Algorithmic aspects and finite element solutions for advanced phase field approach to martensitic phase transformation under large strains

Thumbnail Image
Date
2019-10-01
Authors
Babaei, Hamed
Basak, Anup
Levitas, Valery
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Organizational Unit
Aerospace Engineering

The Department of Aerospace Engineering seeks to instruct the design, analysis, testing, and operation of vehicles which operate in air, water, or space, including studies of aerodynamics, structure mechanics, propulsion, and the like.

History
The Department of Aerospace Engineering was organized as the Department of Aeronautical Engineering in 1942. Its name was changed to the Department of Aerospace Engineering in 1961. In 1990, the department absorbed the Department of Engineering Science and Mechanics and became the Department of Aerospace Engineering and Engineering Mechanics. In 2003 the name was changed back to the Department of Aerospace Engineering.

Dates of Existence
1942-present

Historical Names

  • Department of Aerospace Engineering and Engineering Mechanics (1990-2003)

Related Units

Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Organizational Unit
Materials Science and Engineering
Materials engineers create new materials and improve existing materials. Everything is limited by the materials that are used to produce it. Materials engineers understand the relationship between the properties of a material and its internal structure — from the macro level down to the atomic level. The better the materials, the better the end result — it’s as simple as that.
Journal Issue
Is Version Of
Versions
Series
Department
Aerospace EngineeringAmes National LaboratoryMechanical EngineeringMaterials Science and Engineering
Abstract

A new problem formulation and numerical algorithm for an advanced phase-field approach (PFA) to martensitic phase transformation (PT) are presented. Finite elastic and transformational strains are considered using a fully geometrically-nonlinear formulation, which includes different anisotropic elastic properties of phases. The requirements for the thermodynamic potentials and transformation deformation gradient tensor are advanced to reproduce crystal lattice instability conditions under a general stress tensor obtained by molecular dynamics (MD) simulations. The PFA parameters are calibrated, in particular, based on the results of MD simulations for PTs between semiconducting Si I and metallic Si II phases under complex action of all six components of the stress tensor (Levitas et al. in Phys Rev Lett 118:025701, 2017a; Phys Rev B 96:054118, 2017b). The independence of the PFA instability conditions of the prescribed stress measure is demonstrated numerically for the initiation of the PT. However, it is observed that the PT cannot be completed unless the stress exceeds the stress peak points that depend on which stress measure is prescribed. Various 3D problems on lattice instability and following nanostructure evolution in single-crystal Si are solved. The effect of stress hysteresis on the nanostructure evolution is studied through analysis of the local driving force and stress fields. It is demonstrated that variation of internal stress fields due to differing boundary conditions may lead to completely different PT mechanisms.

Comments

This is a post-peer-review, pre-copyedit version of an article published in Computational Mechanics. The final authenticated version is available online at: 10.1007/s00466-019-01699-y. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Tue Jan 01 00:00:00 UTC 2019
Collections