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Figure 6.20: Case C: Full length control rod positions-1 
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Figure 6.21: Case C: Full length control rod positions-2 
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Figure 6.22: Case C: Part length control rod position 

up a position in close vicinity of their initial value, 180 steps or 90 % out of the core. 

This shows the heuristic strength of the rule set # 4 used in ACES for power control. 

Although there is not an explicit rule that force the control variables to their original 

positions, ACES does take FLCRs back which means that the next daily load cycle 

would start with a similar initial state. 

The lower power level was chosen to test the response of ACES to a stronger 

xenon oscillation because of a stronger initiating event. As can be seen from Fig­

ures 6.20 and 6.21, FLCRs were inserted in this case more than case B, which was 

expected to create a stronger AO shift. The strength of the xenon transient can be 

understood from the change of the boron concentration shown in Figure 6.23. On 

the other hand this change was not an oscillation but the xenon feedback following 
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Figure 6.23: Case C: Boron concentration change 

a power level change. The effect of taking the power back to 100 % again softens 

the oscillations, and by creating a reverse oscillation, it dampens the magnitude of 

oscillation. However, the oscillation was still stronger than the previous case, and 

ACES responded to the AO shift with PLCRs. As can be seen in Figure 6.22, ACES 

controlled the oscillation and began to pull PLCRs back toward the center of the 

core through the end of the daily cycle. 

Case D was designed to test ACES for a faster rate of power change, and its 

handling ability for a stepwise increase of power. Instead of 10 % per hour rate, the 

power decreased to 50 % with a rate of 25 % per hour. Surprisingly, ACES was able 

to follow the load demand closer than the previous cases even though PLCRs were 

moved which creates unpredictable reactivity changes. One of the reasons for the 
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Figure 6.24: Case D: Reactor power and load demand 

closer power control is the delay of the xenon feedback. Within two hours, xenon 

feedback does not have enough time to change the flux concentration significantly. 

Second, as can be seen in Figure 6.24, the unpredictable reactivity effect of a PLGR 

move may help the power control as illustrated in this case, or it may work against 

it as shown previously. These completely opposite effects of a PLCR move originate 

from the current flux distribution of the core, which is an unmeasurable quantity. As 

seen in Figure 6.29, there has been a strong AO shift to the top of the core, which 

was compensated by PLCRs. Therefore, it is reasonable to conclude that the PLCRs 

are moved to the high flux region, and hence, negative reactivity is introduced into 

the system, which helped the power control. 

Although ACES responded to the strong AO transient through the rule set # 
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Figure 6.25: Case D: Axial offset change 

2, and pulled the PLCR to the top of the core, AO had shifted out of the target 

band(Figure 6.25) as a unique example among the test cases. This was a result of 

the fast transient. Even though AO is forced back into the target band immediately, it 

shows an important characteristic of ACES. Because of the computational limitations 

of the reactor model, ACES is designed to sample the reactor every minute. However, 

the decision process of ACES takes much less time than a minute. We believe that if 

ACES samples the reactor more frequently, it will less likely allow such an excessive 

AO shift. Other than that one point out of the target band, the AO is kept within 

limits throughout the daily cycle as is shown in Figure 6.25. 

Another interesting response of ACES in this case was the FLCR positions when 

the power reached 50 %(see Figures 6.26 and 6.27). They were inserted less than the 
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Figure 6.26: Case D: Full length control rod positions-1 
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Figure 6.27: Case D: Full length control rod positions-2 
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Figure 6.28: Case D: Part length control rod position 

previous case in which the power was also at the same level after the transient. This 

should be due to the negative reactivity insertion as a result of PLCR motion during 

the transient. The sudden FLCR withdrawals through the very end of the power 

transient, following almost a total 15 steps of successive PLCR motion, can not be a 

simple coincidence. This example shows how strong a PLCR motion may affect the 

reactivity of the system. However, ACES was able to keep up with its goals, and was 

able to handle an unexpected reactivity change of the core. 

Following the 50 % steady state operation, ACES successfully controlled the 

power by keeping up with the load demand with the given rate of power increase. It 

kept the power at 75 % as an intermediate power level, and then, took the reactor to 

full power as load demanded. The xenon oscillation following the transients was also 
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Figure 6.29: Case D: Boron concentration change 

kept under control as shown in Figures 6.28 and 6.29. 

The final case was not our design. After testing ACES for various cases, it was 

crucial to test it for an arbitrary load demand. ACES was tested against a typical 

power load of a PWR given by Lamarsh [4]. The given transient had some unique 

characteristics, such as having no steady state operation at low power. Instead, power 

load decreased gradually, with a slower rate than with which we had previously tested 

ACES. The load demand then increased back to full power, and stayed at this level 

for 10 hours. 

The deviations of power from the load demand were highest for this case, owing 

to the duration of the transient, which was long enough to experience the xenon 

feedback. When the unpredictable reactivity effects of the xenon feedback and the 
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Figure 6.30: Case E: Reactor power and load demand 
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Figure 6.31: Case E: Axial offset change 
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Figure 6.32: Case E: Full length control rod positions-1 

PLCR motions are combined, the power control was able to keep the deviation within 

±3-4 % of the desired power(Figure 6.30). However, this should not be considered as a 

big flaw for the expert system, since similar or bigger power errors were experienced 

in an experiment of a load-follow mode demonstrations employing CAOC control 

procedures performed by Sipush et al. at Indian Point, Unit 2 plant in New York 

[10]. On the other hand, increasing the sampling frequency of the reactor is a possible 

solution for improving the performance of the system. By frequent sampling, ACES 

would detect the unpredictable reactivity changes before they cause considerable 

changes in power level. 

Other than the given problem, ACES did what it is intended to do, and kept the 

reactor power, and the axial offset under control during a 24 hour period. Addition-
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Figure 6.33: Case E: Full length control rod positions-2 

ally, the xenon oscillation occurring as a result of the power transients was controlled 

as can be seen from PLCR position and boron concentration curves, Figs. 6.34 and 

6.35, respectively. ACES successfully switched from boration to deboration and back 

to boration during the power transient by using the rules # 3.1, 3.2, 3.4, and 3.7 as 

seen in Figure 6.35. 

The final evaluation point for an expert system should be the speed of the deci­

sion process. Additionally, it has been noted in this study that the sampling frequency 

of the reactor in ACES is set to 1 minute by the limitations of the model, and that 

more frequent sampling would solve the AO drift out of the target band experienced 

in case D. In this respect, 0PS5 provides an effective tool, the Performance Measure­

ment and Evaluation package, which provides CPU time reports when necessary [50]. 
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Figure 6.34: Case E: Part length control rod position 
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Figure 6.35: Case E: Boron concentration change 
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Table 6.4: CPU time for initialization of ACES 

Timing CPU report on 24-JUL-1992 15:41:11.13 

# LHS RHS 
PRODUCTION NAME FIRINGS TIME TIME 
clean.old.crod.wmes 0 1 0 
initialization 1 0 168 
moving-selected-controljod 0 47 0 
preference 0 2 0 
stopjnoving.cr 0 35 0 
initi alize.cont rol _vari ables 0 603 0 
read.difFerentiaLworths 801 0 1633 
end_of_data 1 88 3 
insertion Jimit .on _moving_cr 0 1 0 
set -crod-reacti vity .worths .and Jimits 0 103 0 

This package is used for generating some timing reports of ACES, and the reports 

are presented in its original form in Tables 6.4 through 6.6. 

The CPU time consumed by ACES during the initialization process took a rel­

atively long time because of creating the active working memory for the first time. 

The numbers given under the title of LHS and RHS times are the 10-millisecond 

ticks of CPU time in VAX computer system, used for executing the given side of a 

production. Therefore, the initialization of working memory costs a CPU time of 

less than 27 seconds in VAX, including the conflict resolution process and accessing 

the user interface for gathering the power load information. As it can be seen in 

Table 6.4, the conflict resolution amounts to almost 33 % of the total time, and 90 

% of it is spent for the productions that are not even fired. Since the initialization 

process is performed only once in this scale, design criteria were to set the working 

memory, not to save time. 

On the other hand, unnecessary matchs that increase the time spent for the 
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conflict resolution process were avoided as much as possible for an ordinary control 

cycle of ACES. Table 6.5 gives CPU time consumed during the steady state power 

operation, which is possibly the fastest cycle in VAX. The total CPU time spent 

in this cycle was 1.21 seconds. Out of 1.21 seconds, 0.4 seconds were spent for the 

conflict resolution, and 0.1 seconds were spent for productions that didn't fire. 

Table 6.5: CPU time for control cycle of ACES at steady state power 

Timing CPU report on 24-JUL-1992 22:14:19.40 

# LHS RHS 
PRODUCTION NAME FIRINGS TIME TIME 
clean_old_crod_wmes 4 . 1 2 
modify _response_in_transient_l 0 2 0 
no.change 1 0 3 
physical Jimit_on_moving_cr 0 1 0 
preference 1 15 19 
stop.moving_cr 0 2 0 
initialize.controLvariables 1 4 28 
reset-direction 0 1 0 
calling_reactor.for 0 1 0 
end_of_cr_moves 1 1 1 
insertion Jimit _on _moving_cr 0 3 0 
set_crodjreactivity_worths_andJimits 4 9 21 
no_boron_control 1 0 5 
no_axiaLofFset_control_needed 1 0 2 

A control cycle during a power transient will definitely take more time since we 

expect more rules to be fired. A sample cycle CPU time report is given in Table 6.6 for 

transient cases. The total CPU time was 1.76 seconds for this case in VAX system. 

Although this case may not be the longest cycle, it gives an idea about the time 

domain for transient cases. There might be more CR movements which amounts to 

1 tick for each step as is listed for the production named moving selected control rod 

in Table 6.6. Therefore, the sampling frequency of ACES can easily be reduced to 5 
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Table 6.6: CPU time for control cycle of ACES during a power transient 

Timing CPU report on 24-JUL-1992 22: 17:16.56 

# LHS RHS 
PRODUCTION NAME FIRINGS TIME TIME 
clean_old_crod_wmes 4 4 4 
modify jesponseJn.transient-l 1 2 3 
moving-selected.controljod 1 0 1 
physical-limit _on_moving_cr 0 3 0 
preference 2 25 24 
stop_moving-cr 1 1 13 
initialize.controLvariables 1 7 22 
calling jeactor.for 0 1 0 
end_of_cr_moves 1 0 1 
insertion Jimit _on _moving_cr 0 1 0 
set_crod_reactivity_worths_and_limits 5 15 30 
providingjiegativejeactivity 1 0 4 
boron_control_in_transient 1 1 11 
providing-positivejeactivity 0 1 0 
rio.axial_ofFset_control_needed 1 0 2 

seconds with almost 3 seconds of safety margin, and a closer watch can be provided 

for the AO and power control. 

The CPU time evaluation also shows the importance of the generic characteristic 

of ACES. In a design based on pattern recognition, we would have more rules to 

handle every specific case, including some very similar ones. The conflict resolution 

process would consider each one by one and would cost more CPU time. The generic 

rules cut down the number of rules and the CPU time. 
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CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

The purpose of this study was to explore the application of expert system tech­

nology to the spatial xenon oscillation control problem in a typical PWR. An expert 

system, ACES has been developed to implement the Heuristic Constant Axial Offset 

Control strategy for the control of spatial xenon oscillations in PWRs. ACES is de­

signed to be as realistic as possible with a set of generic rules to increase its area of 

applicability. 

