in this section.

C

C The function RREAC will calculate the necessary reactivity to

C satisfy the next target power, takes the current power, target

C power, and the time step size as arguments, and

C returns the reactivity.

C

INTEGER FUNCTION RREAC (ATOMl,AT0M2,AT0M3)

INCLUDE 'OPS$LIBRARY;OPSDEF.FOR'

REAL ATOMl,AT0M2,ATOMS,TPR2,PR,DT,TP

C

DT=OPS$CVAF ('/.VAL (ATOMS))

DT=DT*60.0

TPR2=0PS$CVAF ('/.VAL (ATOMl))

PR=OPS$CVAF ('/.VAL (ATQM2))

IF(PR.Eq.TPR2) THEN

TP=0.0

ELSE

TP=DT/L0G(TPR2/PR)

TP=0.0848/TP

ENDIF

RREAC=OPS$CVFA(%VAL (TP))

RETURN

END

133

C The function TREND compares its arguments and returns

C 1 if first argument is greater, o if they are equal, emd

C -1 if the second argument is greater.

C

INTEGER FUNCTION TREND (ATOMl,AT0M2)

INCLUDE 'OPS$LIBRARY:OPSDEF.FOR'

REAL*4 ATOMl,AT0M2,A1,A2

INTEGER I

C

A1=0PS$CVAF ('/.VAL (ATOMl))

A2=0PS$CVAF ('/.VAL (AT0M2))

IF (A1.GT.A2) THEN

1=1

ELSEIF (Al.Eq.A2) THEN
1=0

ELSE

I=-l

ENDIF

TREND=OPS$CVNA ('/.VAL (I))

RETURN

END

C

C The function AOTREND returns 1 if the first argument is higher

C theui the upper limit of control band defined by the second and

C third argument, 0 if it is within the band, and -1 otherwise

C

INTEGER FUNCTION AOTREND (ATOMl,AT0M2,ATOMS)

INCLUDE 'OPS$LIBRARY:OPSDEF.FOR'

REAL*4 ATOMl,AT0M2,ATOMS,A1,A2,A3

INTEGER I

C

A1=0PS$CVAF (%VAL (ATOMl))

A2=0PS$CVAF (%VAL (AT0M2))

AS=0PS$CVAF (%VAL (ATOMS))

IF (A1.LT.(A2-AS)) THEN

I=-l

ELSEIF (Al.LE.(A2+AS)) THEN
1=0

ELSE

1=1

134

ENDIF

AOTREND=OPS$CVNA ('/.VAL (I))

RETURN

END

C

C The function ABSOLUTE simply returns the absolute value of

C its argument

C

INTEGER FUNCTION ABSOLUTE(ATOHl)

INCLUDE 'OPS$LIBRARY:OPSDEF.FOR'

REAL*4 ATOMl.T

C

T=OPS$CVAF(%VAL (ATOMl))

T=ABS(T)

ABSOLUTE=OPS$CVFA('/,VAL (T))

RETURN

END

C

C BORON takes the target reactivity and the reactivity worth of boron

C as its arguments and returns the necessary boron control in steps

C

INTEGER FUNCTION BORON (ATOMl,AT0M2)

INCLUDE 'OPS$LIBRARY:OPSDEF.FOR'

REAL*4 ATOMl,AT0M2,A1.A2,A3

INTEGER I

C

A1=0PS$CVAF ('/.VAL (ATOMl))

A2=0PS$CVAF ('/.VAL (AT0M2))

I=A2/A1

BORON=OPS$CVNA ('/.VAL (I))

RETURN

END

C

C TINLET calculates the proposed inlet temperature to keep the

C core average temperature constant

C

INTEGER FUNCTION TINLET(ATOMl,AT0M2)

INCLUDE 'OPS$LIBRARY:OPSDEF.FOR'

REAL*4 ATOMl,AT0M2,A1,A2,T

135

A1=0PS$CVAF ('/.VAL (ATOMl))

A2=0PS$CVAF (%VAL (AT0M2))

T=Al-A2/2.0

TINLET=OPS$CVFA ('/.VAL (T))

RETURN

END

C

C Subroutine LOAD is the user interface routine of ACES. It asks

C the user for the power schedule for an upcoming period daily cycle

C

SUBROUTINE LOAD

IMPLICIT REAL*4 (A-H,0-Z)

INCLUDE 'OPS$LIBRARY:OPSDEF.FOR'

C

C Setting constants for creating a WME later

INP1=0PS$PARAMETER (%VAL (1))

INP2=0PS$PARAMETER (%VAL (2))

POWER=OPS$CVAF (%VAL (INPl))

T1=0PS$CVAF (%VAL (INP2))

IP=OPS$INTERN('/,REF ('POWER'), '/.VAL (5))

IA1=0PS$INTERN (%REF ('FROM'), %VAL (4))

IA2=0PS$INTERN (%REF ('TO'), %VAL (2))

IA5=0PS$INTERN C/.REF ('BY'), %VAL (2))

IA3=0PS$INTERN (%REF ('RATE'). '/.VAL (4))

IA4=0PS$INTERN C/.REF ('CONST'), '/.VAL (5))

C

HT=l.dO

IS=OPS$CVFA ('/.VAL (HT))

WRITE(*,5) POWER,T1

C

C Start asking the user for information

PRINT*,' Begin entering load cycle per day '

1 PRINT*,' Choose one of the options;'

PRINT*,' 1. Steady State'

PRINT*,' 2. Decrease Power'

PRINT*,' 3. Increase Power'

PRINT*,' 4. End of Data'

READ*,IOPTION

IF (I0PTI0N.EQ.4) GO TO 2

CALL QPS$RESET()

136

CALL OPS$VALUE ('/.VAL (IP))

CALL OPS$TAB (%VAL (lAl))

IT1=0PS$CVFA ('/.VAL (T1))

CALL OPS$VALUE (%VAL (ITl))

IF (IOPTION.EQ.2) PRINT*,' Decrease to (% power): '

IF (I0PTI0N.EQ.3) PRINT*,' Increase to (% power): '

