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Figure 2.18 The measured partition coefficient on the interface velocity
for Al-4.5 and 9 at.%As and model predictions. Aziz’s solute
trapping model for dilute solution (Eq. 2.14) is fitted with
Vp=0.46 m/sec[33]

rate and the tip radius. In this theory, the total undercooling, AT, is composed of three parts:

the thermal undercooling, AT;, the solute undercooling, AT,, and the curvature undercooling,

AT,,

AT = AT, + AT, + AT, (2.23)

These undercoolings are described in Figure 2.20 and Figure 2.21. When a steady state

isolated alloy dendrite grows into the melt with temperature T, solute pile-up in front of

the tip increase the melting temperature with the distance from the tip. Latent heat rejected

from the solid increase the tip temperature from 7T,,. Due to the capillary force at the tip, the

curvature undercooling exists.

The undercoolings are given for dilute alloys and linear solidus and liquidus lines by

AT = ATE (co) — T (2.24)
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Figure 2.19 Measured solidification velocity as a function of melt under-
cooling for (A) pure Ni and (B) NizgCugp binary alloy. For
both materials, the growth mode was changed at a critical un-
dercooling AT™*. The solid curve is a theoretical prediction
with LKT model[50]. With considering the kinetic undercool-
ing, the dashed curve was fitted to the measured data with
p = 1.6 m/sK. Using the same value of yu, the experimented
data of NizgCugg was fitted by the BCT model with Aziz’s so-
lute trapping model[51]. For comparison, the prediction with
k=1 (partitionless growth) and k=0.81 (the equilibrium parti-
tion coefficient) are also shown.[38]

AT, = kAT { — Tv (Fe) } (2.26)

AT, = 2Ty T/R* (2.27)

where T7 (co) is the equilibrium liquidus temperature for the nominal concentration of the
alloy, ¢, and T is the liquid melt bath temperature. L is the latent heat per unit volume,
Cp is the heat capacity per unit volume, and ATj is the freezing range of the alloy for c¢g,
mrco (ke — 1) /ke when the liquidus line is straight (i.e. my, is constant). Ivantsov function,
Iv(P), is given by

Iv(P) = PePEy (P) (2.28)

where the function Fj (P) is the first exponential integral function. The parameters P, and
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Figure 2.20 Melt temperature and the liquidus temperature ahead of a
dendrite tip which is growing into an undercooled melt[49]

P, are thermal and solute Peclet numbers, respectively, and given by VR/2«a and VR/2Dy,
respectively. R* is a dendrite tip radius, « is a liquid thermal diffusivity, and Dy, is a solute
diffusivity in the melt.

For a given AT, specific values of R* and V cannot be uniquely specified by the Eq. 2.24-
2.28 which only give the relation between AT and the product of V and R*. To specify the
value of R* under a given solidification condition, the LGK model employed the marginal
stability criterion by Langer and Muller-Krumbhaar[52]. According to this stability criterion,
the observed R* is equal to the shortest wavelength, \;, of a perturbation which can grow under
the local growth condition at the tip. This wavelength is given by the minimum unstable
wavelength in the result of the linear stability theory for planar interface at low velocity
(Figure 2.7). With this marginal stability criterion, all the parameters at the dendrite tip
could be successfully obtained.

However, the marginal stability criterion in LGK model is for small k. and small P.. Thus,
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Figure 2.21 A schematic binary phase diagram, describing tip temperature
T* and tip concentration ¢} and c§ of a steady state dendrite
growing into the undercooled melt with To[49].

Boettinger-Coriell[26] obtained more rigorous expression for minimum wavelength which can be
employed even for large P, (but small P;) using Mullins-Sekerka’s stability criterion (MS)[10],
and later Lipton-Kurz-Trivedi (LKT)[50] extended it for large P. and large P;. The wavelength

obtained by LKT model is

1/2
Tyl'/o*
Ai=R = = /;Lico(ke—l) (2.29)
(L/Cp) P& + T (k) To(Pr) ¢
— 1 _ 2k, % s ) .
where & = 1— m and £, =1+ TRy TPyt The parameter o* is 1/47°. With

Eq. 2.23-2.29, V* and R* can be predicted with a given melt undercooling, AT

Boettinger, Coriell, and Trivedi (BCT)[51] modified the previous dendritic growth theory
by considering the thermodynamic driving force of solidification process, Eq. 2.17[1], and Turn-
bull’s linear kinetic model[27], Eq. 2.16. They also applied interface solute trapping model[2, 53]
(Eq. 2.14) and the marginal stability criterion from LKT model (Eq. 2.29) to predict the tip
radius. In this analysis,

AT = AT, + AT, + AT, + ATy, (2.30)
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where AT}, is the kinetic undercooling. For AT, ATy, and AT,., Eq. 2.24, Eq. 2.25, and Eq. 2.27
can be applied, respectively. For R*  the marginal stability criterion for high P. and P; from
LKT model (Eq. 2.27) was used, but k. was replaced by ky to describe the solute trapping
phenomenon. AT, and AT} are same as the third and fourth terms in Eq. 2.21, respectively,

and can be rewritten as

mY /m§
AT.=mSco |1 — Ll L 2.31
mLeo \ LT T T D) o (P (2:31)
AT, = V*/pu (2.32)
where mj is the kinetic liquidus slope, which is
1—ky —kyln(ky/ke
mg:m;{ v 1_an( v/ )} (2.33)

for dilute alloys, and the interface mobility, u = LVp/ (RT ]%/[) According to this solution,
when the solidification rate becomes sufficiently high, the steady state interface temperature
might be sensitively influenced by the degree of solute trapping and the interface attachment
kinetics represented by AT}, both of which are varying with the interface velocity, V*.

The broken curve in the Figure 2.19 (B) shows the prediction from this BCT model. p for
AT} and Vp for ky are treated as adjustable parameters to best fit the theoretical model on
the experimental results. This gives a good agreement with the experimental data below AT™
as shown in Figure 2.19. But, the linear growth mode above AT* could not be predicted by

the BCT model.