ACES is designed to use only measurable reactor parameters during the decision 

process, and to evaluate the reactor status for determination of necessary control ac­

tion without using any non-measurable "heuristic" constants. It samples the reactor 

status in terms of available parameters, and evaluates these data to determine the 

necessity of a control action. It uses the differential rod worth curves, and reactivity 

worth of boron control as a knowledge base, and requires the user to supply this 

information. 

The knowledge base is built into the active working memory of the expert sys­

tem instead of the productions. This enabled ACES to adapt its control parameters 

to the reactor status during runtime. In addition, it increased the applicability of 

ACES to any reactor since the knowledge base of ACES is kept as a set of measur­
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able quantities, such as the control rod worth curves of a PWR. Provided that the 

knowledge base is loaded in ACES, it is capable of controlling an arbitrary PWR for 

an arbitrary load demand. 

As a result of the nature of the xenon oscillation problem, a forward chaining 

algorithm was found effective for this particular application. ACES used forward 

chaining to search for the solution of the given core status. A given core status 

is not recognized by a pattern recognition procedure in ACES, but it is evaluated 

to solve for the necessary corrective action which may include no correction at all. 

This unique feature of the design also enhanced the generic characteristic of ACES. 

No quantification of error terms, or no ranging for parameters is used for creating 

patterns unless they are well known and common for PWRs. The ± 5 % target band 

of AO around the steady state value is the only ranging used in ACES, and it is a 

very common parameter [10]. 

Although there is no other previous study directly comparable with ACES, it 

has been tested against some cases used by Cho [36] and Chung [47] in their studies. 

The test cases are extended for different power levels, and different transient rates 

in ACES. ACES successfully controlled the PWR core model for the given test cases 

even though the model overpredict the xenon feedback. Therefore, it is expected to 

perform better in real applications. Finally, ACES is tested against an arbitrary load 

demand given in the literature [4], and its performance is evaluated based on CPU 

time consumption. It is shown that ACES can follow any load demand and can keep 

the AO within the target band. 

The following conclusions have been drawn from this study: 

1. It is possible to use expert system technology in spatial xenon oscillation 
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control in PWRs. 

2. The forward chaining is a useful technique for this particular application. 

3. It is possible to implement an expert system controller based on only 

measurable parameters of a reactor. 

4. The expert system ACES implemented in this study is capable of control­

ling a load-follow PWR for any load demand provided that the control rod 

worths are supplied as the knowledge base. 

5. ACES is able to sample the reactor status much more frequently -twenty 

times more in the VAX computer system- than the interval used in this 

study, which ensures much finer power control than the ones shown in the 

sample cases. 

6. Designed as a generic code, ACES is free of "heuristic" constants, it adapts 

its control parameters in runtime, and therefore, can be used in an arbi­

trary PWR. 

As a final reminder, we would like to add that, beside the advantages of expert 

systems, this technology helps to preserve the expertise in case of an interruption in 

the inheritance of the knowledge. It will ensure an ongoing expert control in times 

of personnel changes at the plant. On the other hand, even though expert system 

technology is not now or may never be developed enough to simulate the human cre­

ativity, it has the ability to serve useful applications. Lacking of creativity, however, 

only limits the application areas of expert systems, and being a slow transient, xenon 

oscillations are not one of these limited areas. 
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Recommendations for Future Work 

The ultimate goal of this study is to design a controller to replace the reactor 

operator in the control of xenon oscillations. Unfortunately, the cost of a complete 

verification of computer software and hardware, and the environmentally opinionated 

insecure feeling of the general public limit the expert systems to be an advisory 

controller for the time being. Therefore, ACES should be furnished with user friendly 

graphic displays for presenting the results to the reactor operator. Although, ACES 

currently displays the current status of the core, and suggests control actions, no 

specific attention is paid to the form of the output. 

Although ACES has been tested against several load schedules using a PWR 

core model, it should be tested for more cases using a more detailed model. Also, the 

sampling frequency of ACES should be increased to achieve better control, and to 

reduce errors in load-follow. Today, most of the reactors have their own simulators 

which are able to simulate any transient with enough accuracy. ACES should be 

tested using these simulators prior to any real time applications. 

Additionally, ACES has been tested only against a core configuration that simu­

lates the beginning of life conditions. However, the limitations on the boron concen­

tration changes at the end of life of a fuel cycle require special attention. Therefore, 

ACES should be tested and modified -if necessary- for the end of life conditions of a 

fuel cycle. 

And finally, ACES is designed using a VAX cluster which may not be available 

everywhere. A microcomputer version can be generated provided that the micro­

computer version of the 0PS5 compiler supports an interface with a conventional 

language. 
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APPENDIX A: SOURCE CODE OF ACES 

ACES is written in 0PS5 and furnished with comments for each rule to increase 

the understandability of the program. Rules are enumerated for referencing purposes. 

Declarations 

(VECTOR-ATTRIBUTE 

POSTN ; This vector will contain the current control rod 

; positions at any time 

GOAL) ; This vector will contain the information for the 

; flow of control 

f 

(EXTERNAL 

I 

; Functions 

9 

(RREAC FLOAT-ATOM (FLOAT-ATOM BY REFERENCE) 

(FLOAT-ATOM BY REFERENCE) (FLOAT-ATOM BY REFERENCE)) 

I 

(TREND INTEGER-ATOM (FLOAT-ATOM BY REFERENCE) 

(FLOAT-ATOM BY REFERENCE) ) 

I 

(ABSOLUTE FLOAT-ATOM (FLOAT-ATOM BY REFERENCE)) 

» 

(AOTREND INTEGER-ATOM (FLOAT-ATOM BY REFERENCE) 

(FLOAT-ATOM BY REFERENCE) (FLOAT-ATOM BY REFERENCE) ) 

» 

(BORON INTEGER-ATOM (FLOAT-ATOM BY REFERENCE) 
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(FLOAT-ATOM BY REFERENCE) ) 

(TINLET FLOAT-ATOM (FLOAT-ATOM BY REFERENCE) 

(FLOAT-ATOM BY REFERENCE) ) 

Subroutines 

(INIT) 

(LOAD) 

(REACTOR) 

(OUTPUT)) 

Literalizations of Working Memory Elements 

(LITERALIZE DWORTHS 

BANK 

STEP 

WORTH) 

$ 

(LITERALIZE BORON 

UNIT 

WORTH 

STEPS 

CHANGE 

DIRECTION) 

I 

(LITERALIZE POWER 

FROM 

TO 

BY 

RATE 

CONST) 

I 

(LITERALIZE STATE 

POWER 

AXIAL,OFFSET 

PERIOD 

TEMP.IN 

TEMP.OUT 

B.CONC 

TIME) 

Knowledge base for differential worth curves 

Name of the FLCR bank 

Position of the bemk 

Differential worth at the given position 

Knowledge base for boron reactivity worth 

Minimum unit of boron in ppm 

Reactivity worth of a unit change 

Amount of control in multiples of UNIT 

Amount of control in ppm 

Flag, 1 for boration, -1 for deboration 

Knowledge base WME for the power schedule 

Initial time that function P=at+b is valid 

Final time for the same function 

Sampling intervals, set to 1 minutes 

Rate 'a' of the given function 

Constant 'b' of the given function 

State of the core which will be sampled 

Current reactor power 

Current axial offset of the core 

Current reactor period 

Current inlet temperature of the core 

Current outlet temperature of the core 

Current boron concentration in ppm 

Current time 
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(LITERALIZE GOALS 

GOAL) 

I 

(LITERALIZE AOCNTRL 

AO.RATE 

AO.SIGN 

AOE ) 

» 

(LITERALIZE PWRCNTRL 

POWERI 

POWERJ 

PSIGN 

TPSIGN 

REACTIVITY 

RSIGN) 

Set of goals to satisfy 

Current goal of ACES (vector) 

Axial-offset control parameters 

Constant 'a' of target(AO) = a * P 
Flag, = TREND(current(AO).target(AO)) 

Flag, = AOTREND(current(AO),target(AO),2) 

Power control parameters 

Target power at current time 

Target power at next time step 

Flag, = TREND(current power, POWERI) 

Flag, = TREND(POWERJ,POWERI) 

Absolute value of target reactivity 

Sign of the target reactivity 

(LITERALIZE TEMPERATURE ; WME for temperature control 

TEMP.REF 

TEMP.IN ) 

I 

(LITERALIZE CRODS 

BANK 

POSITION 

NUMBER 

PWORTH 

NWORTH 

MAX.POS 

MIM.POS 

PREF.DIR ) 

I 

(LITERALIZE MOVEROD 

BANK 

DIRECTION 

REACTIVITY 

STEP 

LIMIT 

COUNT) 

Average core temperature at full power 

Proposed inlet temperature for the next step 

Temporary WMEs for control rod bemks 

Name of the control rod bank 

Current position in steps 

1 for FLCR-A, 2 for FLCR-B... and 5 for PLCR 

Differential reactivity if withdrawn one step 

Differential reactivity if inserted one step 

Uppermost possible position ( 200 ) 

Lowermost possible position ( 0 ) 

Preferred direction of motion 

Temporary variable for iteration in CR moves 

Name of the control rod bemk to be moved 

Direction of move, 1 upweurd, -1 downward 

Target reactivity to satisfy 

Current position of control rod bank 

Maximum steps that a given bank can be moved 

The number of steps that the bemk moved 

(LITERALIZE SENDCR Temporary WME for data communication 
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POSTN) ; Current positions of all control rod banks 

I 

; The start-up production, sets the runtime options of 0PS5 

> 
(STARTUP 

(ENABLE HALT) 

(STRATEGY MEA) 

(MAKE START) 

(RUN)) 

; Rule set # 1; Initialization of WMEs at various phases of ACES 

I 

; Rule 1.1 : This rule performs the initialization of the reactor 

; model, queries the data file name of differential rod worth 

; knowledge base, and interface with user for power schedule. 

; It fires only once. 

(p initialization 

{ <go> (START)} 
> 

(CALL INIT) 

(WRITE I Please enter the file name for CR worths.. | (CRLF)) 
(BIND <file> (ACCEPT)) 

(OPENFILE DW <file> IN ) 

(MAKE SENDCR ) 

(CALL LOAD 100.0 0.0 ) 

(MAKE GOALS "goal read.data )) 

: Rule 1.2 : This rule reads control rod worth data from input file 

; in the order of bank name, position, emd worth, reads nil 

; for an empty line to mark the end of data, fires as much as 

; necessary for initialization of ACES active working memory, 

(p read_differential_worths 

{ <goal> (GOALS 

"goal read.data )} 

--> 

(MODIFY <goal> "goal read_data ) 

(MAKE DWORTHS "bank (ACCEPTLINE DW nil nil nil ))) 

» 

; Rule 1.3 : Initializes boron worth and reference temperature 
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; from the same data file, fires only once. 

(p end_of_data 

{ <goal> (GOALS 

"goal read.data )} 

{ <dwr> (DWORTHS 

"bank nil )} 
> 

(REMOVE <goal> <dwr> ) 

(MAKE BORON "unit (ACCEPT DW ) 

"worth (ACCEPT DW ) 

"steps 0 

"change 0 

"direction 1 ) 

(MAKE TEMPERATURE "temp.ref (ACCEPT DW ) )) 

Rule 1.4 : Sets current reactivity worths of control rods, 

and limits. Fires once for each FLCR bemk when the FLCR 

positions are seunpled and whenever em FLCR is moved. 