IF (lOPTION.NE.l) READ*,POWERJ

PRINT*,' Enter time interval in minutes '

READ*,IT

DT=FLOAT(IT)

T2=T1+DT

CALL OPS$TAB (%VAL (IA2))

IT2=0PS$CVFA ('/.VAL (T2))

CALL OPS$VALUE ('/.VAL (IT2))

CALL OPS$TAB ('/.VAL (IA5))

CALL OPS$VALUE (%VAL (IS))

C

C For given time interval, create a function for power as a

C function of time, P(t)=a*P(0)+b

IF (lOPTION.NE.l) THEN

RATE=(POWERJ-POWER)/DT

C0NST=P0WER-RATE*T1

POWER=POWERJ

ELSE

RATE=0.0

CONST=POWER

END IF

T1=T2

C

C Upload the information by creating a WME in the active working

C memory of ACES

CALL OPS$TAB (%VAL (IA3))

IR=OPS$CVFA (%VAL (RATE))

CALL OPS$VALUE (%VAL (IR))

CALL OPS$TAB ('/.VAL (IA4))

IC=OPS$CVFA (%VAL (CONST))

CALL OPS$VALUE C/.VAL (IC))

CALL OPS$ASSERT()

GO TO 1

5 FORMAT(2X,'Current power is ',F8.4,' % at time

137

F8.2,' mins')
RETURN
END

138

APPENDIX C: SUPPORT ROUTINES OF REACTOR MODEL

The routines introduced in this section are related to the reactor model and has

no direct effects on the decision process of ACES. However, the subroutine REAC­

TOR receives information from ACES related to proposed control, and sends the

current status after a minute long time step back to ACES by creating a WME. This

process is supposed to be replaced with a monitoring rule in actual applications.

C
C One-group one-dimensional PWR core model

SUBROUTINE REACTOR
C

IMPLICIT REAL*8 (A-H,0-Z)
INCLUDE 'OPS$LIBRARY:OPSDEF.FOR'

C
PARAMETER (MX=200)
DOUBLE PRECISION A(MX),B(MX),XXE(MX),XI(MX),T(MX),TR(MX)
DOUBLE PRECISION SIGMAC(MX),FLUX(MX),FLUXO(MX),C(MX),AF(MX)
DOUBLE PRECISION CRBANK(5),0UTS(10),KOLD,NU,NW
REAL*4 AOS,PPOW.PER,BORON,TIMES,TI,TO
INTEGER IP0S(5),IP0SC(5)

C
C Restore the parameters sent from ACES related to control

INP1=0PS$PARAMETER (%VAL (1))
INP2=0PS$PARAMETER ('/.VAL (2))
INP3=0PS$PARAMETER ('/.VAL (3))
INP4=0PS$PARAMETER ('/.VAL (4))
INP5=0PS$PARAMETER (%VAL (5))

139

INP6=0PS$PARAMETER ('/.VAL (6))
INP7=0PS$PARAMETER ('/.VAL (7))
IP0SC(1)=0PS$CVAN ('/.VAL (INPl))
IP0SC(2)=0PS$CVAN (%VAL (INP2))
IP0SC(3)=0PS$CVAN (%VAL (INP3))
IP0SC(4)=0PS$CVAN (%VAL (INP4))
IP0SC(5)=0PS$CVAN ('/.VAL (INP5))
IBOR=OPS$CVAN ('/.VAL (INP6))
TIN=DBLE(OPS$CVAF (%VAL (INP7)))

C
C Restore the state from the data file if the variables are not
C initialized yet

IF(TIME.EQ.0.0) THEN
OPEN(1,NAME='STE',STATUS»'UNKNOWN')
0PEN(2,NAME='TRS',STATUS»'UNKNOWN')
READ(1,*) HS,K0LD,BR2
READd,*) THPOW,HEIGHT,HZ
READd,*) D.NU.SIGMAF
READd,*) SIGMAA.TAV.HT
READd,*) NW.CB.SIGMIB
READ(1,*) YIELDX.DECAYX.SIGMIX
READd,*) YIELDI,DEÇAYI,DEÇAYC
READ d,*) CRBANK,SFNU,AMNUSF,DB,OPF
READd,*) PCOEF,TCOEF,CON
READd,*) BETA,DT
READd,*) TR
READ(2,*) POWER,BOR,TIME,K
READ(2,*) FLUXO,XXE,XI,C
READ(2,*) IPOS.SIGMAC
CLOSE(!)

END IF
C

DO 9 1=1,MS
9 AF(I)=FLUXO(I)

POLD=POWER
IFLAG=0

TIMEOUT=TIME+HT
C
C Perform the control actions proposed by ACES

DO 6 1=1,5

140

6 IPOSC(I)=IPOSC(I)-IPOS(I)
IBS=SIGN(1,IB0R)

C
C Boron concentration change is limited by 1 unit per second
1 IF (IBOR.NE.O) THEN

BOR=BOR+DBLE(IBS)*DB
IB0R=IB0R-IBS*1

ENDIF
C
C FLCRs will be moved one step per second to simulate the
C reactivity insertion rates. Therefore, there will be a limit of
C 60 steps per minute.

IF (IFLAG.EQ.O) CALL MOVECR(SIGMAC,CRBANK,IFLAG,IPOS,IPOSC)
C

C0EF1=2*D/HZ**2+SIGMIB*CB*B0R*NW+D*BR2+SIGMAA
C
C Generation of tri-diagonal finite difference matrix for
C diffusion equation. Off-diagonal elements are all constant and
C equal to parameter CON. Therefore, The matrix is stored in
C a vector A as diagonal elements.