2.2.5 Kinetic phase diagram and steady state interface temperature during rapid

solidification

The interface response function for a planar growth front (Eq. 2.21) can be used to plot non-
equilibrium phase diagrams. At a given V*, the Eq. 2.21 gives the relationships of the interface

temperature versus the interface compositions, i.e. non-equilibrium solidus and liquidus lines
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Figure 2.22 Kinetic phase-diagram of Al-Fe binary alloys with different
growth rates calculated by Carrard et al.[54]. The points 1,2,3,
and 4 indicate the steady state planar front temperature for
an Al-5 at.%Fe alloy.

for a dilute binary alloy with straight equilibrium solidus and liquidus lines. These kinetic phase
diagrams depend on the parameter, y and Vp. Figure 2.22 is one example of kinetic phase
diagrams calculated by Carrard et al.[54] for Al-Fe binary alloys. Instead of constant m¢ and
ke, concentration-dependent m$ and temperature-dependent k. are used for this result. This
result shows a typical variation of the steady state interface temperature of a planar front with
V*. For Al-5 at.% Fe alloy, the steady state T* with the local equilibrium condition is much
lower than 500 K. When V* increases and solute trapping at the interface occurs, the slope of
the solidus curve increases and that of the liquidus curve decreases with V*. Thus, the solidus
and liquidus curves approach each other and the steady state T* of the planar front increases
(points 1,2, and 3 in Figure 2.22). If p is large enough that the AT} term can be ignored, those
two curves would eventually converge on the Ty-curve. For general metallic systems, the effect
of the kinetic undercooling becomes important at very high velocities. Then the whole solidus
and liquidus curves may drop toward lower temperatures in the phase diagram, depending on
V* (point 4 in Figure 2.22).

Based on kinetic phase diagrams for a given alloy composition, ¢y, the liquidus and solidus
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Figure 2.23  Schematic solidus and liquidus temperatures, Ts(co, V') and
T1.(co, V), respectively, for a given alloy composition, ¢g, with
different growth velocities. The steady state planar front tem-
perature is equal to Ts(cp, V'), and dendrite tip temperatures
can be obtained by the theories which are described in the
previous section

temperatures, T7, (cg) and Ts (cp), could be represented in terms of V as shown in Figure 2.23.
With low or moderate V* where the local equilibrium condition can be retained, 77, and Tg
remain constant and are same as the equilibrium values. As V* increases, T's and 77, approach
Ty first due to the solute trapping phenomenon, and then both 77, and Tg decrease due to the
influence of AT}. Decrease of Ts might happen when the effect of the kinetic undercooling
become significant enough to compensate the undercooling decrease due to the solute trapping,
and Ts may have a maximum. While both Ts and T}, are decreasing with V*, the values
approach each other with V* until ky=1.

For a steady state planar-front growth, c§ is the same as ¢y and T* is equal to Ts(co, V). If
planar-front growth were to happen for all velocities, the variation of T* with V* would follow

the Tg curve in Figure 2.23. In metallic alloy systems, the thermal and solutal fluctuations
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in front of the interface induce the interface instability, the planar front breaks down, and
dendrite or cell structure develops under a general solidification condition. Theories for each
of these events with various V* have been extensively developed as described in the previous

section, whereas the mechanism of rapid solidification of alloys has not been fully clarified yet.

2.2.6 Modified solute trapping and dendritic growth models

Galenko and Sobolev[3, 55] expended Aziz’s solute trapping model, considering the relax-
ation time of non-equilibrium chemical diffusion process in the bulk liquid phase by introducing
a parameter, Vpy, which is defined as a maximum speed for the front of the solute diffusion
propagation[55]. For dilute solutions, the model was formulated as
ke (1=V2/V3,)+V/VD

1—V2/V3, + V/Vp
ky =1 (V>Vpr) (2.35)

ky = (V < VDL) (2.34)

Figure 2.24 shows the difference between Galenko’s model and Aziz’s model with the same
Vp. While ky can converge onto the value of unity only at infinite velocity with Aziz’s solute
trapping model, Galenko’s model allows for a description of the complete partitionless (ky=1)
interface at above a finite velocity (Vpr,).

Figure 2.25 shows the comparisons of this Galenko’s model with Aziz’s solute trapping
model fitted to the experimentally measured ky (squares and circles) by Kittl et al.[33, 36].
While Aziz’s solute trapping model (dashed curves) fits well only with moderate solidification
velocities, Galenko’s model (solid curves) provided better agreement with this experiment even
for very high velocity (V' > Vp) where ky becomes close to 1.

However, due to the lack of experimental data for such an extremely high velocity range,
these solute trapping models have not been thoroughly validated. More exact experimental
data is required especially for the high interface velocity where ky is approaching to 1.

For the prediction of steady state rapid dendritic growth, Galenko and Danilov[56, 57]
extended the previous models by considering the non-equilibrium solute diffusion in the melt

with Galenko and Sobolev’s solute trapping model instead of Aziz’s model. By utilizing another
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Figure 2.24 The variations of the partition coefficient with growth velocity
from Aziz’s solute trapping model and Galenko’s solute trap-
ping model

adjustable parameter, Vpr, the model predictions for a whole range of undercoolings agree
reasonably well with experimental data even at an undercooling higher than AT%. Wang
et al.[58] further extended this model considering the non-linear liquidus and solidus lines.
By fitting with several adjustable parameters, the model calculation is in reasonably good
agreement with experimental data as shown in Figure 2.26.

According to these analytical models, dendritic growth should be controlled by purely
solutal diffusion field ahead of the dendrite tip at low undercoolings. This undercooling range
corresponds to AT <180 K in the Figure 2.26. During this solutal-controlled dendritic growth,
V* increases with AT, and at the same time solute trapping may start. In this relatively
low-rate growth, thermal diffusion length is much longer than the tip radius, and thermal
diffusion might have almost no influence on the growth. As V* increases further, thermal
diffusion length becomes shorter, and both solutal and thermal fields control the dendritic
growth. The onset velocity of the solutal/thermal dendrite corresponds to the solutal absolute

stability velocity, Vag, obtained by the stability analysis[58]. In the analytical modeling in
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Figure 2.25 Partition coefficient versus interface velocity from Galenko’s
solute trapping model (curves 1 and 2) fitted to the Kittl et
al.’s experimental data which is shown in Figure 2.18. Vp=0.8
m/s, Vpr,=2.5 m/s for curve 1 and 2.1 m/s for curve 2 are used.
The curves 1’ and 2’ are given by Eq. 2.34 with Vpr = oo which
is identical with Aziz’s solute trapping model[55].