For withdrawals, positive reactivity is set to differential 

worth at the current position of the bank, emd 

for insertions, negative reactivity is set to differential 

worth at one step down of the current position, 

(p set_crod_reactivity_worths_and_limits 

{ <cr> (CRODS 

"bank { <crbank> <> pier } 

"position <z> 

"number <num> 

"pworth nil )} 

(DWORTHS 

"bank <crbank> 

"step <z> 

"worth <upw>) 

(DWORTHS 

"bemk <crbeuik> 

"step ( COMPUTE <z> - 1 ) 

"worth <downw> ) 

{ <scr> (SENDCR )} 

-> 

(BIND <pos> (LITVAL POSTN )) 

(BIND <post> (COMPUTE <pos> + <num> - 1 )) 
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(MODIFY <scr> "<po8t> <z> ) 

(MODIFY <cr> "pworth <upw> 

"nworth <downw> 

"max.pos 200 

"min.pos 0 )) 

Rule 1.5 : After the sampling of the reactor, this rule 

reinitializes all control parameters and flags used in 

evaluation of the core status, and produce output 

for current core status. It fires only once for each 

control cycle. 

(p initialize_control_variables 

(STATE 

"power <pr> 

"period <per> 

"axial.offset <fao> 

"temp.in <tin> 

"temp.out <tout> 

"b_conc <ppm> 

"time <t> ) 

(POWER 

"from <= <t> 

"to > <t> 

"by <step> 

"rate <a> 

"const <b> ) 

{ <aocntrl> (AOCNTRL 

"ao_rate <faor> )} 

-(PWRCNTRL) 

-(GOALS) 

{ <plcr> (CRODS 

"beuik pier 

"position <zplcr> )] 

> 

{ <scr> (SENDCR )} 

{ <terap> (TEMPERATURE 

~temp_ref <tav> )} 

(BIND <tnext> (COMPUTE <t> + <step> )) 

(BIND <pi> (COMPUTE <b> + <a> * <t> )) 

(BIND <pj> (COMPUTE <b> + <a> * <tnext> )) 
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(BIND <rs> (COMPUTE 0.0848 // <per> )) 

(BIND <re> (RREAC <pj> <pr> <8tep> )) 

(BIND <tr> (COMPUTE <re> - <rs> )) 

(BIND <dtc> (COMPUTE <tout> - <tin> )) 

(BIND <tfao> (COMPUTE <faor> * <pi> )) 

(BIND <aobl> (COMPUTE <tfao> + 5.0 )) 

(BIND <aob2> (COMPUTE <tfao> - 5.0 )) 

(WRITE (CRLF) I Time (mins) : | <t> (TABTO 25) 

I Period (s) : | <per> 
(CRLF) I Power ('/,) : | <pr> (TABTO 25) 

I AO (•/,) : I <fao> 
(CRLF) I Targets (%) : | <pi> (TABTO 41) <tfao> 

(CRLF) I Control Parameters : I (CRLF) I 

(CRLF) I FLCR pos'ns I (TABTO 21) IPLCR pos'n I (TABTO 35) 

I Boron conc. (ppm) I (TABTO 57) Unlet Temp. (C) I 

(CRLF) (SUBSTR <scr> postn inf ) (TABTO 21) <zplcr> 

(TABTO 35) <ppm> (TABTO 57) <tin> (CRLF) (CRLF) ) 

(CALL OUTPUT <t> <pr> <fao> <ppm> (SUBSTR <scr> postn inf ) 

<zplcr> <pi> <tfao> <tiri> <tout> <aobl> <aob2> ) 

(MODIFY <aocntrl> "aoe (AOTREND <fao> <tfao> 2.0 ) 

"ao.sign (TREND <fao> <tfao> )) 

(MODIFY <temp> "teirp_in (TINLET <tav> <dtc> )) 

(MAKE PWRCNTRL "poweri <pi> 

"powerj <pj> 

"reactivity (ABSOLUTE <tr>) 

"psign (TREND <pr> <pi> ) 

"tpsign (TREND <pj> <pi> ) 

"rsign (TREND <tr> 0.0 )) 

(MAKE GOALS "goal ao.control )) 

; Rule set # 2 : Axial-Offset control 

; Rule 2.1 : Transfers the control to next step since the AO 

; is within the control band emd no control is necessary, 

(p no_axial_offset_control_needed 

{ <goal> (GOALS 

"goal ao.control )} 

(AOCNTRL 

"aoe 0 ) 
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> 

(MODIFY <goal> "goal correct )) 

I 

; Rule 2.2 : If the core AO is out of the control band, this 

; rule moves the PLCR one step in the direction of AO error, 

(p axial_offset_control 

{ <goal> (GOALS 

"goal ao.control )} 

{ <aoc> (AOCNTRL 

"aoe { <fl> <> 0 } )} 

{ <cr> (CRODS 

"bank pier 

"position <z> )} 

— >  

(MODIFY <cr> "position (COMPUTE <z> + <fl> )) 

(MODIFY <goal> "goal correct )) 

Rule set # 3 : Boron Control 

Rule 3.1 ; This rule increases the amount of boron control 

during the power treuisient by one unit before checking for 

using boron at this step, and transfers the control to 

boron control, may fire only once for each cycle during 

a power tremsient. 

(p modify_response_in_transient_l 

{ <goal> (GOALS 

— >  

"goal 

{ <br> (BORON 

"steps 

"direction 

(AOCNTRL 

"ao„sign 

(PWRCNTRL 

"tpsign 

(MODIFY <br> 

(MODIFY <goal> 

correct )} 

<s> 

<d> )}  

<err> ) 

(COMPUTE <err> * <d> * -1 )) 

"steps (COMPUTE <s> 

'goal b_control )) 

+  1  ) )  

Rule 3.2 ; This rule decreases the amount of boron control 
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; during the power transient by one unit before checking for 

; using boron at this step, and transfers the control to 

; boron control, may fire only once for each cycle during 

; a power treuisient. 

(p modify_response_in_transient_2 

{ <goal> (GOALS 

"goal correct )} 

{ <br> (BORON 

"steps { <s> > 1 } 

"direction <d> )} 

(AOCNTRL 

"ao.sign <err> ) 

(PWRCNTRL 

"tpsign (COMPUTE <err> * <d> )) 
> 

(MODIFY <br> "steps (COMPUTE <s> - 1 )) 

(MODIFY <goal> "goal b.control )) 

» 

; Rule 3.3 : This rule sets the amount of boron control to zero 

; during the power transient by one unit before checking for 

; using boron at this step, and transfers the control to 

; boron control, may fire only once for each cycle during 

; a power transient. 

(p set_response_to_zero 

{ <goal> (GOALS 

"goal correct )} 

{ <br> (BORON 

"steps > 0 

"direction <d> )} 

(AOCNTRL 

"ao.sign <err> 

"aoe <err> ) 

(PWRCNTRL 

"tpsign (COMPUTE <err> * <d> )) 
> 

(MODIFY <br> "steps 0) 

(MODIFY <goal> "goal b.control )) 

; Rule 3.4 : This rule switches the direction of boron control 

; when its necessary, may fire only once for each cycle. 
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(p switch_the_direction 

{ <goal> (GOALS 

"goal correct)} 

{ <br> (BORON 

"steps 0 

"direction <d> )} 

(AOCNTRL 

"ao_sign <err> 

"aoe <err> ) 

(PWRCNTRL 

"tpsign (COMPUTE <err> * <d> )) 

--> 

(MODIFY <br> "direction (COMPUTE <d> * -1 )) 

(MODIFY <goal> "goal b.control )) 

» 

; Rule 3.5 : This rule resets the direction of boron response 

; after the reactor reaches to steady state following a 

: transient, may fire only once in a cycle, 

(p reset.direction 

{ <goal> (GOALS 

"goal correct )} 

(PWRCNTRL 

"tpsign 0 ) 

{ <br> (BORON 

"direction <> 1 )} 
> 

(MODIFY <br> "direction 1 ) 

(MODIFY <goal> "goal b.control )) 

; Rule 3.6 ; Transfers the control to boron control if no 

; change is necessary in the amount of boron control 

(p no.change 

{ <goal> (GOALS 

"goal correct )} 

> 

(MODIFY <goal> "goal b.control )) 

; Rule 3.7 ; This rule changes the boron concentration 

; as much as 's' steps in the direction 'd' during 

: a power transient, modifies the target reactivity 

; and transfers the control to power control rules. 
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(p boron_coiitrol_in_transient 

{ <goal> (GOALS 

"goal b_control )> 

{ <pc> (PWRCNTRL 

"reactivity <r> 

"tpsign { <hao> <> 0 } 

"rsign <rs> )} 

{ <br> (BORON 

"worth <wr> 

"steps <s> 

"direction <d> )} 
> 

(BIND <steps> (COMPUTE <s> * <hao> * <d> )) 

(BIND <rne*> (COMPUTE ( <r> * <rs> ) + <steps> * <wr> • -1 )) 

(MODIFY <br> "change <8teps> ) 

(MODIFY <pc> "reactivity (ABSOLUTE <rnew> ) 

"rsign (TREND <rnew> 0.0 )) 

(MODIFY <goal> "goal set.preference move.crods send.info)) 

* 

; Rule 3.8 ; This rule determines the amount of boron control during 

; the steady state operation, and transfers the control 

; directly to the communication rules, 

(p boron_control_in_steady_state 

{ <goal> (GOALS 

"goal b.control )} 

{ <pr> (PWRCNTRL 

"tpsign 0 

"reactivity <r> 

"rsign <rs> )} 

{ <br> (BORON 

"worth { <wr> < <r> } )} 

> 

(BIND <st> (BORON <wr> <r> )) 

(MODIFY <br> "change ( COMPUTE <st> * <rs> * -1 )) 

(MODIFY <goal> "goal send.info )) 

; Rule 3.9 : This rule transfers the control to power control 

; during the steady state, since no control is required 

(p no_boron_control 

{ <goal> (GOALS 
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--> 

"goal b_control)} 

(MODIFY <goal> "goal set.preference move_crods send.info )) 

Rule set # 4 : Power control using flcrs 

Rule 4.1 : This rule finds the control rod bank which is at the 

downmost position to introduce positive reactivity to the 

system by withdrawal, and creates the necessary WHEs to 

move it 

(p providing_positive_reactivity 

{ <goal> (GOALS 

move.crods )} 

> 

"goal 

(PWRCNTRL 

"reactivity 

"rsign 

(CRODS 

"bank 

"position 

"pref_dir 

"pworth 

"max.pos 

(BIND <pos> 

(MODIFY <goal> 

(MAKE HOVEROD 

<tr> 

1 ) 

{ <crbank> <> pier } 

<z> 

1 
< <tr> 

{ <zmax> > <z> }) 

(LITVAL GOAL)) 

"goal move.cr (SUBSTR <goal> <pos> inf)) 

"bemk <crbank> 

"direction 1 

"reactivity <tr> 

"step <z> 

"limit (COMPUTE <zmax> - <z> ) 

"count 0 )) 

; Rule 4.2 : This rule finds the control rod bemk which is at the 

; upmost position to provide negative reactivity by inserting 

; the rod, and creates the necessary WMEs to move it. 

(p providing_negative_reactivity 

•C <goal> (GOALS 
"goal move.crods )} 

( PWRCNTRL 
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"reactivity <tr> 

"rsign -1 ) 

(CRODS 

"bank 

"position 

"pref_dir 

"nworth 

"min.pos 

{ <crbank> <> pier } 

<z> 

-1 

< <tr> 

{ <zmin> < <z>  } )  

(BIND <pos> (LITVAL GOAL)) 

(MODIFY <goal> "goal move.cr (SUBSTR <goal> <pos> inf)) 

(MAKE MOVEROD "bank <crbank> 

"direction -1 

"reactivity <tr> 

"step (COMPUTE <z> - 1 ) 

"limit (COMPUTE <z> - <zmin> ) 

"count 0 )) 

; Managing the FLCR movements 

; Rule 4.3 : This rule sets FLCR directional preference by 

; comparing their relative positions. 