TIME=TIME+DT
TSUM=0.do
DO 10 I=1,MS-1

T(I)=TCOEF*(HZ*TSUM+FLUXO(I)*HZ/2,dO)+TIN
A(I)=C0EF1+SIGMAC(I)+AMNUSF*(T(I)-TR(I))

+ +SIGMIX»XXE(I)-(1.dO-BETA)*SFNU
C(I)=C1*C(I)+C2*FLUX0(I)
B(I)=DECAYC*C(I)

10 TSUM=TSUM+FLUXO(I)
T(MS)=TCOEF*HZ*TSUM+TIN

C
C Solution of the system at next time step by forward Gaussian
C elimination, euid backward substitution

DO 15 I=2,MS-1
C0EF=C0N/A(I-1)
A(I)=A(I)-C0EF*C0N

15 B(I)=B(I)-C0EF*B(I-1)
FLUX(MS-1)=B(MS-1)/A(MS-1)
SUM1=FLUX(MS-1)
DO 20 I=MS-2,1,-1

141

FLUX(I)=(B(I)rCON*FLUX(I+l))/A(I)
20 SUM1=SUM1+FLUX(I)
C
C Calculate new power

P0WER=PC0EF*SIGMAF*HZ*SUM1
DPDT=(POWER-FOLD)/DT
POLD-POWER

IF (TIME.LT.TIMEOUT) THEN
DO 35 1=1,MS

35 FLUXO(I)=FLUX(I)
GO TO 1

ENDIF
C

DO 2 I=1,MS-1

XXE(I) = (YIELDX* SIGMAF*FLUXO(I)+DECAYI*XI(I)-DEÇAYX*XXE(I)
+ -SIGMIX*XXE(I)*FLUXO(I))*HT+XXE(I)

2 XI(I)=(YIELDI*SIGMAF*FLUXO(I)-DECAYI*XI(I))*HT+XI(I)
C
C Calculating the reactor parameters for ACES

Pl=FLUX(100)*HZ/2.d0
P2=P1
DO 110 1=1,99
P1=P1+HZ*FLUX(I)

110 P2=P2+HZ*FLUX(I+100)
AO=(P2-Pl)/(Pl+P2)flOOdO
AOS=SNGL(AO)

PPOW=SNGL(P0WER/THP0W*100.0)
PER=SNGL(POWER/DPDT)
TIMES=SNGL(TIMEOUT/60.dO)
BORON=SMQL(BOR)
TI=SNGL(TIN)
TO=SNGL(T(MS))

C
C Sending the reactor parameters to ACES by creating WHEs

CALL CREATE(PPOW,AOS,PER,BORON,TIMES,TI,TO,IPOS)
C

T0UT=TIME0UT/60.D0
OPT=OPF*DBLE(K)

C

C Output generation for graphics

142

IF (TOUT.GE.OPT) THEN
CALL OUTFL(FLUX,XXE)
K=K+1

ENDIF
RETURN
END

C
C This routine moves FLCRs by one step if it is proposed by ACES

SUBROUTINE MOVECR (SIGMAC,CRBANK,IFLAG,IPOS,IPOSC)
DOUBLE PRECISION SIGHAC(200).CRBANK(5)
INTEGER IP0S(5),IP0SC(5)

K0UNT=0
DO 1 J=l,5

IF (IPOSC(J).NE.O) THEN
IS=SIGN(1,IP0SC(J))
IL=IPOS(J)+IS
IF (IS.GT.O) IL=IL-1

IF (J.EQ.5) THEN
I1=IP0S(J)-IS
12=11+50

SIGMAC(IL)=SIGMAC(I1)
SIGMAC(IL+50)=SIGMAC(I2)

ELSE
SIGMAC(IL)=SIGMAC(IL)-IS*CRBANK(J)

ENDIF
IPOSC(J)=IPOSC(J)-IS
IPOS(J)=IPOS(J)+IS

ELSE
K0UNT=K0UNT+1

ENDIF
CONTINUE
IF(K0UNT.Eq.5) IFLAG=1

RETURN

END

This routine creates WHEs of STATUS and CRODS for ACES
It translates the data into 0PS5 atoms and assigns their
values to attributes of related WHEs.

SUBROUTINE CREATE (POWER,AO,PERIOD.BOR,TIME,TI,TO,IPOS)

143

IMPLICIT REAL*4 (A-H,0-Z)
INCLUDE 'OPS$LIBRARY:OPSDEF.FOR'

C
INTEGER IPOS(5)
CHARACTER*5 BANK(4)

C
DATA BANK/'FLORA','FLCRB','FLCRC','FLCRD'/

C

CALL OPS$RESET ()
IST=OPS$INTERN (%REF ('STATE'), %VAL (5))
CALL OPS$VALUE (%VAL (1ST))
IA1=0PS$INTERN (%REF ('POWER'), %VAL (5))
IA2=0PS$INTERM (%REF (' AXIAL.OFFSET '), '/.VAL (12))
IA3=0PS$INTERN C/.REF ('PERIOD'), %VAL (6))
IA4=0PS$INTERN (%REF ('TIME'), '/.VAL (4))
IA5=0PS$INTERN (%REF ('TEMP.IN'), %VAL (7))
IA6=0PS$INTERN (%REF ('TEMP.OUT'), %VAL (8))
IA8=0PS$INTERN (%REF ('B.CONC), %VAL (6))

C
C Creating the STATUS

CALL OPS$TAB (%VAL (lAl))
IP=OPS$CVFA (%VAL (POWER))
CALL OPS$VALUE (%VAL (IP))

C
CALL OPS$TAB ('/.VAL (IA2))
IAO=OPS$CVFA ('/.VAL (AO))
CALL OPS$VALUE (%VAL (lAO))

C
CALL OPS$TAB C/.VAL (IA3))
IPR=OPS$CVFA (%VAL (PERIOD))

CALL OPS$VALUE C/.VAL (IPR))
C

CALL OPS$TAB ('/.VAL (IA4))
IT=OPS$CVFA ('/.VAL (TIME))

CALL OPS$VALUE ('/.VAL (IT))
C

CALL OPS$TAB (%VAL (IAS)) .
IT=OPS$CVFA (%VAL (TI))
CALL OPS$VALUE (%VAL (IT))

144

CALL OPS$TAB (%VAL (IA6))
IT=OPS$CVFA (%VAL (TO))
CALL OPS$VALUE (%VAL (IT))