Figure 2.26, Vag corresponds to the undercooling around AT =180 K where the V — AT
behavior starts to change. For AT > AT(Vyg), the solute trapping phenomenon results in
the gradual transition from solute and thermal dendritic growth to purely thermal dendritic
growth. According to Galenko’s solute trapping model, the degree of solute partitioning at the
interface abruptly decreases over a finite velocity range, and complete solute trapping occurs
when V* > Vpr. When the complete solute trapping takes place, the dendritic growth would
be controlled by pure thermal diffusion. According to Galenko and Danilov, this transition
causes the growth mechanism change from power law to linear law at a critical undercooling,
AT*, and this AT* is the undercooling where V' = Vpr. For AT > AT (Vpy), solute pile-up
in front of dendrites vanishes, the concentration of solid phase behind the tip becomes same
as the nominal concentration of the alloy system, and the dendritic growth should be purely
thermal-controlled.

To describe the phenomenon that happens at and near the interface, these steady state

dendrite growth models utilize many separate analytic models: collision-limited growth model,
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Figure 2.26 Dendritic growth velocity versus bath undercooling. The
squares are experimental data of Ni-0.7 at.% B alloys by Eck-
ler et al.[40, 59], the dotted curve is the prediction of the BCT
model, the broken curve is that of Galenko’s model[56], and
the solid curve is Wang’s prediction.

solute trapping model, marginal stability criterion (or microscopic solvability theory), and
solute drag model. The values of many physical parameters for these separate models have
been approximated or obtained by fitting the model into experimental data since those are
hard to be obtained experimentally are considered as adjustable fitting parameters.

Despite these attempts to describe rapid growth kinetics with analytical models, the funda-
mental and comprehensive mechanism regarding the rapid solidification dynamics has not been
clearly enlightened yet. So far, no conclusive answer has been given to the V* — AT behavior:
the behavior above AT* and the physical interpretation of AT* as well as the quantification
of the value itself. This question still remains far from fully answered even though there have
been several accounts and conjectures that point to the reason of the growth mode change at
AT* such as; residual oxygen[47], effects of the anisotropy of kinetic interfacial mobility and
change of the solute diffusion field due to the dramatic change of morphology such as den-

drite to cell (or seaweed structure) transition and side branch development[60], termination
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of the steady state dendritic growth[60, 61, 62], and transition from solutal-controlled growth
to thermal-controlled growth[63, 64] which has been described above. Although the modeling
results could be in good agreement with experimental data, those are limited to the descrip-
tion of steady state dendritic growth. These analytic steady state dendrite models ignored the
various morphological changes with growth dynamics. In order to investigate rapid growth dy-
namics with morphology evolution, a numerical approach is more appropriate than analytical

modeling with combination of separate models for each process.

2.3 Banded Structure Formation

2.3.1 Early interesting observation of banded structure in rapid solidification

In rapid alloy solidification experiments, Sastry-Suryanarayana[65] first showed a periodic
band structure as an independent phenomenon in their rapid quenching experiments of Al-
Pd droplets. This band structure is characterized by regular succession of alternating light
and dark bands parallel to the solidification front (Figure 2.27). It has been shown that
the formation of this structure is a common phenomenon, in laser- or electron-beam melting,
melt-spinning or splat quenching experiments with various alloy systems:

Dendritic alloys: Ag-1765% Cu[66, 67, 68, 69, 70, 71], Al-20"33%Cu[72], Al-0.5"4%Fe[73],
Al-20%Pd|[65], Al-6%Zr[74]

Eutectic alloys: Ag-28%Cu[66], Al-33%Cu[75, 76]

Formation of this banded structure occurs at velocities near the limit of the absolute stabil-
ity: the absolute stability velocity can be calculated from Mullins-Sekerka’s stability analysis
of planar front and the velocity, a perturbation with any wavelength tends to diminish, i.e. a
planar front is the most stable. In the dark bands, cellular, dendritic or eutectic structures have
been seen, depending on the nominal composition of the alloy. The light band is segregation
free and has uniform composition, so that it has been presumed that the planar growth results
in these light bands.

From the series of electron beam solidifications of Ag-Cu binary alloys with various beam

scanning velocities and alloy compositions, the microstructure map, Figure 2.28, was estab-
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Figure 2.27 Typical banded structure observed in electron beam solidifi-
cation of Ag-Cu alloys. The electron beam scan velocity is 17
cm/sec. [66]

lished [66]. The band structure was observed with the velocities between those for cell/dendrites
and for microsegregation-free structures. Band structure did not appear in dilute alloys. The
velocities for the transitions from cells/dendrites to bands, and from bands to microsegregation-

free structures decrease with cy.

2.3.2 Interface stability analysis for banded structure formation

Banded structure formation is an interesting phenomenon since it cannot be explained by
the classical Mullins-Sekerka’s linear absolute stability analysis[10] for planar interface. The
modified linear absolute stability analysis accounting for local non-equilibrium effect, such
as solute trapping[77, 78], may be related with the band structure formation. The result of
the modified linear absolute stability analysis for planar interface showed that the velocity of
absolute stability limit, Vg, is higher than that from the classical Mullins-Sekerka’s stability
analysis, and at velocities slightly less than Vjg, there is an oscillatory instability with time
for rather long wavelengths.

Coriell-Sekerka[77] modified the classical Mullins-Sekerka’s linear stability theory[10] by
considering the velocity-dependent chemical partition coefficient for the first time. In the

result of this analysis, it was shown that at high velocities there exists oscillatory instability
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Figure 2.28 Experimentally determined microstructure selection map for
Ag-Cu alloys by electron beam solidification[66]

for relatively long wavelength perturbations, in addition to the instability predicted by Mullins-
Sekerka’s theory. This modified stability analysis suggested that the instability may occur with
so called ”solute pump mechanism.” For V* with large 0ky /OV, the local interface velocities
along the perturbed solid-liquid interface is varying, and so as ky . Thus, there exists variation
of solute rejection rate along the interface. For any perturbation, the local interface velocity
and ky reach maxima at the peak of the perturbation and thus the least amount of solute
would be rejected at the peak. This makes lateral solute segregation which does not required
lateral solute diffusion. This is the suggested ”solute pump mechanism” which explains how
the relatively long wavelength perturbation can be unstable even at high velocities. Since the
wavelength is quite long, capillarity is not very effective in stabilizing the plane front. This is in
contrast with the situation in the classical Mullins-Sekerka’s stability model; solute diffusion
drives the lateral segregation, only a short wavelength of perturbation which can produce
lateral segregation would exist at high velocities because of decreasing solute diffusive time,

and this short wave is strongly stabilized by capillarity. Such instability of long wavelength
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perturbations may exist at even higher interface velocities than that of the absolute stability
limit by Mullins-Sekerka’s theory. This is because capillarity does not strongly affect the
instability of this long wavelength perturbation, whereas in the classical Mullins-Sekerka’s
stability analysis the plane front stabilizes by the strong capillarity effect. The result of the
modified linear stability analysis critically depends on the parameters, p and Vp. For V* with
small derivative, Oky /OV, classical Mullins-Sekerka absolute stability theory may be valid with
direct substitution of ky for k..