(p preference 

{ <goal> (GOALS 

"goal set.preference )} 

•C <crl> (CRODS 

"beoik { <bl> <> pier } 

"position <zi> )} 

{ <cr2> (CRODS 

"bank { <b2> <> pier <> <bl> } 

"position { <z2> <= <zl> } )} 

{ <cr3> (CRODS 

"bank { <b3> <> pier <> <bl> <> <b2> } 

"position { <z3> <= <z2> } )} 

{ <cr4> (CRODS 

"bank { <b4> <> pier <> <bl> <> <b2> <> <b3> } 

"position <= <z3> )} 

— >  

(BIND <pos> (LITVAL GOAL)) 

(BIND <pos2> (COMPUTE <pos> + 1 )) 
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(MODIFY <goal> "goal (SUBSTR <goal> <pos2> inf) nil ) 

(MODIFY <crl> "pref.dir -1 ) 

(MODIFY <cr2> "pref.dir 0 ) 

(MODIFY <cr3> "pref.dir 0 ) 

(MODIFY <cr4> "pref.dir 1 )) 

I 

; Rule 4.4 ; This rule moves the selected rod one step at a 

; time up to total of 5 steps, as long as limitation 

; are not exceeded. 

(p moving.selected_control_rod 

(GOALS 

"goal move.cr) 

{ <movecr> ( MOVEROD 

"bank <crbank> 

"direction <dir> 

"reactivity <tr> 

"step <z> 

"limit { <lim> 0 0} 

"count { <count> < 5 } )} 

(DWORTHS 

"bank <crbank> 

"step <z> 

"worth { <dw> < <tr> } ) 

> 

(MODIFY <movecr> "reactivity (COMPUTE <tr> - <dw>) 

"step (COMPUTE <z>  + <dir>) 
"limit (COMPUTE <lim> - 1 ) 

"count (COMPUTE <count> +1 ))) 

I 

; Rule 4.5 : This rule stops moving the selected control rod bank 

; when the target reactivity is provided. 

(p stop_moving_cr 

{ <goal> (GOALS 

"goal move_cr )} 

{ <pwrcntrl> (PWRCNTRL )} 

{ <movecr> (MOVEROD 

"bemk <crbemk> 

"direction <dir> 

"reactivity <tr> 

"step <z> 
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"count <count> )} 

(DWORTHS 

"bank <crbank> 

"step <z>  
"worth { <w> > <tr> } ) 

{ <cr> (CRODS 

"bemk <crbank> 

"position <old.z> )} 

(MODIFY <goal> "goal set.preference ) 

(MODIFY <pwrcntrl> "reactivity <tr> ) 

(MODIFY <cr> "position (COMPUTE <old_z> + <dir> * <count>) 

"pworth nil ) 

(REMOVE <movecr> )) 

Rule 4.6 : This rule stops moving the selected bemk since 

the 5 steps limit is met. It returns the control to 

power control. 

insertion_limit_on_moving_cr 

{ <goal> (GOALS 

"goal move.cr )} 

{ <pwrcntrl> (PWRCNTRL )} 

{ <movecr> (MOVEROD 

"bank <crbank> 

"direction <dir> 

"reactivity <tr> 

"count 5 )} 

{ <cr> (CRODS 

"bemk <crbank> 

"position <old_z> )} 

(MODIFY <goal> "goal set.preference ) 

(MODIFY <pwrcntrl> "reactivity <tr>) 

(MODIFY <cr> "position (COMPUTE <old.z> + <dir> * 5 ) 

"pworth nil 

"nworth nil ) 

(REMOVE <movecr> )) 

Rule 4.7 ; This rule stops moving the selected control rod bank 

when the upper or lower limit is reached. 
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(p physical_limit_on_moving_cr 

{ <goal> (GOALS 

"goal move.cr )} 

{ <pwrcntrl> (PWRCNTRL )} 

{ <movecr> (HOVEROD 

"bank <crbeuik> 

"direction <dir> 

"reactivity <tr> 

"count <count> 

"limit 0 )} 

{ <cr> (CRODS 

"bank <crbeuik> 

"position <old_z> )} 

> 

(MODIFY <goal> "goal set.preference ) 

(MODIFY <pwrcntrl> "reactivity <tr>) 

(MODIFY <cr> "position (COMPUTE <old_z> + <dir> * <count>) 

"pworth nil 

"nworth nil ) 

(REMOVE <movecr> )) 

Rule 5.8 : This rule transfers the control to communication 

rules when no more FLCR moves are necessary, 

(p end_of_cr_moves 

{ <goal> (GOALS 

"goal move.crods )} 

-(MOVEROD) 

--> 

(BIND <pos> (LITVAL GOAL)) 

(BIND <pos2> (COMPUTE <pos> + 1 )) 

(MODIFY <goal> "goal (SUBSTR <goal> <pos2> inf) nil )) 

Rule set # 5: Send the proposed reactivity chemges to the 

simulator, or communicate with the Reactor 

Rule 5.1 ; This rule removes the control rod WMEs in order 

to be ready for the next cycle. 

(p clean_old_crod_wmes 

(GOALS 

"goal send_info ) 
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{ <cr> (CRODS 

"bemk { <crbank> <> pier } )} 

-> 

(REMOVE <cr>)) 

Rule 5.2 : This rule wraps up the current state, sends data 

to REACTOR.FOR and creates new state for next cycle of 

the control. 

(p calling.reactor.for 

{ <goal> (GOALS 

"goal send_info )} 

{ <pwrcntrl> (PWRCNTRL )} 

{ <send> (SENDCR )} 

{ <bor> (BORON 

"change <dppm> )} 

{ <plcr> (CRODS 

"bank pier 

"position <zpl> )} 

-(CRODS 

"bank <> pier ) 

{ <st> (STATE )} 

(TEMPERATURE 

"tenç)_in <tin> ) 
— >  

(CALL REACTOR (SUBSTR <send> postn inf ) <zpl> <dppm> <tin> ) 

(MODIFY <bor> "change 0 ) 

(REMOVE <pwrcntrl> <st> <goal> <plcr> )) 

Rule 5.3 ; This rule is a garbage collection rule. Removes 

WME that defines the old power schedule, 

(p remove_power_history_data 

(STATE 

"time <t> ) 

{ <pow> (POWER 

"to <= <t> )} 

— >  

(REMOVE <pow> )) 
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APPENDIX B: SUPPORT ROUTINES OF ACES 

ACES is furnished with a set of FORTRAN?? routine to perform numerical 

tasks, and user interface. Therefore, these routines are a part of ACES. We listed 

the source codes of these external routines of ACES in this section. 

C 

C The function RREAC will calculate the necessary reactivity to 

C satisfy the next target power, takes the current power, target 

C power, and the time step size as arguments, and 

C returns the reactivity. 

C 

INTEGER FUNCTION RREAC (ATOMl,AT0M2,AT0M3) 

INCLUDE 'OPS$LIBRARY;OPSDEF.FOR' 

REAL ATOMl,AT0M2,ATOMS,TPR2,PR,DT,TP 

C 

DT=OPS$CVAF ('/.VAL (ATOMS)) 

DT=DT*60.0 

TPR2=0PS$CVAF ('/.VAL (ATOMl)) 

PR=OPS$CVAF ('/.VAL (ATQM2)) 

IF(PR.Eq.TPR2) THEN 

TP=0.0 

ELSE 

TP=DT/L0G(TPR2/PR) 

TP=0.0848/TP 

ENDIF 

RREAC=OPS$CVFA(%VAL (TP)) 

RETURN 

END 
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C The function TREND compares its arguments and returns 

C 1 if first argument is greater, o if they are equal, emd 

C -1 if the second argument is greater. 

C 

INTEGER FUNCTION TREND (ATOMl,AT0M2) 

INCLUDE 'OPS$LIBRARY:OPSDEF.FOR' 

REAL*4 ATOMl,AT0M2,A1,A2 

INTEGER I 

C 

A1=0PS$CVAF ('/.VAL (ATOMl)) 

A2=0PS$CVAF ('/.VAL (AT0M2)) 

IF (A1.GT.A2) THEN 

1=1 

ELSEIF (Al.Eq.A2) THEN 
1=0 

ELSE 

I=-l 

ENDIF 

TREND=OPS$CVNA ('/.VAL (I)) 

RETURN 

END 

C 

C The function AOTREND returns 1 if the first argument is higher 

C theui the upper limit of control band defined by the second and 

C third argument, 0 if it is within the band, and -1 otherwise 

C 

INTEGER FUNCTION AOTREND (ATOMl,AT0M2,ATOMS) 

INCLUDE 'OPS$LIBRARY:OPSDEF.FOR' 

REAL*4 ATOMl,AT0M2,ATOMS,A1,A2,A3 

INTEGER I 

C 

A1=0PS$CVAF (%VAL (ATOMl)) 

A2=0PS$CVAF (%VAL (AT0M2)) 

AS=0PS$CVAF (%VAL (ATOMS)) 

IF (A1.LT.(A2-AS)) THEN 

I=-l 

ELSEIF (Al.LE.(A2+AS)) THEN 
1=0 

ELSE 

1=1 
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ENDIF 

AOTREND=OPS$CVNA ('/.VAL (I)) 

RETURN 

END 

C 

C The function ABSOLUTE simply returns the absolute value of 

C its argument 

C 

INTEGER FUNCTION ABSOLUTE(ATOHl) 

INCLUDE 'OPS$LIBRARY:OPSDEF.FOR' 

REAL*4 ATOMl.T 

C 

T=OPS$CVAF(%VAL (ATOMl)) 

T=ABS(T) 

ABSOLUTE=OPS$CVFA('/,VAL (T)) 

RETURN 

END 

C 

C BORON takes the target reactivity and the reactivity worth of boron 

C as its arguments and returns the necessary boron control in steps 

C 

INTEGER FUNCTION BORON (ATOMl,AT0M2) 

INCLUDE 'OPS$LIBRARY:OPSDEF.FOR' 

REAL*4 ATOMl,AT0M2,A1.A2,A3 

INTEGER I 

C 

A1=0PS$CVAF ('/.VAL (ATOMl )) 

A2=0PS$CVAF ('/.VAL (AT0M2 )) 

I=A2/A1 

BORON=OPS$CVNA ('/.VAL (I)) 

RETURN 

END 

C 

C TINLET calculates the proposed inlet temperature to keep the 

C core average temperature constant 

C 

INTEGER FUNCTION TINLET(ATOMl,AT0M2) 

INCLUDE 'OPS$LIBRARY:OPSDEF.FOR' 

REAL*4 ATOMl,AT0M2,A1,A2,T 
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A1=0PS$CVAF ('/.VAL (ATOMl )) 

A2=0PS$CVAF (%VAL (AT0M2 )) 

T=Al-A2/2.0 

TINLET=OPS$CVFA ('/.VAL (T )) 

RETURN 

END 

C 

C Subroutine LOAD is the user interface routine of ACES. It asks 

C the user for the power schedule for an upcoming period daily cycle 

C 

SUBROUTINE LOAD 

IMPLICIT REAL*4 (A-H,0-Z) 

INCLUDE 'OPS$LIBRARY:OPSDEF.FOR' 