C
CALL OPS$TAB (%VAL (IA8))
IB=OPS$CVFA (%VAL (BOR))
CALL OPS$VALUE ('/.VAL (IB))
CALL OPS$ASSERT()

C
IST=OPS$INTERN (%REF ('CRODS'), %VAL (5))
IA1=0PS$INTERN (%REF ('BANK'), %VAL (4))
IA2=0PS$INTERN (%REF ('POSITION'), '/.VAL (8))
IA3=0PS$INTERN (%REF ('NUMBER'), %VAL (6))

C
C Creating CRODS for each FLCR banks

DO 10 1=1,4

CALL OPS$RESET ()
CALL OPS$VALUE ('/.VAL (1ST))
CALL OPS$TAB (%VAL (lAl))
IP=OPS$INTERN (%REF (BANK(I)). %VAL (5))
CALL QPS$VALUE (%VAL (IP))

C
CALL OPS$TAB C/.VAL (IA2))
IPO=OPS$CVNA (%VAL (IPOS(I)))

CALL OPS$VALUE (%VAL (IPO))
C

CALL OPS$TAB (%VAL (IA3))
INUM=OPS$CVNA (%VAL (I))
CALL OPS$VALUE (%VAL (INUM))

C
CALL OPS$ASSERT()

10 CONTINUE
C
C Creating CRODS for PLCR bank

CALL OPS$RESET ()
CALL OPS$VALUE (%VAL (1ST))
CALL OPS$TAB ('/.VAL (lAl))
IP=OPS$INTERN (%REF ('PLCR'), '/.VAL (4))
CALL OPS$VALUE (%VAL (IP))

145

CALL OPS$TAB ('/.VAL (IA2))
IPO=OPS$CVNA (%VAL (IP0S(5)))
CALL OPS$VALUE (%VAL (IPO))

C
CALL OPS$TAB ('/.VAL (IA3))
INUM=OPS$CVNA ('/.VAL (5))
CALL OPS$VALUE (%VAL (INUM))

C

CALL OPS$ASSERT()
C

RETURN
END

C

C This routine is called by ACES directly, and initialize the
C subroutine REACTOR. It also initializes the STATUS eoid CRODS
C

SUBROUTINE INIT
IMPLICIT REAL*8 (A-H.O-Z)
INCLUDE 'OPS$LIBRARY:OPSDEF.FOR'

C
PARAMETER (MX=200)
DOUBLE PRECISION XXE(MX),XI(MX),TR(MX)
DOUBLE PRECISION SIGMAC(MX),FLUXO(MX),C(MX)
DOUBLE PRECISION CRBANK(5),KOLD,NU,NW
REAL*4 POW,AOF,PER,BORON,TIME,TI,TO,AOD
INTEGER IPOS(5)
CHARACTER*6 FILEl

C
PRINT*,' Enter the steady state file name '
READ*,FILEl
OPEN(1,NAME=FILE1,STATUS='UNKNOWN')
OPEN(2,NAME='STE',STATUS='UNKNOWN')
OPEN(3.NAME='TRS',STATUS»'UNKNOWN')

C

READd,*) MS,K0LD,BR2
READd,*) POWER,HEIGHT,BOR
READd,*) D,NU,SIGMAF
READd,*) SIGMAA,TIN,SIGMAC
READd,*) NW,CB,SIGMIB

READd,*) YIELDX,DECAYX,SIGMIX

146

READCl,*) YIELDI.DECAYI.IPOS
READ(1,*) CRBANK,SFNU,AMNUSF,BETA,DECAYC,TAV
READCl,*) PC0EF,TC0EF,C0N,A0,A02
READCl,*) FLUXO,XXE,XI,C
READCl,*) HZ,HT,TIM
READCl,*) TR
READCl,*) DB
CLOSE(l)

DT=ldO
0PF=60.d0

POW=SNGL(POWER/POWER*100.0)
AOF=SNGLCAO)

PER=SNGLC0.0848*KOLD/CKOLD-l.dO))
TIME=0.0
BORON=SNGLCBOR)
TI=SNGLCTIN)
TO=SNGL C2.dO*TAV-TIN)

CALL CREATECPOW,AOF,PER,BORON,TIME,TI,TO,IPOS)

CALL OPS$RESET C)
IST=OPS$INTERN C%REF C'AOCNTRL'), %VAL C7))
CALL OPS$VALUE C'/.VAL CiST))
IA2=0PS$INTERN C%REF CAO.RATE'), %VAL (.7))
AOF=AOF/100.0

CALL OPS$TAB C'/.VAL ClA2))
IAO=OPS$CVFA C%VAL CAOF))
CALL OPS$VALUE C'/.VAL ClAO))
CALL OPS$ASSERT C)
K=1

WRITEC2,*) MS,K0LD,BR2
WRITEC2,*) POWER,HEIGHT,HZ
WRITEC2,*) D,NU,SIGMAF
WRITEC2,*) SIGMAA,TAV,HT
WRITEC2,*) NW,CB,SIGMIB
WRITEC2,*) YIELDX,DECAYX,SIGMIX
WRITEC2,*) YIELDI,DEÇAYI,DECAYC
WRITE C 2,*) CRBANK,SFNU,AMNUSF,DB,OPF
WRITEC2,*) PCOEF,TCOEF,CON

/

147

WRITE(2,*) BETA.DT
WRITE(2,*) TR
WRITE(3,*) POWER,BOR,TIM,K
WRITE(3,*) FLUXO,XXE,XI,C
WRITE(3,*) IPOS.SIGMAC
CLOSE(2)
CL0SE(3)
RETURN

END
C

C Generates outputs of the flux and xenon distribution
SUBROUTINE OUTFL(FLUX,XE)

C

IMPLICIT REAL*8 (A-H,0-Z)
C

PARAMETER (MX=200)
DOUBLE PRECISION XE(MX),FLUX(MX)
CHARACTER*10 FILE

C
PRINT*,' Do you want output (1-yes/O-no) '
READ*,IRESP
IF (IRESP.NE.l) RETURN
PRINT*,' Enter the file name '
READ*,FILE
Z=O.DO

OPEN(3,NAME=FILE,STATUS»'UNKNOWN')
WRITE(3,10) Z,Z,Z
DO 35 1=1,MX
Z=Z+.005

35 WRITE(3.10) Z,FLUX(I),XE(I)
10 F0RMAT(1X,F7.4,2(2X,E15.7))

CL0SE(3)
RETURN
END

C
C Subroutine OUTPUT is called from ACES to create
C a set of output for graphics purposes,
C emd saves the current information in a file. It has been used
C for practical purposes only, and it does not contain any on-line
C graphics routine.