This instability in the solute pump mechanism has oscillatory characteristics. Since solute is
least rejected at the peak of a perturbation, the decreased local concentration gradient makes
the local velocity at the peak of the perturbation slower. With a decreasing peak velocity,
ky decreases at the peak. Then more amount of solute is rejected from solid and the local
concentration gradient increases again. Subsequently, the local interface velocity increases.
This cycle repeats.

This long wavelength oscillatory instability had been considered as a possible mechanism of
banded structure formation[66, 79]. However, even if the diffusionless lateral solute segregation
occurs, the degree of the segregation is not big enough to explain the high solute concentration
of precipitations in dark bands. Furthermore, this lateral solute segregation cannot directly
explain the evolution of alternating morphologies in banded structures.

Merchant-Davis[78] modified the analysis of Coriell-Sekerka[77]. Using Aziz’s solute trap-
ping model for dilute solutions[2] and incorporating the kinetic undercooling at the interface,
the Merchant-Davis’s model allows velocity-dependent ky and T* in a thermodynamically con-
sistent way. Based on the fixed temperature gradient condition, latent heat release is ignored.
In this analysis, new oscillatory instability for the infinite wavelength, i.e. planar front, has
been identified. Above a certain critical growth velocity, zero-wave number of perturbation
becomes most unstable. This is schematically illustrated in Figure 2.29 and Figure 2.30. Fig-
ure 2.29 represents a spectrum of amplification rates of perturbations for a given V at which
plane front oscillatory instability occurs. If a perturbation has a positive amplification rate, the

plane front tends to be unstable and the perturbation with corresponding wavelength would
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grow. In addition to the instability of perturbations with a finite range of wavelengths pre-
dicted in the Mullis-Sekerka’s model (solid curve), it has been shown that there exists another
instability with very high wavelengths (dashed curve) and the most unstable perturbation is
one with infinite wavelength. Figure 2.30 shows conditions where amplification rate becomes
zero (neutral stability) for any wavelength in V' — ¢y space. The solid curve in a low velocity
range represents the neutral stability condition for non-oscillatory instability, and the dashed
curve in a high velocity range shows that for the oscillatory planar front instability identified
by Merchant-Davis. The interface mobility,u, affects the stabilization of this oscillatory insta-
bility as well as Oky /OV. With a ky close to unity or smaller value of p, planar front tends to
stabilize. A smaller u leads to a shifted dashed curve to the higher ¢y range in the Figure 2.30.
It has been proposed that this instability of planar front should trigger the oscillatory inter-
face dynamics which yields banded structures[80, 81]. Later, Huntley-Davis[82] extended the
linear stability analysis for better understanding of the role of thermal diffusion in banding

phenomena.

2.3.3 Phenomenological analysis and schematics of banded structure formation

The linear stability analysis has been shown that planar front has oscillatory instability
at high growth rates and this instability might trigger the interface dynamics for banded
structure formation. This, however, cannot explain the interface dynamics itself which could
give rise to banded structures. Thus Boettinger et al.[66], Gremaud et al.[73], and Carrard
et al.[54] have proposed a phenomenological interface dynamics model to elaborate the time-
periodic structure change. The Figure 2.31 schematically shows the steady state velocity-
dependent interface temperature of planar and dendritic growth for high velocity range. For a
directional growth condition with a constant temperature gradient, G, a given pulling velocity,
Vp, lower than V) gives dendritic structures, and planar growth occurs with Vp higher than
V3. According to Carrard et al.’s explanation[54], if Vp is between V; and V3, the steady state
cannot be achieved because planar front is unstable under a directional growth condition with

a pulling velocity in the range of dTs/dV > 0; the driving force for the solidification decreases
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Figure 2.29 A schematic of amplification rate of perturbations on a planar
front with wavelengths. The solid curve and the dashed curve
represent the non-oscillatory and oscillatory instabilities, re-
spectively. For a certain growth condition, a planar front (the
infinite wavelength) with the oscillatory instability can have
the maximum amplification rate as shown in this schematic

as the velocity increases. This instability with V; < V' < V3 might be directly related with
the oscillatory instability of planar front at high growth rates[77, 78]. During the transient
growth, when the interface velocity reaches Vi, the growth appears unstable. The interface
velocity jumps to Vo. At this time the interface temperature remains still since the velocity
jump occurs instantaneously. Then interface temperature and velocity follow the steady state
curve for planar front (Vo — V3). When the temperature becomes Ty ax with V3, the interface
motion becomes unstable again because of the positive slope of the steady state curve. Then the
velocity jumps to the steady state dendrite tip velocity, V4, instantaneously, and then increases
again along with the steady states dendritic growth curve. By repeating this cycle, the interface
motion will never reach its steady state, and periodic bands of dendrites and planar front will
be shown alternately. In this model, it is assumed that when the solidification mode changes

from cellular/dendritic to planar growth and from planar to cellular/dendritic growth, abrupt
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Log ¢,

A schematic of the neutral stability conditions where the maxi-
mum amplification rate is zero for non-oscillatory (solid curve)
and oscillatory (dashed-curve) instabilities. For the growth
conditions corresponding to the right side of the curves, the
planar front becomes unstable.

quasi-instantaneous transition occurs, and between the transitions the steady state is retained.

This model is able to explain the alternating occurrence of dark and light bands, and to be

used for predicting the quantitative band spacings. However, this phenomenological model is

ignored the latent heat generation which might significantly affect the rapid growth dynamics.

In order to describe this oscillating dynamics of banded structures quantitatively, the transient

interface kinetics as well as morphology evolution should be considered[83, 84, 85, 86, 54].