C 

C Setting constants for creating a WME later 

INP1=0PS$PARAMETER (%VAL (1 )) 

INP2=0PS$PARAMETER (%VAL (2 )) 

POWER=OPS$CVAF (%VAL (INPl )) 

T1=0PS$CVAF (%VAL (INP2 )) 

IP=OPS$INTERN('/,REF ('POWER' ), '/.VAL (5 )) 

IA1=0PS$INTERN (%REF ('FROM' ), %VAL (4 )) 

IA2=0PS$INTERN (%REF ('TO' ), %VAL (2 )) 

IA5=0PS$INTERN C/.REF ('BY' ), %VAL (2 )) 

IA3=0PS$INTERN (%REF ('RATE' ). '/.VAL (4 )) 

IA4=0PS$INTERN C/.REF ('CONST' ), '/.VAL (5 )) 

C 

HT=l.dO 

IS=OPS$CVFA ('/.VAL (HT )) 

WRITE(*,5) POWER,T1 

C 

C Start asking the user for information 

PRINT*,' Begin entering load cycle per day ' 

1 PRINT*,' Choose one of the options;' 

PRINT*,' 1. Steady State' 

PRINT*,' 2. Decrease Power' 

PRINT*,' 3. Increase Power' 

PRINT*,' 4. End of Data' 

READ*,IOPTION 

IF (I0PTI0N.EQ.4) GO TO 2 

CALL QPS$RESET() 
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CALL OPS$VALUE ('/.VAL (IP )) 

CALL OPS$TAB (%VAL (lAl )) 

IT1=0PS$CVFA ('/.VAL (T1 )) 

CALL OPS$VALUE (%VAL (ITl )) 

IF (IOPTION.EQ.2) PRINT*,' Decrease to ( % power ): ' 

IF (I0PTI0N.EQ.3) PRINT*,' Increase to ( % power ): ' 

IF (lOPTION.NE.l) READ*,POWERJ 

PRINT*,' Enter time interval in minutes ' 

READ*,IT 

DT=FLOAT(IT) 

T2=T1+DT 

CALL OPS$TAB (%VAL (IA2 )) 

IT2=0PS$CVFA ('/.VAL (T2 )) 

CALL OPS$VALUE ('/.VAL (IT2 )) 

CALL OPS$TAB ('/.VAL (IA5 )) 

CALL OPS$VALUE (%VAL (IS )) 

C 

C For given time interval, create a function for power as a 

C function of time, P(t)=a*P(0)+b 

IF (lOPTION.NE.l) THEN 

RATE=(POWERJ-POWER)/DT 

C0NST=P0WER-RATE*T1 

POWER=POWERJ 

ELSE 

RATE=0.0 

CONST=POWER 

END IF 

T1=T2 

C 

C Upload the information by creating a WME in the active working 

C memory of ACES 

CALL OPS$TAB (%VAL (IA3 )) 

IR=OPS$CVFA (%VAL (RATE )) 

CALL OPS$VALUE (%VAL (IR )) 

CALL OPS$TAB ('/.VAL (IA4 )) 

IC=OPS$CVFA (%VAL (CONST )) 

CALL OPS$VALUE C/.VAL (IC )) 

CALL OPS$ASSERT() 

GO TO 1 

5 FORMAT(2X,'Current power is ',F8.4,' % at time 
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F8.2,' mins') 
RETURN 
END 



138 

APPENDIX C: SUPPORT ROUTINES OF REACTOR MODEL 

The routines introduced in this section are related to the reactor model and has 

no direct effects on the decision process of ACES. However, the subroutine REAC­

TOR receives information from ACES related to proposed control, and sends the 

current status after a minute long time step back to ACES by creating a WME. This 

process is supposed to be replaced with a monitoring rule in actual applications. 

C 
C One-group one-dimensional PWR core model 

SUBROUTINE REACTOR 
C 

IMPLICIT REAL*8 (A-H,0-Z) 
INCLUDE 'OPS$LIBRARY:OPSDEF.FOR' 

C 
PARAMETER (MX=200) 
DOUBLE PRECISION A(MX),B(MX),XXE(MX),XI(MX),T(MX),TR(MX) 
DOUBLE PRECISION SIGMAC(MX),FLUX(MX),FLUXO(MX),C(MX),AF(MX) 
DOUBLE PRECISION CRBANK(5),0UTS(10),KOLD,NU,NW 
REAL*4 AOS,PPOW.PER,BORON,TIMES,TI,TO 
INTEGER IP0S(5),IP0SC(5) 

C 
C Restore the parameters sent from ACES related to control 

INP1=0PS$PARAMETER (%VAL (1 )) 
INP2=0PS$PARAMETER ('/.VAL (2 )) 
INP3=0PS$PARAMETER ('/.VAL (3 )) 
INP4=0PS$PARAMETER ('/.VAL (4 )) 
INP5=0PS$PARAMETER (%VAL (5 )) 
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INP6=0PS$PARAMETER ('/.VAL (6 )) 
INP7=0PS$PARAMETER ('/.VAL (7 )) 
IP0SC(1)=0PS$CVAN ('/.VAL (INPl )) 
IP0SC(2)=0PS$CVAN (%VAL (INP2 )) 
IP0SC(3)=0PS$CVAN (%VAL (INP3 )) 
IP0SC(4)=0PS$CVAN (%VAL (INP4 )) 
IP0SC(5)=0PS$CVAN ('/.VAL (INP5 )) 
IBOR=OPS$CVAN ('/.VAL (INP6 )) 
TIN=DBLE(OPS$CVAF (%VAL (INP7 ))) 

C 
C Restore the state from the data file if the variables are not 
C initialized yet 

IF(TIME.EQ.0.0) THEN 
OPEN(1,NAME='STE',STATUS»'UNKNOWN') 
0PEN(2,NAME='TRS',STATUS»'UNKNOWN') 
READ(1,*) HS,K0LD,BR2 
READd,*) THPOW,HEIGHT,HZ 
READd,*) D.NU.SIGMAF 
READd,*) SIGMAA.TAV.HT 
READd,*) NW.CB.SIGMIB 
READ(1,*) YIELDX.DECAYX.SIGMIX 
READd,*) YIELDI,DEÇAYI,DEÇAYC 
READ d,*) CRBANK,SFNU,AMNUSF,DB,OPF 
READd,*) PCOEF,TCOEF,CON 
READd,*) BETA,DT 
READd,*) TR 
READ(2,*) POWER,BOR,TIME,K 
READ(2,*) FLUXO,XXE,XI,C 
READ(2,*) IPOS.SIGMAC 
CLOSE(!) 

END IF 
C 

DO 9 1=1,MS 
9 AF(I)=FLUXO(I) 

POLD=POWER 
IFLAG=0 

TIMEOUT=TIME+HT 
C 
C Perform the control actions proposed by ACES 

DO 6 1=1,5 



140 

6 IPOSC(I)=IPOSC(I)-IPOS(I) 
IBS=SIGN(1,IB0R) 

C 
C Boron concentration change is limited by 1 unit per second 
1 IF (IBOR.NE.O) THEN 

BOR=BOR+DBLE(IBS)*DB 
IB0R=IB0R-IBS*1 

ENDIF 
C 
C FLCRs will be moved one step per second to simulate the 
C reactivity insertion rates. Therefore, there will be a limit of 
C 60 steps per minute. 

IF (IFLAG.EQ.O) CALL MOVECR(SIGMAC,CRBANK,IFLAG,IPOS,IPOSC) 
C 

C0EF1=2*D/HZ**2+SIGMIB*CB*B0R*NW+D*BR2+SIGMAA 
C 
C Generation of tri-diagonal finite difference matrix for 
C diffusion equation. Off-diagonal elements are all constant and 
C equal to parameter CON. Therefore, The matrix is stored in 
C a vector A as diagonal elements. 

TIME=TIME+DT 
TSUM=0.do 
DO 10 I=1,MS-1 

T(I)=TCOEF*(HZ*TSUM+FLUXO(I)*HZ/2,dO)+TIN 
A(I)=C0EF1+SIGMAC(I)+AMNUSF*(T(I)-TR(I)) 

+ +SIGMIX»XXE(I)-(1.dO-BETA)*SFNU 
C(I)=C1*C(I)+C2*FLUX0(I) 
B(I)=DECAYC*C(I) 

10 TSUM=TSUM+FLUXO(I) 
T(MS)=TCOEF*HZ*TSUM+TIN 

C 
C Solution of the system at next time step by forward Gaussian 
C elimination, euid backward substitution 

DO 15 I=2,MS-1 
C0EF=C0N/A(I-1) 
A(I)=A(I)-C0EF*C0N 

15 B(I)=B(I)-C0EF*B(I-1) 
FLUX(MS-1)=B(MS-1)/A(MS-1) 
SUM1=FLUX(MS-1) 
DO 20 I=MS-2,1,-1 
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FLUX(I)=(B(I)rCON*FLUX(I+l))/A(I) 
20 SUM1=SUM1+FLUX(I) 
C 
C Calculate new power 

P0WER=PC0EF*SIGMAF*HZ*SUM1 
DPDT=(POWER-FOLD)/DT 
POLD-POWER 

IF (TIME.LT.TIMEOUT) THEN 
DO 35 1=1,MS 

35 FLUXO(I)=FLUX(I) 
GO TO 1 

ENDIF 
C 

DO 2 I=1,MS-1 

XXE(I) = (YIELDX* SIGMAF*FLUXO(I)+DECAYI*XI(I)-DEÇAYX*XXE(I) 
+ -SIGMIX*XXE(I)*FLUXO(I))*HT+XXE(I) 

2 XI(I)=(YIELDI*SIGMAF*FLUXO(I)-DECAYI*XI(I))*HT+XI(I) 
C 
C Calculating the reactor parameters for ACES 

Pl=FLUX(100)*HZ/2.d0 
P2=P1 
DO 110 1=1,99 
P1=P1+HZ*FLUX(I) 

110 P2=P2+HZ*FLUX(I+100) 
AO=(P2-Pl)/(Pl+P2)flOOdO 
AOS=SNGL(AO) 

PPOW=SNGL(P0WER/THP0W*100.0) 
PER=SNGL(POWER/DPDT) 
TIMES=SNGL(TIMEOUT/60.dO) 
BORON=SMQL(BOR) 
TI=SNGL(TIN) 
TO=SNGL(T(MS)) 

C 
C Sending the reactor parameters to ACES by creating WHEs 

CALL CREATE(PPOW,AOS,PER,BORON,TIMES,TI,TO,IPOS) 
C 

T0UT=TIME0UT/60.D0 
OPT=OPF*DBLE(K) 

C 

C Output generation for graphics 



142 

IF (TOUT.GE.OPT) THEN 
CALL OUTFL(FLUX,XXE) 
K=K+1 

ENDIF 
RETURN 
END 

C 
C This routine moves FLCRs by one step if it is proposed by ACES 

SUBROUTINE MOVECR (SIGMAC,CRBANK,IFLAG,IPOS,IPOSC) 
DOUBLE PRECISION SIGHAC(200).CRBANK(5) 
INTEGER IP0S(5),IP0SC(5) 

K0UNT=0 
DO 1 J=l,5 

IF (IPOSC(J).NE.O) THEN 
IS=SIGN(1,IP0SC(J)) 
IL=IPOS(J)+IS 
IF (IS.GT.O) IL=IL-1 

IF (J.EQ.5) THEN 
I1=IP0S(J)-IS 
12=11+50 

SIGMAC(IL)=SIGMAC(I1) 
SIGMAC(IL+50)=SIGMAC(I2) 

ELSE 
SIGMAC(IL)=SIGMAC(IL)-IS*CRBANK(J) 

ENDIF 
IPOSC(J)=IPOSC(J)-IS 
IPOS(J)=IPOS(J)+IS 

ELSE 
K0UNT=K0UNT+1 

ENDIF 
CONTINUE 
IF(K0UNT.Eq.5) IFLAG=1 

RETURN 

END 

This routine creates WHEs of STATUS and CRODS for ACES 
It translates the data into 0PS5 atoms and assigns their 
values to attributes of related WHEs. 