148

SUBROUTINE OUTPUT
C

IMPLICIT REAL*4 (A-H,0-Z)
INCLUDE 'OPS$LIBRARY:OPSDEF.FOR'

C
C Restoring the data sent from ACES

INP1=0PS$PARAMETER (%VAL (1))
INP2=0PS$PARAMETER (%VAL (2))
INP3=0PS$PARAMETER ('/.VAL (3))
INP4=0PS$PARAMETER ('/.VAL (4))
INP5=0PS$PARAMETER ('/.VAL (5))
INP6=0PS$PARAMETER (%VAL (6))
INP7=0PS$PARAMETER (%VAL (7))
INP8=0PS$PARAMETER (%VAL (8))
INP9=0PS$PARAMETER (%VAL (9))
INP10=0PS$PARAMETER ('/.VAL (10))
INP11=0PS$PARAMETER (%VAL (11))
INP12=0PS$PARAMETER (%VAL (12))
INP13=0PS$PARAMETER (%VAL (13))
INP14=0PS$PARAMETER ('/.VAL (14))
INP15=0PS$PARAMETER (%VAL (15))
TIME=OPS$CVAF (%VAL (INPl))
POW=OPS$CVAF (%VAL (INP2))
AO=OPS$CVAF (%VAL (INP3))
B=OPS$CVAF (%VAL (INP4))
I1=0PS$CVAN ('/.VAL (INP5))
I2=0PS$CVAN ('/.VAL (INP6))
I3=0PS$CVAN ('/.VAL (INP7))
I4=0PS$CVAN (%VAL (INP8))
I5=0PS$CVAN (%VAL (INP9))
TP0W=0PS$CVAF ('/.VAL (INPIO))
TA0=0PS$CVAF (%VAL (INPll))
TIN=0PS$CVAF (%VAL (INP12))
TOUT=OPS$CVAF (%VAL (INP13))
AOU=OPS$CVAF ('/.VAL (INP14))
AOL=OPS$CVAF (%VAL (INP15))
TIME=TIME/60.0
0PEN(UNIT=1,NAME='STATE',STATUS='UNKNOWN',ACCESS='APPEND')
0PEN(UNIT=2,NAME='SAUX',STATUS='UNKNOWN',ACCESS='APPEND')

WRITEd.l) TIME,POW,AO.B.II. 12.13,14.15

149

WRITE(2,2) TIME,TPOW,TAO,AOU,AOL,TIN
CLOSE(1)
CL0SE(2)

FORMATdX ,4(F10.6,IX), 514)
FORMAT(1X,6(F10.5,1X))
RETURN
END

150

APPENDIX D; STEADY.FOR

The initial conditions of the REACTOR.FOR will be determined by the steady

state solution of the system. STEADY.FOR solves the nonlinear eigenvalue problem

with power method, and iterates on the boron concentration to achieve the criticality.

It writes the initial conditions into a user defined file.

IMPLICIT REAL*8 (A-H,0-Z)
PARAMETER (MX=200)
DOUBLE PRECISION A(MX),SGURCE(MX),XXE(MX),XI(MX),T(MX)
DOUBLE PRECISION SIGMC(4),FLUX(MX),FLUXO(MX),C(MX),BES(5)
DOUBLE PRECISION SIGMAC(MX),CRBANK(5),KOLD,KNEW,NU,NWO
INTEGER IPOS(5)
CHARACTER*15 FOUT

C
C Core composition, euid basic data

DATA THPOW.GC.HEIGHT.RADIUS/3.4d9.3.2d-11,3.7d2,1.7d2/
DATA D,NU,SIGMAF,SIGMAA/1.2dO,2.418dO,.06617d0,.1285D0/
DATA NW0,CB,SIGMIB/2.41d22,.33161d-6,3.838d-21/
DATA YIELDX,DECAYX/.228d-2,.20917d-4/
DATA YIELDI,DECAYI/.06386d0,.2875d-4/
DATA XMDOT,CP/1.569444d4,6.06d3/
DATA BETA,DECAYC/.65d-2,.767d-l/
DATA IPGS/70,120,180,201,0/
DATA RATIO,BESJl/.63182d0,.5395077d0/

C
EXTRAD=176.34d0
MS=200

151

H=HEIGHT/DBLE(MS)
BR=2.405(i0/EXTRAD
BR2=BR**2
PI=4.dO*DATAN(l.dO)
BES(l)=8.d0*.40366d0
BES(2)=4.d0*.69078d0
BES(3)=4.do*(.92834dO+.21534d0)
BES(4)=1.dO+8.do*.3574d0
BES(5)=8.d0*.64014d0
CRC=1.8636d0/(2.dO*PI*RADIUS*BESJl/BR)
PC0EF=GC*PI*RADIUS**2
ALPHAM=l.d-4
AHNUSF=ALPHAM*NU*SIGMAF
TIN=300.d0

C

C Initial guess for flux distribution ; SINE function
FMAX=THPOW/(PC0EF*SIGMAF*2.dO*HEIGHT/PI)
Z—0•do
CCOEF=BETA*NU*SIGMAF/DECAYC
TCOEF=SIGMAF*PCOEF/XMDOT/CP
TSUM=0.d0
DO 1 1=1,MS
Z=Z+H