2.3.4 Numerical analysis of banded structure formation dynamics

Motivated by the phenomenological interface dynamics by Kurz et al.[54] for the forma-

tion of banded structures and the presumption that oscillatory instability of planar interface
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Figure 2.31 The phenomenological model for formation of banded struc-
tures. In directional solidification, when V; < Vp < V3,
the interface dynamics may follow the cycle V; — Vo —
V3 — V4 — V; and never reach the steady state.[54]

(Merchant-Davis[78]) may trigger the dynamics for the banded structure formation, a numerical
analysis was carried out and confirms that the growth condition predicted by Merchant-Davis’s
stability analysis actually leads to the oscillatory interface dynamics of planar front[80, 81] as
suggested in a phenomenological model[54]. Their sharp-interface numerical model of direc-
tional solidification[87] employed the solute trapping model of Aziz[2], attachment kinetic ef-
fect, and velocity-dependent liquidus from thermodynamically consistent model by Boettinger-
Coriell[26] for the boundary conditions at the solid-liquid interface. When the calculation
started from a point on the up-sloping part of Ts curve (between Vi and V3 in Figure 2.31)
under the condition where latent heat is ignored, instantaneous jump of V* to the steady state
planar growth branch, followed by the steady state dynamics along the Ts curve toward V3,
and subsequently instantaneous deceleration of V* at Th;4x are calculated.

It was also shown that the consideration of latent heat strongly affects the oscillatory
instability of planar interface and the time-periodic interface dynamics. A larger thermal
diffusivity decreases the range of Vp and ¢y where the oscillatory instability of planar interface
should occur and the variation range of V* during oscillatory interface dynamics.

Even though this one-dimensional analysis does not include the effect of the transverse
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morphological instability, it still shows an essential feature of interface dynamics responsible

for banding phenomenon.

2.4 Phase-Field Simulation Of Rapid Solidification

Since the phase-field model employs a diffuse interface, the interface dynamics can be pre-
dicted without any prescribed interface conditions. The interfacial conditions can be implicitly
calculated. All the events that occur during growth processes are selected in the direction of
decreasing Gibbs free energy density of the system. By considering only Gibbs free energy
density of the whole system, the only fundamental force which drives the growth, the natural
selection process of rapid growth dynamics can be numerically calculated. More detail of the
phase-field model will be described in the next chapter.

In regard to rapid solidification, a couple of phenomenological calculations have been re-
ported. Boettinger and Warren[88] calculated 2-dimensional morphological evolution of a bi-
nary alloy under the directional solidification conditions. Starting from the initial planar front,
the calculated morphology successfully showed the breakdown of the planar front, evolution
of cell structures, and transition of cell structures into planar front during initial transient
process. But the calculations were primarily focused on the phenomenological evolution itself,
rather than the rapid growth characteristics. In Kim-Kim’s calculation[89], it was demon-
strated that the banded structure evolution could be simulated by the phase-field calculation.
The alternative evolution of dendritic and planar growth has also been successfully shown. Fan
et al.’s calculation[90] shows the morphology transition from dendrite to planar growth with
increasing melt undercooling in the isothermal system.

Solute trapping phenomenon has been investigated with the phase-field model by calcu-
lating the steady state planar interface temperature and the solute distribution across the
interface in an isothermal system with a given steady state interface velocity. Wheeler et
al.[91] first showed the possibility of describing the velocity-dependent solute trapping by the
phase-field model with a constant chemical diffusivity in both phases. Then Ahmad et al.’s

calculation[92] with different diffusivities in bulk phases was fitted by Aziz solute trapping



52

model and showed a good agreement. It was also shown that the solute trapping occurred
when D;/V is comparable to the interface thickness and that the smaller equilibrium partition
coefficient may lead to higher characteristic velocity for solute trapping, Vp. D; is the solute
diffusivity across the interface region. In an effort to fit the phase-field simulation result to
the Kittl et al.’s experimental data[33, 36] which has a slight deviation from Aziz’s model at
high V range, Danilov and Nestler[93] introduced a new definition of interface concentrations
in the phase-field calculation results. The resultant k- as a function of growth rates deviates
with Galenko’s model as well as Aziz’s model. More extensive experimental data is needed to
validate the ki description.

V' — AT behavior of steady state rapid dendritic growth was simulated by Galenko et
al.[63, 64] in an undercooled melt considering both solutal and thermal diffusion processes.
The result could show the V' — AT behavior change at a specific undercooling, AT*. The
calculated solute and temperature field around the steady state dendrite tip confirmed that
there is only a temperature gradient in front of the tip for the undercooling higher than AT™.

The continuous oscillation dynamics of planar front growth under fixed temperature gra-
dients was calculated by Conti[94] in a one-dimensional system. Although the calculation
successfully shows oscillating interface dynamics, the calculated cycle of the interface dynam-
ics in T-V space showed some deviation from the model suggested by Carrard et al.[54] and the
calculation by Karma et al.[80, 81]. In the latter model and calculation, there exist the instan-
taneous acceleration and deceleration of interface velocity with an almost constant interface
temperature when the latent heat release is ignored, but Conti’s result failed to demonstrate
the feature. It can be presumed that the fixed grid spacing used in this work may not be able
to sufficiently resolve the phase- and concentration-fields across the interface region, especially

when the interface velocity is strongly accelerating.
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Table 2.2 Summary of critical investigation in rapid solidification (in

chronological order)