SUBROUTINE CREATE (POWER,AO,PERIOD.BOR,TIME,TI,TO,IPOS) 
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IMPLICIT REAL*4 (A-H,0-Z) 
INCLUDE 'OPS$LIBRARY:OPSDEF.FOR' 

C 
INTEGER IPOS(5) 
CHARACTER*5 BANK(4) 

C 
DATA BANK/'FLORA','FLCRB','FLCRC','FLCRD'/ 

C 

CALL OPS$RESET () 
IST=OPS$INTERN (%REF ('STATE' ), %VAL (5 )) 
CALL OPS$VALUE (%VAL (1ST )) 
IA1=0PS$INTERN (%REF ('POWER' ), %VAL (5 )) 
IA2=0PS$INTERM (%REF ( ' AXIAL.OFFSET ' ), '/.VAL (12 )) 
IA3=0PS$INTERN C/.REF ('PERIOD' ), %VAL (6 )) 
IA4=0PS$INTERN (%REF ('TIME' ), '/.VAL (4 )) 
IA5=0PS$INTERN (%REF ('TEMP.IN' ), %VAL (7 )) 
IA6=0PS$INTERN (%REF ('TEMP.OUT' ), %VAL (8 )) 
IA8=0PS$INTERN (%REF ('B.CONC ), %VAL (6 )) 

C 
C Creating the STATUS 

CALL OPS$TAB (%VAL (lAl )) 
IP=OPS$CVFA (%VAL (POWER )) 
CALL OPS$VALUE (%VAL (IP )) 

C 
CALL OPS$TAB ('/.VAL (IA2 )) 
IAO=OPS$CVFA ('/.VAL (AO )) 
CALL OPS$VALUE (%VAL (lAO )) 

C 
CALL OPS$TAB C/.VAL (IA3 )) 
IPR=OPS$CVFA (%VAL (PERIOD )) 

CALL OPS$VALUE C/.VAL (IPR )) 
C 

CALL OPS$TAB ('/.VAL (IA4 )) 
IT=OPS$CVFA ('/.VAL (TIME )) 

CALL OPS$VALUE ('/.VAL (IT )) 
C 

CALL OPS$TAB (%VAL (IAS )) . 
IT=OPS$CVFA (%VAL (TI )) 
CALL OPS$VALUE (%VAL (IT )) 
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CALL OPS$TAB (%VAL (IA6 )) 
IT=OPS$CVFA (%VAL (TO )) 
CALL OPS$VALUE (%VAL (IT )) 

C 
CALL OPS$TAB (%VAL (IA8 )) 
IB=OPS$CVFA (%VAL (BOR )) 
CALL OPS$VALUE ('/.VAL (IB )) 
CALL OPS$ASSERT() 

C 
IST=OPS$INTERN (%REF ('CRODS' ), %VAL (5 )) 
IA1=0PS$INTERN (%REF ('BANK' ), %VAL (4 )) 
IA2=0PS$INTERN (%REF ('POSITION' ), '/.VAL (8 )) 
IA3=0PS$INTERN (%REF ('NUMBER' ), %VAL (6 )) 

C 
C Creating CRODS for each FLCR banks 

DO 10 1=1,4 

CALL OPS$RESET () 
CALL OPS$VALUE ('/.VAL (1ST )) 
CALL OPS$TAB (%VAL (lAl )) 
IP=OPS$INTERN (%REF (BANK(I) ). %VAL (5 )) 
CALL QPS$VALUE (%VAL (IP )) 

C 
CALL OPS$TAB C/.VAL (IA2 )) 
IPO=OPS$CVNA (%VAL (IPOS(I) )) 

CALL OPS$VALUE (%VAL (IPO )) 
C 

CALL OPS$TAB (%VAL (IA3 )) 
INUM=OPS$CVNA (%VAL (I )) 
CALL OPS$VALUE (%VAL (INUM )) 

C 
CALL OPS$ASSERT() 

10 CONTINUE 
C 
C Creating CRODS for PLCR bank 

CALL OPS$RESET () 
CALL OPS$VALUE (%VAL (1ST )) 
CALL OPS$TAB ('/.VAL (lAl )) 
IP=OPS$INTERN (%REF ('PLCR' ), '/.VAL (4 )) 
CALL OPS$VALUE (%VAL (IP )) 
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CALL OPS$TAB ('/.VAL (IA2 )) 
IPO=OPS$CVNA (%VAL (IP0S(5) )) 
CALL OPS$VALUE (%VAL (IPO )) 

C 
CALL OPS$TAB ('/.VAL (IA3 )) 
INUM=OPS$CVNA ('/.VAL (5 )) 
CALL OPS$VALUE (%VAL (INUM )) 

C 

CALL OPS$ASSERT() 
C 

RETURN 
END 

C 

C This routine is called by ACES directly, and initialize the 
C subroutine REACTOR. It also initializes the STATUS eoid CRODS 
C 

SUBROUTINE INIT 
IMPLICIT REAL*8 (A-H.O-Z) 
INCLUDE 'OPS$LIBRARY:OPSDEF.FOR' 

C 
PARAMETER (MX=200) 
DOUBLE PRECISION XXE(MX),XI(MX),TR(MX) 
DOUBLE PRECISION SIGMAC(MX),FLUXO(MX),C(MX) 
DOUBLE PRECISION CRBANK(5),KOLD,NU,NW 
REAL*4 POW,AOF,PER,BORON,TIME,TI,TO,AOD 
INTEGER IPOS(5) 
CHARACTER*6 FILEl 

C 
PRINT*,' Enter the steady state file name ' 
READ*,FILEl 
OPEN(1,NAME=FILE1,STATUS='UNKNOWN') 
OPEN(2,NAME='STE',STATUS='UNKNOWN') 
OPEN(3.NAME='TRS',STATUS»'UNKNOWN') 

C 

READd,*) MS,K0LD,BR2 
READd,*) POWER,HEIGHT,BOR 
READd,*) D,NU,SIGMAF 
READd,*) SIGMAA,TIN,SIGMAC 
READd,*) NW,CB,SIGMIB 

READd,*) YIELDX,DECAYX,SIGMIX 
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READCl,*) YIELDI.DECAYI.IPOS 
READ(1,*) CRBANK,SFNU,AMNUSF,BETA,DECAYC,TAV 
READCl,*) PC0EF,TC0EF,C0N,A0,A02 
READCl,*) FLUXO,XXE,XI,C 
READCl,*) HZ,HT,TIM 
READCl,*) TR 
READCl,*) DB 
CLOSE(l) 

DT=ldO 
0PF=60.d0 

POW=SNGL(POWER/POWER*100.0) 
AOF=SNGLCAO) 

PER=SNGLC0.0848*KOLD/CKOLD-l.dO)) 
TIME=0.0 
BORON=SNGLCBOR) 
TI=SNGLCTIN) 
TO=SNGL C2.dO*TAV-TIN) 

CALL CREATECPOW,AOF,PER,BORON,TIME,TI,TO,IPOS) 

CALL OPS$RESET C) 
IST=OPS$INTERN C%REF C'AOCNTRL' ), %VAL C7 )) 
CALL OPS$VALUE C'/.VAL CiST )) 
IA2=0PS$INTERN C%REF CAO.RATE' ), %VAL (.7 )) 
AOF=AOF/100.0 

CALL OPS$TAB C'/.VAL ClA2 )) 
IAO=OPS$CVFA C%VAL CAOF )) 
CALL OPS$VALUE C'/.VAL ClAO )) 
CALL OPS$ASSERT C) 
K=1 

WRITEC2,*) MS,K0LD,BR2 
WRITEC2,*) POWER,HEIGHT,HZ 
WRITEC2,*) D,NU,SIGMAF 
WRITEC2,*) SIGMAA,TAV,HT 
WRITEC2,*) NW,CB,SIGMIB 
WRITEC2,*) YIELDX,DECAYX,SIGMIX 
WRITEC2,*) YIELDI,DEÇAYI,DECAYC 
WRITE C 2,*) CRBANK,SFNU,AMNUSF,DB,OPF 
WRITEC2,*) PCOEF,TCOEF,CON 
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WRITE(2,*) BETA.DT 
WRITE(2,*) TR 
WRITE(3,*) POWER,BOR,TIM,K 
WRITE(3,*) FLUXO,XXE,XI,C 
WRITE(3,*) IPOS.SIGMAC 
CLOSE(2) 
CL0SE(3) 
RETURN 

END 
C 

C Generates outputs of the flux and xenon distribution 
SUBROUTINE OUTFL(FLUX,XE) 

C 

IMPLICIT REAL*8 (A-H,0-Z) 
C 

PARAMETER (MX=200) 
DOUBLE PRECISION XE(MX),FLUX(MX) 
CHARACTER*10 FILE 

C 
PRINT*,' Do you want output (1-yes/O-no) ' 
READ*,IRESP 
IF (IRESP.NE.l) RETURN 
PRINT*,' Enter the file name ' 
READ*,FILE 
Z=O.DO 

OPEN(3,NAME=FILE,STATUS»'UNKNOWN') 
WRITE(3,10) Z,Z,Z 
DO 35 1=1,MX 
Z=Z+.005 

35 WRITE(3.10) Z,FLUX(I),XE(I) 
10 F0RMAT(1X,F7.4,2(2X,E15.7)) 

CL0SE(3) 
RETURN 
END 

C 
C Subroutine OUTPUT is called from ACES to create 
C a set of output for graphics purposes, 
C emd saves the current information in a file. It has been used 
C for practical purposes only, and it does not contain any on-line 
C graphics routine. 
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SUBROUTINE OUTPUT 
C 

IMPLICIT REAL*4 (A-H,0-Z) 
INCLUDE 'OPS$LIBRARY:OPSDEF.FOR' 

C 
C Restoring the data sent from ACES 

INP1=0PS$PARAMETER (%VAL (1 )) 
INP2=0PS$PARAMETER (%VAL (2 )) 
INP3=0PS$PARAMETER ('/.VAL (3 )) 
INP4=0PS$PARAMETER ('/.VAL (4 )) 
INP5=0PS$PARAMETER ('/.VAL (5 )) 
INP6=0PS$PARAMETER (%VAL (6 )) 
INP7=0PS$PARAMETER (%VAL (7 )) 
INP8=0PS$PARAMETER (%VAL (8 )) 
INP9=0PS$PARAMETER (%VAL (9 )) 
INP10=0PS$PARAMETER ('/.VAL (10 )) 
INP11=0PS$PARAMETER (%VAL (11 )) 
INP12=0PS$PARAMETER (%VAL (12 )) 
INP13=0PS$PARAMETER (%VAL (13 )) 
INP14=0PS$PARAMETER ('/.VAL (14 )) 
INP15=0PS$PARAMETER (%VAL (15 )) 
TIME=OPS$CVAF (%VAL (INPl )) 
POW=OPS$CVAF (%VAL (INP2 )) 
AO=OPS$CVAF (%VAL (INP3 )) 
B=OPS$CVAF (%VAL (INP4 )) 
I1=0PS$CVAN ('/.VAL (INP5 )) 
I2=0PS$CVAN ('/.VAL (INP6 )) 
I3=0PS$CVAN ('/.VAL (INP7 )) 
I4=0PS$CVAN (%VAL (INP8 )) 
I5=0PS$CVAN (%VAL (INP9 )) 
TP0W=0PS$CVAF ('/.VAL (INPIO )) 
TA0=0PS$CVAF (%VAL (INPll )) 
TIN=0PS$CVAF (%VAL (INP12 )) 
TOUT=OPS$CVAF (%VAL (INP13 )) 
AOU=OPS$CVAF ('/.VAL (INP14 )) 
AOL=OPS$CVAF (%VAL (INP15 )) 
TIME=TIME/60.0 
0PEN(UNIT=1,NAME='STATE',STATUS='UNKNOWN',ACCESS='APPEND') 
0PEN(UNIT=2,NAME='SAUX',STATUS='UNKNOWN',ACCESS='APPEND') 

WRITEd.l) TIME,POW,AO.B.II. 12.13,14.15 
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WRITE(2,2) TIME,TPOW,TAO,AOU,AOL,TIN 
CLOSE(1) 
CL0SE(2) 

FORMATdX ,4(F10.6,IX), 514) 
FORMAT(1X,6(F10.5,1X)) 
RETURN 
END 
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APPENDIX D; STEADY.FOR 

The initial conditions of the REACTOR.FOR will be determined by the steady 

state solution of the system. STEADY.FOR solves the nonlinear eigenvalue problem 

with power method, and iterates on the boron concentration to achieve the criticality. 