FLUXO(I)=FMAX*DSIN(PI*Z/HEIGHT)
T(I)=TCOEF*(H*TSUM+FLUX(I)*H/2.dO)+TIN

1 TSUM=TSUM+FLUX(I)
T(MS)=TCOEF*H*TSUM+TIN

C
B0R=9.d2

SIGHIX=1.2318943d-18*RATI0
C0N=-D/H**2

C0EF2=(YIELDI+YIELDX)*SIGMAF
AR=5.d0
RAT=4.D0

CRSUM=0.d0
DO 33 1=1,4

33 CRSUM=CRSUM+BES(I)
SIGMC(4)=AR*CRC*CRSUM
SIGMC(2)=AR*CRC*BES(5)/RAT
EPSK=l.D-8

162

EPSF=l.d-7
SIGMC(l)=0.d0
SIGMC(3)=0.d0
KOLD=l.dO
ITER=0

C
C Outer iteration on boron concentration
2 COEF1=2*D/H**2+SIGMIB*CB*BOR*NWO+D*BR2+SIGMAA
C

C Inner iteration on effective multiplication factor
5 ITER=ITER+1

J=1

DO 10 I=1,MS-1

IF (I.GE.IPOS(J)) J=J+1
A(I)=C0EF1+SIGMC(J)+SIGMIX*C0EF2*FLUX0(I)/

+ (DECAYX+SIGMIX*FLUXO(I))
10 SOURCE(I)=NU*SIGMAF*FLUXO(I)/KOLD
C

C Solution of the system
DO 15 I=2,MS-1
C0EF=C0N/A(I-1)
A(I)=A(I)-COEF*CON

15 S0URCE(I)=S0URCE(I)-C0EF*S0URCE(I-1)
FLUX(MS-1)=S0URCE(MS-1)/A(MS-1)
DO 20 I=MS-2,1,-1

20 FLUX(I)=(S0URCE(I)-C0N*FLUX(I+1))/A(I)
TSUM=0.d0

C
C Calculation of Keff

SUMl=0.d0
SUM2=0.dO

DO 25 I=1,MS-1
SUM1=SUM1+FLUX0(I)

25 SUM2=SUM2+FLUX(I)
KNEH=SUM2/SUMl»KOLD

C
C Calculation of error terms

ERR1=DABS((KNEW-KOLD)/KOLD)
ERR2=0.d0

DO 30 I=1,MS-1

153

ERR=DABS((FLUX(I)-FLUXO(I))/FLUXO(I))
IF (ERR.GT.ERR2) ERR2=ERR

30 CONTINUE
IF (ERRl.GT.EPSF.OR.ERR2.GT.EPSF) THEN
KOLD=KNEW
DO 35 1=1,MS

35 FLUXO(I)=FLUX(I)
GO TO 5

ENDIF
C End of inner iteration
C

IF (DABS(KNEW-l.dO.GT.EPSK) THEN
BOR=BOR*KNEW
ITER=0

PRINT*,'BORON = ',BOR
GO TO 2

ENDIF
C End of outer iteration
C

C Rescaling the flux by reactor power
PSUM=0.d0
DO 40 I=1,MS-1

40 PSUM=PSUM+FLUX(I)
POWER=PCOEF*SIGMAF*H*PSUM

IF (DABS((POWER-THPOW)/THPOW).GT.EPSF) THEN
DO 45 I=1,MS-1

45 FLUXO(I)=FLUX(I)*THPOW/POWER
ITER=0

GO TO 5

ENDIF
C End of solution
C

0PEN(UNIT=1,NAME='TO',STATUS='UNKNOWN')
Z=0.do

WRITE(1,50) Z.Z,Z.TIN
50 F0RMAT(2X,F6.4,3(2X,E15.7))

TSUM=0.d0

C

C Calculation of xenon, iodine, and precursor concentrations
DO 55 I=1,MS-1

154

XXE (I)=C0EF2*FLUX(I)/(DECAYX+SIQMIX*FLUX(I))
XI(I)=YIELDI*SIGMAF*FLUX(I)/DECAYI
T(I)=TCOEF*(H*TSUM+FLUX(I)*H/2.dO)+TIN
C(I)=CCOEF/KNEtf*FLUX(I)
Z=Z+.OOBdO

WRITE(1,50) Z,FLUX(I),XXE(I),T(I)
55 TSUM=TSUM+FLUX(I)

Z=l.dO

T(MS)=TCOEF*H*TSUM+TIN
TAV=(T(MS)+TIN)/2.dO

WRITEd.SO) Z,FLUX(MS),XXE(MS),T(MS)
C

Pl=FLUX(100)*HZ/2.d0
P2=P1
DO 110 1=1,99
P1=P1+HZ*FLUX(I)

110 P2=P2+HZ*FLUX(I+100)
AO=(P2-Pl)/(Pl+P2)vioOdO
A02=l.dO-2.dO*FQl/Pl
DO 34 1=1,5

34 CRBANK(I)=BES(I)*AR*CRC
CRBANK(5)=CRBANK(5)/RAT
J=1
DO 3 1=1,MX

IF (I.GE.IPOS(J)) J=J+1
3 SIGMAC(I)=SIGMC(J)

IP0S(5)=IP0S(1)
IP0S(1)=IP0S(3)
IP0S(2)=IP0S(3)
IP0S(4)=IP0S(3)
SFNU=NU*SIGMAF/KNEW
HZ=HEIGHT/DBLE(MS)
TIME=0.d0
HT=6.dl

PRINT*,' Enter output file name '
READ*,FOUT
OPEN(UNIT=2,NAME=FOUT,STATUS='UNKNOWN')

WRITE(2,*) MS,KNEW,BR2

WRITE(2,*) POWER,HEIGHT,BOR
WRITE(2,*) D,NU,SIGMAF

155

WRITE(2,*) SIGMAA,TIN,SIGMAC
WRITE(2,*) NWO.CB.SIGMIB
WRITE(2,*) YIELDX.DECAYX.SIGMIX
WRITE(2.*) YIELDI.DECAYI.IPOS
WRITE(2,*) CRBANK.SFNU.AHNUSF.BETA.DECAYC.TAV
WRITE(2.») PCOEF.TCOEF.CON.AO.A02
WRITE(2.») FLUXO.XXE.XI.C
WRITE(2.*) HZ,HT.TIME
WRITE(2.*) T
STOP
END

156

APPENDIX E: REACTIVITY WORTH ROUTINES

The calculation of reactivity worth curves for FLCRs and boron are performed

by two separate programs for practical purposes, even though the solution methods

are the same. The first program retrieves the steady state solution and generates the

differential rod worth curves for the FLCRs. The second one solves for the reactivity

worth of a user defined unit of boron concentration change, and stores the result in

the same file that the rod worth curves are stored.