AUTHORS DESCRIPTIONS MAT. | REF.
(YEAR)
Rutter- Experimental The breakdown of planar interface | Sn- [4]
Chalmers(1953) | observation of | into cellular morphology was exper- | and
planar interface | imentally observed by decanting the | Pb-
breakdown melt during growth. base
Constitutional The constitutional undercooling cri- | alloys
undercooling terion in front of the interface was
criterion first suggested as a cause of break-
down of planar interface.
Tiller-Jackson- | Solute redistribu- | Theoretical analysis of solute redis- [8]
Rutter- tion analysis dur- | tribution near the solid-liquid in-
Chalmers(1953) | ing the transient terface of binary alloys was made
Constitutional for initial transient and steady state
undercooling conditions, with a constant interface
criterion velocity.
A quantitative analysis of constitu-
tional undercooling zone was made.
Duwez- The fist obser- | By chill casting, splat quenching, or | Cu- [17,
Willens- vations of solute | laser surface melting, it was found | Ag,Zn-| 19,
Klement(1960), | trapping in rapid | that the concentration of solid grown | Cd,Si- | 20]
Baker- solidification with rapid growth rate could exceed | based
Cahn(1969), the equilibrium value or even the | bi-
White- maximum solid solubility. nary
Narayan- alloys
Young(1979)
Mullins- Stability analysis | The stability of perturbations on [10]
Sekerka(1964) | of planar interface | a plane front of dilute binary al-
loys was analyzed under directional
growth conditions.
For a specific range of interface ve-
locity, perturbations with a specific
range of wavelength may grow into
cells.
Baker- Thermodynamic Thermodynamically possible range [1]
Cahn(1971) analysis of solute | of interface concentrations for a

trapping

given temperature was shown.
The notion of ’solute trapping’ was
first introduced.
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Table 2.2 (Continued)
Sastry- The first obser- | By electron-beam surface melting | Al- [65,
Sryanarayana vation of banded | and splat quenching, banded struc- | Pd, 66]
(1981), structure in rapid | ture was observed at a velocity range | Ag-
Boettinger- solidification between those for cellular/dendritic | Cu
Shechtman- or eutectic growth and for planar
Schaefer- growth.
Biancaniello
(1984)
Aziz(1982) Solute  trapping | A solute trapping model for a dilute 2]
model binary alloy was presented, which
represents the partition coefficient as
a function of interface velocity.
The model shows that the solute
trapping occurs in a finite range of
velocity around the diffusive speed of
solute in the liquid.
Coriell- Non-equilibrium | Extension =~ of = Mullins-Sekerka [77]
Sekerka(1983) | planar interface | (1964)’s linear stability analysis un-
stability analysis | der conditions where the partition
for rapid growth | coefficient varies with velocities.
rate Novel oscillatory instability of per-
turbations with significantly large
wavelengths was found.
Boettinger- Analytic solution | Steady state interface temperature [25]
Coriell- of T(V) for rapid | for planar growth of binary alloys
Sekerka(1984) | planar growth was derived as a function of the in-

terface velocity and the initial melt
concentration, using Baker-Cahn’s
thermodynamic driving energy of so-
lidification (1971), Turnbull’s colli-
sion limited growth model (1975),
and Aziz’s solute trapping model.
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Table 2.2 (Continued)
Trivedi- Instability ~mea- | The morphology evolution from ini- | SCN- | [11]
Somboonsuk surement during | tial flat interface to fully grown | acetong
(1985) the transient steady state dendritic arrays was ob-
served.
It was found that the initial per-
turbation from flat interface starts
during initial transient regime of
the growth, and that the final
steady state morphology is history-
dependent.
Lipton-Kurz- Analytic model of | The LGK model, analytic model of [50]
Trivedi(1987) | dendrite tip radii | dendritic growth for small under-
and velocities | coolings by Lipton-Glicksman-Kurz
for rapid solid- | (1984), was extended for high under-
ification (LKT | coolings by employing the marginal
model) stability criterion for high Peclet
numbers.
Boettinger- Analytic  model | The LKT model was extended by | Ag- [51]
Coriell- of rapid dendritic | employing the kinetic undercooling | Cu
Trivedi(1988) growth (BCT | and Aziz’s solute trapping model.
model)
Willnecker- The first experi- | By levitation melting, the growth ve- | Ni- [38,
Herlach- mental measure- | locities were measured with different | Cu, 95]
Feuerbacher ment of interface | melt undercoolings. Fe-Ni
(1989), Eckler- | velocities versus | The measured data was consistent
Gartner- undercoolings with the prediction of BCT model
Assadi- during rapid | only for undercoolings lower than a
Norman- growth critical value.
Greer- For undercoolings higher than the
Herlach(1997) critical value, a different mode of
growth was observed.
Aziz-Tsao- Experimental Interface partition coefficients as a | Si-Bi, | [28,
Thompson- measurements of | function of growth velocities were ex- | Al- 32]
Peercy- solute trapping perimentally measured. Cu,
White(1986), Aziz’s solute trapping model fits the | Al-
Smith- measured data quite well. Ge,
Aziz(1994) Al-In,

Al-Sn
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Table 2.2 (Continued)
Merchant- Non-equilibrium | The  Coriell-Sekerka’s  stability [78]
Davis(1990) planar interface | analysis (1983) was extended by em-
stability analysis | ploying Aziz’s solute trapping model
for rapid growth | and velocity dependent solidus from
rate Boettinger-Coriell-Sekerka  (1984),
for directional solidification with no
latent heat generation.
For a specific range of pulling veloc-
ities and alloy compositions, time-
periodic oscillatory instability for
zero-wave number was found.
This oscillatory instability was pre-
sumed as an origin of formation of
banded structures.
Carrard- Phenomenological | A phenomenological model of in- | Al- [54]
Gremaud- model of banded | terface dynamics which may yield | Fe,
Zimmermann- | structure forma- | banded structures was first sug- | Al-
Kurz(1992) tion gested. According to this model, the | Cu,
banded structure forms by instanta- | Ag-
neous transitions between dendritic | Cu
and planar growth modes.
Karma- Numerical analy- | By numerical calculation of rapid | Al-Fe | [80,
Sarkissian(1992,| sis of oscillation | planar directional growth, it was 81]
1993) dynamics frist confirmed that the oscilla-

tory planar instability predicted
by Merchant-Davis (1990) actually
leads to the oscillatory interface
dynamics suggested by Carrard et
al.(1992), and latent heat may signif-
icantly alter the oscillatory interface
dynamics.
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Table 2.2 (Continued)
Warren- Analytical model | A theoretical analysis of morphology | SCN- | [13]
Langer(1993) of initial transient | evolution was presented for a direc- | acetone
dynamics tional solidification from initially flat

interface to a steady state dendritic

array.