It writes the initial conditions into a user defined file. 

IMPLICIT REAL*8 (A-H,0-Z) 
PARAMETER (MX=200) 
DOUBLE PRECISION A(MX),SGURCE(MX),XXE(MX),XI(MX),T(MX) 
DOUBLE PRECISION SIGMC(4),FLUX(MX),FLUXO(MX),C(MX),BES(5) 
DOUBLE PRECISION SIGMAC(MX),CRBANK(5),KOLD,KNEW,NU,NWO 
INTEGER IPOS(5) 
CHARACTER*15 FOUT 

C 
C Core composition, euid basic data 

DATA THPOW.GC.HEIGHT.RADIUS/3.4d9.3.2d-11,3.7d2,1.7d2/ 
DATA D,NU,SIGMAF,SIGMAA/1.2dO,2.418dO,.06617d0,.1285D0/ 
DATA NW0,CB,SIGMIB/2.41d22,.33161d-6,3.838d-21/ 
DATA YIELDX,DECAYX/.228d-2,.20917d-4/ 
DATA YIELDI,DECAYI/.06386d0,.2875d-4/ 
DATA XMDOT,CP/1.569444d4,6.06d3/ 
DATA BETA,DECAYC/.65d-2,.767d-l/ 
DATA IPGS/70,120,180,201,0/ 
DATA RATIO,BESJl/.63182d0,.5395077d0/ 

C 
EXTRAD=176.34d0 
MS=200 
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H=HEIGHT/DBLE(MS) 
BR=2.405(i0/EXTRAD 
BR2=BR**2 
PI=4.dO*DATAN(l.dO) 
BES(l)=8.d0*.40366d0 
BES(2)=4.d0*.69078d0 
BES(3)=4.do*(.92834dO+.21534d0) 
BES(4)=1.dO+8.do*.3574d0 
BES(5)=8.d0*.64014d0 
CRC=1.8636d0/(2.dO*PI*RADIUS*BESJl/BR) 
PC0EF=GC*PI*RADIUS**2 
ALPHAM=l.d-4 
AHNUSF=ALPHAM*NU*SIGMAF 
TIN=300.d0 

C 

C Initial guess for flux distribution ; SINE function 
FMAX=THPOW/(PC0EF*SIGMAF*2.dO*HEIGHT/PI) 
Z—0•do 
CCOEF=BETA*NU*SIGMAF/DECAYC 
TCOEF=SIGMAF*PCOEF/XMDOT/CP 
TSUM=0.d0 
DO 1 1=1,MS 
Z=Z+H 

FLUXO(I)=FMAX*DSIN(PI*Z/HEIGHT) 
T(I)=TCOEF*(H*TSUM+FLUX(I)*H/2.dO)+TIN 

1 TSUM=TSUM+FLUX(I) 
T(MS)=TCOEF*H*TSUM+TIN 

C 
B0R=9.d2 

SIGHIX=1.2318943d-18*RATI0 
C0N=-D/H**2 

C0EF2=(YIELDI+YIELDX)*SIGMAF 
AR=5.d0 
RAT=4.D0 

CRSUM=0.d0 
DO 33 1=1,4 

33 CRSUM=CRSUM+BES(I) 
SIGMC(4)=AR*CRC*CRSUM 
SIGMC(2)=AR*CRC*BES(5)/RAT 
EPSK=l.D-8 
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EPSF=l.d-7 
SIGMC(l)=0.d0 
SIGMC(3)=0.d0 
KOLD=l.dO 
ITER=0 

C 
C Outer iteration on boron concentration 
2 COEF1=2*D/H**2+SIGMIB*CB*BOR*NWO+D*BR2+SIGMAA 
C 

C Inner iteration on effective multiplication factor 
5 ITER=ITER+1 

J=1 

DO 10 I=1,MS-1 

IF (I.GE.IPOS(J)) J=J+1 
A(I)=C0EF1+SIGMC(J)+SIGMIX*C0EF2*FLUX0(I)/ 

+ (DECAYX+SIGMIX*FLUXO(I)) 
10 SOURCE(I)=NU*SIGMAF*FLUXO(I)/KOLD 
C 

C Solution of the system 
DO 15 I=2,MS-1 
C0EF=C0N/A(I-1) 
A(I)=A(I)-COEF*CON 

15 S0URCE(I)=S0URCE(I)-C0EF*S0URCE(I-1) 
FLUX(MS-1)=S0URCE(MS-1)/A(MS-1) 
DO 20 I=MS-2,1,-1 

20 FLUX(I)=(S0URCE(I)-C0N*FLUX(I+1))/A(I) 
TSUM=0.d0 

C 
C Calculation of Keff 

SUMl=0.d0 
SUM2=0.dO 

DO 25 I=1,MS-1 
SUM1=SUM1+FLUX0(I) 

25 SUM2=SUM2+FLUX(I) 
KNEH=SUM2/SUMl»KOLD 

C 
C Calculation of error terms 

ERR1=DABS((KNEW-KOLD)/KOLD) 
ERR2=0.d0 

DO 30 I=1,MS-1 
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ERR=DABS((FLUX(I)-FLUXO(I))/FLUXO(I)) 
IF (ERR.GT.ERR2) ERR2=ERR 

30 CONTINUE 
IF (ERRl.GT.EPSF.OR.ERR2.GT.EPSF) THEN 
KOLD=KNEW 
DO 35 1=1,MS 

35 FLUXO(I)=FLUX(I) 
GO TO 5 

ENDIF 
C End of inner iteration 
C 

IF (DABS(KNEW-l.dO.GT.EPSK) THEN 
BOR=BOR*KNEW 
ITER=0 

PRINT*,'BORON = ',BOR 
GO TO 2 

ENDIF 
C End of outer iteration 
C 

C Rescaling the flux by reactor power 
PSUM=0.d0 
DO 40 I=1,MS-1 

40 PSUM=PSUM+FLUX(I) 
POWER=PCOEF*SIGMAF*H*PSUM 

IF (DABS((POWER-THPOW)/THPOW).GT.EPSF) THEN 
DO 45 I=1,MS-1 

45 FLUXO(I)=FLUX(I)*THPOW/POWER 
ITER=0 

GO TO 5 

ENDIF 
C End of solution 
C 

0PEN(UNIT=1,NAME='TO',STATUS='UNKNOWN') 
Z=0.do 

WRITE(1,50) Z.Z,Z.TIN 
50 F0RMAT(2X,F6.4,3(2X,E15.7)) 

TSUM=0.d0 

C 

C Calculation of xenon, iodine, and precursor concentrations 
DO 55 I=1,MS-1 
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XXE ( I)=C0EF2*FLUX(I)/(DECAYX+SIQMIX*FLUX(I)) 
XI(I)=YIELDI*SIGMAF*FLUX(I)/DECAYI 
T(I)=TCOEF*(H*TSUM+FLUX(I)*H/2.dO)+TIN 
C(I)=CCOEF/KNEtf*FLUX(I) 
Z=Z+.OOBdO 

WRITE(1,50) Z,FLUX(I),XXE(I),T(I) 
55 TSUM=TSUM+FLUX(I) 

Z=l.dO 

T(MS)=TCOEF*H*TSUM+TIN 
TAV=(T(MS)+TIN)/2.dO 

WRITEd.SO) Z,FLUX(MS),XXE(MS),T(MS) 
C 

Pl=FLUX(100)*HZ/2.d0 
P2=P1 
DO 110 1=1,99 
P1=P1+HZ*FLUX(I) 

110 P2=P2+HZ*FLUX(I+100) 
AO=(P2-Pl)/(Pl+P2)vioOdO 
A02=l.dO-2.dO*FQl/Pl 
DO 34 1=1,5 

34 CRBANK(I)=BES(I)*AR*CRC 
CRBANK(5)=CRBANK(5)/RAT 
J=1 
DO 3 1=1,MX 

IF (I.GE.IPOS(J)) J=J+1 
3 SIGMAC(I)=SIGMC(J) 

IP0S(5)=IP0S(1) 
IP0S(1)=IP0S(3) 
IP0S(2)=IP0S(3) 
IP0S(4)=IP0S(3) 
SFNU=NU*SIGMAF/KNEW 
HZ=HEIGHT/DBLE(MS) 
TIME=0.d0 
HT=6.dl 

PRINT*,' Enter output file name ' 
READ*,FOUT 
OPEN(UNIT=2,NAME=FOUT,STATUS='UNKNOWN') 

WRITE(2,*) MS,KNEW,BR2 

WRITE(2,*) POWER,HEIGHT,BOR 
WRITE(2,*) D,NU,SIGMAF 
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WRITE(2,*) SIGMAA,TIN,SIGMAC 
WRITE(2,*) NWO.CB.SIGMIB 
WRITE(2,*) YIELDX.DECAYX.SIGMIX 
WRITE(2.*) YIELDI.DECAYI.IPOS 
WRITE(2,*) CRBANK.SFNU.AHNUSF.BETA.DECAYC.TAV 
WRITE(2.») PCOEF.TCOEF.CON.AO.A02 
WRITE(2.») FLUXO.XXE.XI.C 
WRITE(2.*) HZ,HT.TIME 
WRITE(2.*) T 
STOP 
END 
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APPENDIX E: REACTIVITY WORTH ROUTINES 

The calculation of reactivity worth curves for FLCRs and boron are performed 

by two separate programs for practical purposes, even though the solution methods 

are the same. The first program retrieves the steady state solution and generates the 

differential rod worth curves for the FLCRs. The second one solves for the reactivity 

worth of a user defined unit of boron concentration change, and stores the result in 

the same file that the rod worth curves are stored. 