C
C CRWORTH.FOR
C

IMPLICIT REAL*8 (A-H,0-Z)
PARAMETER (MX=200)
DOUBLE PRECISION XXE(MX).XI(MX),A(MX),SOURCE(MX),T(MX),TR(MX)
DOUBLE PRECISION SIGMC(4),SIGMAC(MX),FLUX(MX).FLUXO(MX),C(HX)
DOUBLE PRECISION CRBANK(5),HR(4),KOLD,NU,NW,KIN,KNEW
DOUBLE PRECISION SIGMAD(MX),XF(MX),CD(MX)
INTEGER IP0S(5),IP0SD(5)
CHARACTER*10 FILE1,FILE2
CHARACTER*5 BANK(5)
DATA BANK/'flcra','flcrb','flcrc','flcrd','pier'/

C
PRINT*,' Enter the neune of steady state data file: '
READ*,FILE1
0PEN(UNIT=1,NAME=FILE1,STATUS»'UNKNOWN')

PRINT*,' Enter the name of output file: '
READ*,FILE2

157

OPEN(UNIT=2,NAME=FILE2,STATUS»'UNKNOWN')
READd,*) MS,KIN,BR2
READd,*) THPOW,HEIGHT.BORD
READd,*) D,NU,SIGMAF
READd,*) SIGMAA.TIN.SIGHAD
READd,*) NW.CB.SIGMIB
READd,*) YIELDX.DECAYX.SIGMIX
READd,*) YIELDI.DECAYI.IPOSD

READd,*) CRBANK.SFNU.AMNUSF.BETA.DECAYC.TAV
READd,*) PC0EF,TC0EF.C0N.A0.A02
READd,*) XF.XXE.XI.CD
READd,*) D1,D2,D3
READCl,*) TR

C
PI=4.dO*ATANd.dO)
EPS=l.d-5

H=HEIGHT/DBLE(MS)
CCOEF=BETA*NU* SIGMAF/DECAYC
C0EF2=(YIELDI+YIELDX)*SIGMAF
K=0

9 K=K+1
IFL=0
IDP=20

C
C Outmost loop for each bemk
11 DO 21 1=1,5
21 IPOS(I)=IPDSD(I)

TSUM=0.d0
DO 22 1=1,MS

FLUXO(I)=XF(I)
T(I)=TCOEF*(H*TSUM+FLUXO(I)*H/2.dO)+TIN
TSUM=TSUM+FLUXO(I)
C(I)=CD(I)

22 SIGMAC(I)=SIGMAD(I)
C

PRINT*.K.IDP
BOR=BORD
KOLD=KIN

CALL MOVECR (SIGMAC.CRBANK.IPOS,K,IDP)
ITER=0

158

Solution of nonlinear eigenvalue problem without
criticality search

C0EFi=2*D/H**2+SIQMIB*CB*B0R*NW+D*BR2+SIGMAA

ITER=ITER+1
TSUM=0.d0
DO 10 I=1,MS-1

A(I)=COEF1+SIGMAC(I)+SIGMIX*COEF2*FLUXO(I)/
+ (DECAYX+SIGMIX*FLUXO(I))+AMNUSF*(T(I)-TR(I))

SOURCE(!)=(!.dO-BETA)*NU*SIGMAF*FLUXO(I)/KOLD+DECAYC*C(I)

DO 15 I=2,MS-1
C0EF=C0N/A(I-1)
A(I)=A(I)-COEF*CON
S0URCE(I)=S0URCE(I)-C0EF*S0URCE(I-1)

FLUX(MS-1)«SOURCE(MS-1)/A(MS-1)
C(MS-1)=CC0EF*FLUX(MS-1)
DO 20 I=MS-2,1,-1
FLUX(I)=(S0URCE(I)-C0N*FLUX(I+1))/A(I)
C(I)=CCOEF*FLUX(I)

TSUM=0.dO
DO 23 1=1,MS-1

T(I)=TCOEF*(H*TSUM+FLUX(I)*H/2.dO)+TIN
TSUM=TSUM+FLUX(I)

T(MS)=TCOEF*H*TSUM+TIN

SUMl=0.d0
SUM2=0.d0
DO 25 1=1,MS-1
SUM1=SUM1+FLUX0(I)
SUM2=SUM2+FLUX(I)