First, the acceleration of flat inter-

face concerning build-up of solute

boundary layer, second, onset of in-

stability of the flat interface during

the transient, and last, a steady state

primary dendrite spacing are sequen-

tially calculated.
Wheeler- Phase-field simu- | Solute trapping phenomena at the | Ni-Cu | [91,
Boettinger- lation of solute | solid-liquid interface of binary alloys 92]
McFadden trapping at a 1D | were calculated in a one-dimensional
(1993), steady state inter- | isothermal system at a steady state
Ahmad- face with given velocities. The results
Wheeler- are fitted by Aziz’s solute trapping
Boettinger- model and/or compared with exper-
McFadden imentally measured data.
(1998)
Kittl-Aziz- Experimental The first measurement of velocity- | Si-As | [33,
Brunco- measurement  of | dependent partition coefficient for 36]
Thompson solute trapping the high velocity regime and for non-
(1995), Kittl- dilute alloys was performed. The re-
Sanders- sults were reasonably well fitted by
Aziz-Brunco- Aziz’s solute trapping model.
Thompson The partition coefficient at a most
(2000) high velocity was slightly deviated

from the model, but authors ar-

gued that this is due to experimental

uncertainty at such a high velocity

regime.
Galenko- Solute  trapping | Aziz’s solute trapping model was (3,
Sobolev(1997), | model extended, concerning the relaxation 55]
Galenko(2007) time for solute diffusion in the liquid.

In contrast with Aziz’s model, this
model predicts complete solute trap-
ping at a specific interface velocity.
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Table 2.2 (Continued)
Galenko- Analytical predic- | The BCT model was extended by us- | Ni-B, | [56,
Danilov tion of dendritic | ing Galenko’s solute trapping model. | Ni-Cu | 57]
(1997,1999) growth The model can be reasonably well
fitted to experimentally measured
data for very high undercooling
range where the linear growth mode
exists.
Conti(1998) Phase-field  sim- | Oscillatory rapid planar interface | Ni-Cu | [94]
ulation of oscil- | dynamics in directional growth con-
latory  interface | dition was calculated by phase-field
dynamics during | model.
rapid  solidifica- | The growth parameter range where
tion the oscillatory dynamics can occur
was reasonably in agreement with
Merchant-Davis’s stability analysis,
but the interface dynamics itself de-
viated from the previous model and
numerical calculation result.
Boettinger- Phase-field simu- | Time-dependent morphology evolu- | Ni-Cu | [8§]
Warren(1999) | lation of morphol- | tion from initial planar interface
ogy evolution dur- | to steady state planar or cellular
ing directional so- | structure was calculated under a di-
lidification rectional growth condition by the
phase-field model.
Kim- Phase-field simu- | Morphology evolution of banded | Al-Cu | [89]
Kim(2001) lation of banded | structure was shown by the phase-
structure forma- | field simulation.
tion
Fan- Phase-field simu- | Growth mode change with differ- | Ni-Cu | [90]
Greenwood- lation of isother- | ent melt undercoolings accompanied
Haataja- mal rapid crystal | with morphology change and solute
Provatas(2006) | growth trapping was shown by phase-field

simulation.
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Table 2.2 (Continued)

Danilov-
Nestler(2006)

Phase-field simu-
lation of solute
trapping at a 1D
steady state inter-
face

The velocity-dependent chemical
partitioning at the solid-liquid inter-
face of binary alloys was calculated
in a one-dimensional isothermal
system at a steady state with given
velocities. In order to fit to the
Kittl et al’s experimental results
which has a little deviation for
very high velocity, new definition
of interface concentrations was
used. The results are fitted by the
experimentally measured data and
compared with several different
solute trapping models.

Si-As

[93]
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CHAPTER 3. OBJECTIVES AND APPROACH

The primary goal of this work is to investigate the response of the solid-liquid interface
to the driving force and its effect on the morphology evolution of alloys in a highly driven
solidification condition by means of the phase-field simulation. Toward this goal, the critical

questions tackled in this thesis are:

e How do initial transient dynamics of a planar front vary with pulling velocity

during rapid directional growth?

The study on rapid alloy growth dynamics at 'non-steady state’ has not been suffi-
ciently conducted. The relevance of the non-steady state (transient) alloy growth dy-
namics to the final steady state growth morphologies have been shown in the Trivedi-
Somboonsuk’s experimental analysis[11] and Warren-Langer’s theoretical analysis[13] for
'low/moderate’ rate growth where the local equilibrium at the solid-liquid interface is
retained. In rapid directional growth of alloys, it has been considered that the banded
structure formation is the result of non-steady state interface dynamics in which the
chemical partitioning, the interface kinetics, and morphology evolution are all correlated.
However, the calculation of initial transient dynamics of planar directional solidification
by Warren-Langer[13] did not consider the solute trapping phenomenon and also was
based on the purely solutal-diffusion-controlled interface motion. Thus, Warren-Langer’s
analytical method cannot be applied to the rapid growth case where the effect of solute
diffusion on the growth dynamics becomes diminished by solute trapping at the interface
and the effect of atomic attachment kinetics on the growth control becomes stronger.
Karma-Sarkissian[80, 81] used the Aziz’s model to analytically describe the oscillatory

dynamics. But the current research predicts the non-equilibrium partitioning in a more
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natural way without a explicit velocity-composition function.

Can the phase-field method be used to accurately predict the rapid oscillation

dynamics of planar front?

There have been a couple of phase-field studies on the banded structure formation which
can be observed in rapid directional growth condition. Kim-Kim|[89] only reproduced
the phenomenological morphology evolution: alternating dendritic and planar growth
modes occur in the growth direction. Conti[94] could successfully calculate non-steady
oscillatory cycle of planar interface dynamics and the variation of the non-equilibrium
chemical partitioning at the interface along the cycle which may form the banded struc-
ture. But, the trace of the cycle does not agree qualitatively with those of Carrard et
al.’s phenomenological model[54] and Karma-Sarkissian’s numerical calculation[80, 81].
Due to the sharp-interface limit phase-field model and the fixed 'thick’ grid spacing, the
Conti’s work could not properly describe the instantaneous velocity jump during the
cycle. The sharp-interface limit phase-field model could lead to the non-physical solute
diffusion across the interface region, and in turn alter the rapid interface dynamics. Conti
also used fixed grid spacing throughout the whole calculation. This could give rise to
the numerical instability in the calculation: insufficient number of grid points over the

interface region may cause invalid interface kinetics.

How does solute partitioning (ky) vary during non-steady state dynamics, i.e.

initial transient and oscillation dynamics?