C 
C CRWORTH.FOR 
C 

IMPLICIT REAL*8 (A-H,0-Z) 
PARAMETER (MX=200) 
DOUBLE PRECISION XXE(MX).XI(MX),A(MX),SOURCE(MX),T(MX),TR(MX) 
DOUBLE PRECISION SIGMC(4),SIGMAC(MX),FLUX(MX).FLUXO(MX),C(HX) 
DOUBLE PRECISION CRBANK(5),HR(4),KOLD,NU,NW,KIN,KNEW 
DOUBLE PRECISION SIGMAD(MX),XF(MX),CD(MX) 
INTEGER IP0S(5),IP0SD(5) 
CHARACTER*10 FILE1,FILE2 
CHARACTER*5 BANK(5) 
DATA BANK/'flcra','flcrb','flcrc','flcrd','pier'/ 

C 
PRINT*,' Enter the neune of steady state data file: ' 
READ*,FILE1 
0PEN(UNIT=1,NAME=FILE1,STATUS»'UNKNOWN') 

PRINT*,' Enter the name of output file: ' 
READ*,FILE2 
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OPEN(UNIT=2,NAME=FILE2,STATUS»'UNKNOWN') 
READd,*) MS,KIN,BR2 
READd,*) THPOW,HEIGHT.BORD 
READd,*) D,NU,SIGMAF 
READd,*) SIGMAA.TIN.SIGHAD 
READd,*) NW.CB.SIGMIB 
READd,*) YIELDX.DECAYX.SIGMIX 
READd,*) YIELDI.DECAYI.IPOSD 

READd,*) CRBANK.SFNU.AMNUSF.BETA.DECAYC.TAV 
READd,*) PC0EF,TC0EF.C0N.A0.A02 
READd,*) XF.XXE.XI.CD 
READd,*) D1,D2,D3 
READCl,*) TR 

C 
PI=4.dO*ATANd.dO) 
EPS=l.d-5 

H=HEIGHT/DBLE(MS) 
CCOEF=BETA*NU* SIGMAF/DECAYC 
C0EF2=(YIELDI+YIELDX)*SIGMAF 
K=0 

9 K=K+1 
IFL=0 
IDP=20 

C 
C Outmost loop for each bemk 
11 DO 21 1=1,5 
21 IPOS(I)=IPDSD(I) 

TSUM=0.d0 
DO 22 1=1,MS 

FLUXO(I)=XF(I) 
T(I)=TCOEF*(H*TSUM+FLUXO(I)*H/2.dO)+TIN 
TSUM=TSUM+FLUXO(I) 
C(I)=CD(I) 

22 SIGMAC(I)=SIGMAD(I) 
C 

PRINT*.K.IDP 
BOR=BORD 
KOLD=KIN 

CALL MOVECR (SIGMAC.CRBANK.IPOS,K,IDP) 
ITER=0 
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Solution of nonlinear eigenvalue problem without 
criticality search 

C0EFi=2*D/H**2+SIQMIB*CB*B0R*NW+D*BR2+SIGMAA 

ITER=ITER+1 
TSUM=0.d0 
DO 10 I=1,MS-1 

A(I)=COEF1+SIGMAC(I)+SIGMIX*COEF2*FLUXO(I)/ 
+ (DECAYX+SIGMIX*FLUXO(I))+AMNUSF*(T(I)-TR(I)) 

SOURCE(!)=(!.dO-BETA)*NU*SIGMAF*FLUXO(I)/KOLD+DECAYC*C(I) 

DO 15 I=2,MS-1 
C0EF=C0N/A(I-1) 
A(I)=A(I)-COEF*CON 
S0URCE(I)=S0URCE(I)-C0EF*S0URCE(I-1) 

FLUX(MS-1)«SOURCE(MS-1)/A(MS-1) 
C(MS-1)=CC0EF*FLUX(MS-1) 
DO 20 I=MS-2,1,-1 
FLUX(I)=(S0URCE(I)-C0N*FLUX(I+1))/A(I) 
C(I)=CCOEF*FLUX(I) 

TSUM=0.dO 
DO 23 1=1,MS-1 

T(I)=TCOEF*(H*TSUM+FLUX(I)*H/2.dO)+TIN 
TSUM=TSUM+FLUX(I) 

T(MS)=TCOEF*H*TSUM+TIN 

SUMl=0.d0 
SUM2=0.d0 
DO 25 1=1,MS-1 
SUM1=SUM1+FLUX0(I) 
SUM2=SUM2+FLUX(I) 

KNEW=SUM2/SUMl*KOLD 

ERR1=DABS((KNEW-KOLD)/KOLD) 
ERR2=0.do 
DO 30 1=1,MS-1 

ERR=DABS((FLUX(I)-FLUXO(I))/FLUXO(I)) 
IF (ERR.GT.ERR2) ERR2=ERR 
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30 CONTINUE 
IF (ERR1.GT.EPS.0R.ERR2.GT.EPS) THEN 
KOLD=KNEW 
DO 35 1=1,MS 

35 FLUXO(I)=FLUX(I) 
GO TO 5 

ENDIF 
PRINT*,ITER 
PSUM=0.d0 
DO 40 I=1,MS-1 

40 PSUM=PSUM+FLUX(I) 
POWER=PCOEF*SIGMAF*H*PSUM 
IF (DABS((POWER-THPOW)/THPOW).GT.EPS) THEN 
DO 45 I=1,MS-1 

45 FLUXq(I)=FLUX(I)*THPOW/POWER 
ITER=0 

GO TO 5 
ENDIF 

C 
C Calculation of reactivity at each case 

RHO=(KNEW-KIN)/KNEW 
IF (IFL.EQ.O) THEN 
WX=RHO 
IFL=1 

IDP=-179 

GO TO 11 
ENDIF 

C 
C Calculation of total reactivity worth of each bemk 

WR(K)=WX-RHO 
IF(K.LT.4) GO TO 9 
PRINT*, WR 
SUM=0.dO 
K=0 

C 
C Calculation of differential worth curves 

DO 201 1=1,MS 
201 SUM=SUM+(SIN(PI*DBLE(I)/DBLE(MS)))**2 
202 K=K+1 

DO 203 1=1,MS 
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D=WR(K)*(SIN(PI*DBLE(I)/DBLE(MS)))**2/SUM 
WRITE(2,100) BANK(K),I,D 

IF(K.LE.3) GO TO 202 
F0RMAT(2X,A5,I4.2X,E15.7) 
STOP 
END 

SUBROUTINE MOVECR (SIGMAC.CRBANK.IPOS.IOPl.IDP) 
DOUBLE PRECISION SIGMAC(200).CRBANK(5) 
INTEGER IPOS(5) 

IS=SIGN(1,IDP) 
IL=IP0S(I0P1)+IS 
IU=IP0S(I0P1)+IDP 
IF (IDP.GT.O) THEN 
IL=IL-1 
IU=IU-1 

ENDIF 
IF (I0P1.EQ.5) THEN 
I1=IP0S(5)-IS 
12=11+50 

DO 1 I=IL,IU.IS 
SIGMAC(I)=SIGMAC(I1) 
SIGMAC(I+50)=SIGMAC(I2) 

ELSE 
DO 2 I=IL,IU.IS 
SIGMAC(I)=SIGMAC(I)-IS*CRBANK(I0P1) 

ENDIF 
IPOS(lOPl)=IPOS(lOPl)+IDP 

RETURN 
END 
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C 
C BRWORTH.FOR 

IMPLICIT REAL*8 (A-H,0-Z) 
PARAMETER (MX=200) 

DOUBLE PRECISION A(MX),B(MX),XXE(MX),XI(MX),T(MX),TR(MX) 
DOUBLE PRECISION SIGMAC(MX),FLUX(MX),FLUXO(MX),C(MX),XF(MX) 
DOUBLE PRECISION CRBANK(5).KIN,KOLD,NU.NW,CD(MX).W(3) 
INTEGER IPGS(5) 

CHARACTER*10 FILEl 
C 

PRINT*,' Enter the steady state file name ' 
READ*,FILEl 
OPENd ,NAME=FILE1 .STATUS»'UNKNOWN' ) 

PRINT*,' Enter the name of output file: ' 
READ*,FILEl 
0PEN(UNIT=2,NAME=FILE1,STATUS»'UNKNOWN',ACCESS»'APPEND') 
READd,*) MS,KIN,BR2 
READd,*) THPOW,HEIGHT,BORD 
READd,*) D.NU.SIGMAF 
READd,*) SIGHAA.TIN.SIGHAC 
READd,*) NW.CB.SIGHIB 
READd,*) YIELDX,DECAYX,SIGMIX 
READd,*) YIELDI,DECAYI,IPOS 
READd,*) CRBANK,SFNU,AMNUSF,BETA,DECAYC,TAV 
READd,*) PC0EF,TC0EF,C0N,A0,A02 
READd,*) XF,XXE,XI,CD 
READd,*) D1,D2,D3 
READd,*) TR 

PI=4.dO*ATANd.dO) 
HZ=HEIGHT/DBLE(MS) 
CCOEF=BETA*SFNU/DECAYC 
C0EF2=(YIELDI+YIELDX)*SIGMAF 
IFL=1 
DT=ldO 

PRINT*,' Enter the minimum amount of boron change ' 
READ*,DB 
HT=60.d0 

Cl=l.dO-DT*DECAYC 
C2=DT*BETA*SFNU 
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TIMEOUT=HT 

C 
C Outermost iteration for positive and negative reactivity insertion 
11 DO 21 1=1,200 

FLUXO(I)=XF(I) 
21 C(I)=CD(I) 

C 
BOR=BORD+DBLE(IFL)*DB 
KOLD=KIN 

C 
POWER=THPOW 
POLD=POWER 
TIME=0.d0 

C 
C Solution of nonlinear eigenvalue problem without 
C criticality search 
1 C0EF1=2*D/HZ**2+SIGMIB*CB*B0R*NW+D*BR2+SIGMAA 

TIME=TIME+DT 
TSUM=0.d0 
DO 10 I=1,MS-1 

T(I)=TCOEF*(HZ*TSUM+FLUXO(I)•HZ/2.dO)+TIN 
A(I)=C0EF1+SIGMAC(I)+AMNUSF*(T(I)-TR(I)) 

+ +SIGMIX*XXE(I)-(l.dO-BETA)*SFNU 
C(I)=C1*C(I)+C2*FLUX0(I) 
B(I)=DECAYC*C(I) 

10 TSUM=TSUM+FLUXO(I) 
T(MS)=TCOEF*HZ*TSUM+TIN 

C 
DO 15 I=2,MS-1 
C0EF=C0N/A(I-1) 
A(I)=A(I)-COEF*CON 

15 B(I)=B(I)-C0EF*B(I-1) 
FLUX(MS-1)=B(MS-1)/A(MS-1) 
SUM1=FLUX(MS-1) 
DO 20 I=MS-2,1,-1 
FLUX(I)=(B(I)-C0N*FLUX(I+1))/A(I) 

20 SUM1=SUM1+FLUX(I) 
C 

P0WER=PC0EF*SIGMAF*HZ*SUM1 
DPDT=(POWER-POLD)/DT 
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POLD=POWER 

IF (TIME.LT.TIMEOUT) THEN 
DO 35 1=1,MS 

35 FLUXO(I)=FLUX(I) 
GO TO 1 

ENDIF 
C 

C Absolute value of reactivity worths are averaged 
TP=HT/LOG(POWER/THPOW) 
IF (IFL.EQ.l) THEN 
W(l)=-1.d0*0.0848d0/TP 
IFL=-1 

GO TO 11 
ENDIF 
W(2)=0.0848d0/TP 
W(3)=(W(l)+M(2))/2.dO 
WRITECl,*) DB 
WRITE(2,101) DB.W(3) 

101 F0RMAT(/,2(2X,E15.7)) 
WRITE(2,*) TAV 
STOP 
END 