KNEW=SUM2/SUMl*KOLD

ERR1=DABS((KNEW-KOLD)/KOLD)
ERR2=0.do
DO 30 1=1,MS-1

ERR=DABS((FLUX(I)-FLUXO(I))/FLUXO(I))
IF (ERR.GT.ERR2) ERR2=ERR

159

30 CONTINUE
IF (ERR1.GT.EPS.0R.ERR2.GT.EPS) THEN
KOLD=KNEW
DO 35 1=1,MS

35 FLUXO(I)=FLUX(I)
GO TO 5

ENDIF
PRINT*,ITER
PSUM=0.d0
DO 40 I=1,MS-1

40 PSUM=PSUM+FLUX(I)
POWER=PCOEF*SIGMAF*H*PSUM
IF (DABS((POWER-THPOW)/THPOW).GT.EPS) THEN
DO 45 I=1,MS-1

45 FLUXq(I)=FLUX(I)*THPOW/POWER
ITER=0

GO TO 5
ENDIF

C
C Calculation of reactivity at each case

RHO=(KNEW-KIN)/KNEW
IF (IFL.EQ.O) THEN
WX=RHO
IFL=1

IDP=-179

GO TO 11
ENDIF

C
C Calculation of total reactivity worth of each bemk

WR(K)=WX-RHO
IF(K.LT.4) GO TO 9
PRINT*, WR
SUM=0.dO
K=0

C
C Calculation of differential worth curves

DO 201 1=1,MS
201 SUM=SUM+(SIN(PI*DBLE(I)/DBLE(MS)))**2
202 K=K+1

DO 203 1=1,MS

160

D=WR(K)*(SIN(PI*DBLE(I)/DBLE(MS)))**2/SUM
WRITE(2,100) BANK(K),I,D

IF(K.LE.3) GO TO 202
F0RMAT(2X,A5,I4.2X,E15.7)
STOP
END

SUBROUTINE MOVECR (SIGMAC.CRBANK.IPOS.IOPl.IDP)
DOUBLE PRECISION SIGMAC(200).CRBANK(5)
INTEGER IPOS(5)

IS=SIGN(1,IDP)
IL=IP0S(I0P1)+IS
IU=IP0S(I0P1)+IDP
IF (IDP.GT.O) THEN
IL=IL-1
IU=IU-1

ENDIF
IF (I0P1.EQ.5) THEN
I1=IP0S(5)-IS
12=11+50

DO 1 I=IL,IU.IS
SIGMAC(I)=SIGMAC(I1)
SIGMAC(I+50)=SIGMAC(I2)

ELSE
DO 2 I=IL,IU.IS
SIGMAC(I)=SIGMAC(I)-IS*CRBANK(I0P1)

ENDIF
IPOS(lOPl)=IPOS(lOPl)+IDP

RETURN
END

161

C
C BRWORTH.FOR

IMPLICIT REAL*8 (A-H,0-Z)
PARAMETER (MX=200)

DOUBLE PRECISION A(MX),B(MX),XXE(MX),XI(MX),T(MX),TR(MX)
DOUBLE PRECISION SIGMAC(MX),FLUX(MX),FLUXO(MX),C(MX),XF(MX)
DOUBLE PRECISION CRBANK(5).KIN,KOLD,NU.NW,CD(MX).W(3)
INTEGER IPGS(5)

CHARACTER*10 FILEl
C

PRINT*,' Enter the steady state file name '
READ*,FILEl
OPENd ,NAME=FILE1 .STATUS»'UNKNOWN')

PRINT*,' Enter the name of output file: '
READ*,FILEl
0PEN(UNIT=2,NAME=FILE1,STATUS»'UNKNOWN',ACCESS»'APPEND')
READd,*) MS,KIN,BR2
READd,*) THPOW,HEIGHT,BORD
READd,*) D.NU.SIGMAF
READd,*) SIGHAA.TIN.SIGHAC
READd,*) NW.CB.SIGHIB
READd,*) YIELDX,DECAYX,SIGMIX
READd,*) YIELDI,DECAYI,IPOS
READd,*) CRBANK,SFNU,AMNUSF,BETA,DECAYC,TAV
READd,*) PC0EF,TC0EF,C0N,A0,A02
READd,*) XF,XXE,XI,CD
READd,*) D1,D2,D3
READd,*) TR

PI=4.dO*ATANd.dO)
HZ=HEIGHT/DBLE(MS)
CCOEF=BETA*SFNU/DECAYC
C0EF2=(YIELDI+YIELDX)*SIGMAF
IFL=1
DT=ldO

PRINT*,' Enter the minimum amount of boron change '
READ*,DB
HT=60.d0

Cl=l.dO-DT*DECAYC
C2=DT*BETA*SFNU

162

TIMEOUT=HT

C
C Outermost iteration for positive and negative reactivity insertion
11 DO 21 1=1,200

FLUXO(I)=XF(I)
21 C(I)=CD(I)

C
BOR=BORD+DBLE(IFL)*DB
KOLD=KIN

C
POWER=THPOW
POLD=POWER
TIME=0.d0

C
C Solution of nonlinear eigenvalue problem without
C criticality search
1 C0EF1=2*D/HZ**2+SIGMIB*CB*B0R*NW+D*BR2+SIGMAA

TIME=TIME+DT
TSUM=0.d0
DO 10 I=1,MS-1

T(I)=TCOEF*(HZ*TSUM+FLUXO(I)•HZ/2.dO)+TIN
A(I)=C0EF1+SIGMAC(I)+AMNUSF*(T(I)-TR(I))

+ +SIGMIX*XXE(I)-(l.dO-BETA)*SFNU
C(I)=C1*C(I)+C2*FLUX0(I)
B(I)=DECAYC*C(I)

10 TSUM=TSUM+FLUXO(I)
T(MS)=TCOEF*HZ*TSUM+TIN

C
DO 15 I=2,MS-1
C0EF=C0N/A(I-1)
A(I)=A(I)-COEF*CON

15 B(I)=B(I)-C0EF*B(I-1)
FLUX(MS-1)=B(MS-1)/A(MS-1)
SUM1=FLUX(MS-1)
DO 20 I=MS-2,1,-1
FLUX(I)=(B(I)-C0N*FLUX(I+1))/A(I)

20 SUM1=SUM1+FLUX(I)
C

P0WER=PC0EF*SIGMAF*HZ*SUM1
DPDT=(POWER-POLD)/DT

163

POLD=POWER

IF (TIME.LT.TIMEOUT) THEN
DO 35 1=1,MS

35 FLUXO(I)=FLUX(I)
GO TO 1

ENDIF
C

C Absolute value of reactivity worths are averaged
TP=HT/LOG(POWER/THPOW)
IF (IFL.EQ.l) THEN
W(l)=-1.d0*0.0848d0/TP
IFL=-1

GO TO 11
ENDIF
W(2)=0.0848d0/TP
W(3)=(W(l)+M(2))/2.dO
WRITECl,*) DB
WRITE(2,101) DB.W(3)

101 F0RMAT(/,2(2X,E15.7))
WRITE(2,*) TAV
STOP
END

