Characterization and modeling of thermal protective fabrics under Molotov cocktail exposure

Thumbnail Image
Date
2021-01-05
Authors
Mandal, Sumit
Song, Guowen
Rossi, Rene
Grover, Indu
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Song, Guowen
Professor
Research Projects
Organizational Units
Organizational Unit
Apparel, Events and Hospitality Management

The Department of Apparel, Education Studies, and Hospitality Management provides an interdisciplinary look into areas of aesthetics, leadership, event planning, entrepreneurship, and multi-channel retailing. It consists of four majors: Apparel, Merchandising, and Design; Event Management; Family and Consumer Education and Studies; and Hospitality Management.

History
The Department of Apparel, Education Studies, and Hospitality Management was founded in 2001 from the merging of the Department of Family and Consumer Sciences Education and Studies; the Department of Textiles and Clothing, and the Department of Hotel, Restaurant and Institutional Management.

Dates of Existence
2001 - present

Related Units

  • College of Human Sciences (parent college)
  • Department of Family and Consumer Sciences Education and Studies (predecessor)
  • Department of Hotel, Restaurant, and Institutional Management (predecessor)
  • Department of Textiles and Clothing (predecessor)
  • Trend Magazine (student organization)

Journal Issue
Is Version Of
Versions
Series
Department
Apparel, Events and Hospitality Management
Abstract

This study aims to characterize and model the thermal protective fabrics usually used in workwear under Molotov cocktail exposure. Physical properties of the fabrics were measured; and, thermal protective performances of the fabrics were evaluated under a fire exposure generated from the laboratory-simulated Molotov cocktail. The performance was calculated in terms of the amount of thermal energy transmitted through the fabrics; additionally, the time required to generate a second-degree burn on wearers’ bodies was predicted from the calculated transmitted thermal energy. For the characterization, the parameters that affected the protective performance were identified and discussed with regards to the theory of heat and mass transfer. The relationships between the properties of the fabric systems and the protective performances were statistically analyzed. The significant fabric properties affecting the performance were further employed in the empirical modeling techniques − Multiple Linear Regression (MLR) and Artificial Neural Network (ANN) for predicting the protective performance. The Coefficient of Determination (R2) and Root Mean Square Error (RMSE) of the developed MLR and ANN models were also compared to identify the best-fit model for predicting the protective performance. This study found that thermal resistance and evaporative resistance are two significant properties (P-Values < 0.05) that negatively affect the transmitted thermal energy through the fabric systems. Also, R2 and RMSE values of ANN model were much higher (R2 = 0.94) and lower (RMSE = 37.42), respectively, than MLR model (R2 = 0.73; RMSE = 191.38); therefore, ANN is the best-fit model to predict the protective performance. In summary, this study could build an in-depth understanding of the parameters that can affect the protective performance of fabrics used in the workwear of high-risk sectors employees and would provide them better occupational health and safety.

Comments

This accepted article is published as Mandal S, Song G, Rossi RM, Grover IB. Characterization and modeling of thermal protective fabrics under Molotov cocktail exposure. Journal of Industrial Textiles. January 2021. doi:10.1177/1528083720984973. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Fri Jan 01 00:00:00 UTC 2021
Collections