Since solute trapping phenomenon is one of the main characteristics of rapid alloy solid-
ification, a velocity-dependent partition coefficient at the steady state has been analyzed
with theoretical approaches and numerical phase-field calculations as well as some experi-
mental measurements. However, the experimental data for very high velocity regimes has
been limited because of the uncertainties in the measurements as described in the Kittl’s
experimental studies[33, 36]. Accordingly, the dependency of the partition coefficient on

the full range of the steady state growth rate has not been clearly validated. Moreover,
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in the growth dynamics, the degree of chemical partitioning is not the parameter which
is determined only by the interface velocity. The chemical partitioning, the interface ve-
locity, and the evolving morphology should be mutually correlated. The investigation of

this correlation during growth must be a critical factor in the rapid solidification study.

e Can the phase-field method be used to probe the influence of solute parti-

tioning on the morphology selection in rapid alloy solidification?

"Rapid’ alloy solidification may be characterized by the non-equilibrium solute partition-
ing and significant effect of atomic attachment kinetics. Even with the phenomenological
and analytical theories developed in the last half century, the understanding of the na-
ture of selection mechanism of the interface dynamics and resulting morphology evolution
is still lacking.This is in contrast with ’low/moderate’ rate solidification for which the
theories have been fairly well established based on numerous experimental observations
and measurements. The precise experimental measurements of interface response and
the solidification condition during rapid growth are very challenging to quantify, thus it

is one of the critical reasons why the study of rapid alloy growth is difficult.

In order to describe the rapid alloy solidification and provide answers for the above ques-
tions, we performed the phase-field simulation in highly driven solidification conditions. For
more quantitatively valid description of rapid growth dynamics, the phase field model in the
thin-interface limit with the anti-trapping current term is utilized. First, one-dimensional cal-
culations for a planar front growth were performed under directional growth conditions with a
fixed temperature gradient, to study the initial transient dynamics under rapid solidification
conditions. We applied seven different pulling velocities in the range of 1 mm/s"10 m/s, in
which Warren-Langer’s model cannot predict the full transient dynamics. The calculations
started with the interface temperature close to the equilibrium liquidus temperature for the
alloy composition, and continued until the interface velocity and the solute composition in the
solid are same as the pulling velocity and alloy composition, respectively. For a pulling velocity
which never leads to the steady state and yields oscillatory interface dynamics, the calculations

are terminated after several repeated cycles were computed. The computed transient interface
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dynamics were compared with Warren-Langer’s predictions and analytical descriptions of the
steady state temperature of a planar interface with velocities, exposing the limitations of the
analytical models and addressing the ability of the current approach to describe the appropri-
ate rapid growth dynamics. The interface concentrations are measured during the transient
growth and thus the correlation between chemical partitioning and interface dynamics was
exhibited. Second, the steady state growth morphologies in isothermally undercooled melts
have been simulated at a fixed melt temperature. With the increasing initial supersaturations,
the steady state interface velocities, radii of the curvature, and interface concentrations were
measured, and it was demonstrated that the phase-field method can appropriately describe
the morphological section associated with the non-equilibrium chemical partitioning as well as
the local equilibrium condition. For all computations in this research, materials parameters

for Ni-Cu binary alloys were used.
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CHAPTER 4. THE PHASE-FIELD MODEL AND THE CALCULATION
METHOD

The traditional numerical modeling method used for solidification processes is the sharp-
interface model. For this calculation, partial differential equations for each phase should be
solved with boundary conditions at the sharp phase boundaries. The difficulty of this calcula-
tion comes from as solving all the partial differential equations and boundary conditions, while
at the same time, tracing the position of interfaces to apply the boundary conditions.

During the last 20 years, the phase-field model has been utilized extensively to calculate
the complex morphological evolution during phase transitions. The model does not explicitly
need to track the interface position or to calculate the boundary conditions at the interface.
Since those are calculated implicitly, the microstructural evolution in the whole system, i.e. for
all the phases, is calculated simultaneously with the one or more order parameters or “phase-
fields” along with the appropriate thermal and solutal diffusion parameters and equations.

Interfacial properties are incorporated with the energetics of the phase field.

4.1 Basic Theory

4.1.1 Diffuse interface and phase-field variable

The phase-field model adapts the diffuse-interface theory[96, 97, 98], wherein an interface
with a finite thickness is used in this model. The concentration or temperature profile is
continuously differentiable in this finite interface region, and any other physical properties of
the interface are diffused over this interface region.

In Phase-field model, a phase is described with the phase-field variable, ¢, which is a

kind of an order parameter. This variable has a unique value in each bulk phase, and varies
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Figure 4.1 Phase-field variable profile over the solid/liquid interface[99]
where x=0 is interface position. § represents the interface thick-
ness. ¢ is zero in solid and unity in liquid bulk phase. In be-
tween the bulk phases, the phase variable changes smoothly.

smoothly over the interface region. Thus, the phase-field variable is spatially continuous,
and it is a function of time. The exact interface position could be assumed to be where the
phase-field variable has the average value of those for the adjacent bulk phases. For example,
Figure 4.1 shows the phase-field variable profile over the solid/liquid interface region where &
is the interface thickness, and the phase-field variable ¢ is 0 in solid and 1 in liquid. Other
common conventions for phase-field variable is 1 in solid and 0 in liquid, or -1 in solid and 1
in liquid.

The phase-field variable within the interface region is physically meaningful in the order-
disorder transition case, where we consider the phase-field variable as the degree of ordering
of the state. In the case of solidification, one possible interpretation of the phase variable is
the amplitude of atomic density wave function[99]. In the bulk solid and liquid phase, the
amplitude of the atomic density function is constant, where as in the interface region, it is
gradually changing. Although this could be a physical explanation of phase-field variable, it is

originally developed as a purely mathematical concept.
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4.1.2 Governing equations

The phase-field model is based on the assumption that the overall rate of evolution is

proportional to the variational derivation, 0F/d¢,
=C = My (4.1)

where F' is the total free energy functional of the system and My is phase-field mobility which

is a positive value [100, 101]. The total free energy of a system can be postulated as
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F= [ (50T + 2 Vol (4.2)

where the chemical free energy density, f, is a function of phase-field variable, temperature,
composition, and so on. The chemical free energy density forms a double well potential with
a free energy barrier between phases. This free energy density function should have the local
minima at the value of phase-field variable for a bulk phase. To make this function in this form,

2 is the gradient penalty due to the gradient of phase-field

auxiliary functions are applied. €
within the interfacial region, which has constant value for an isotropic interfacial energy. The
second term in the square brackets represents the energy which is generated by the phase-field
gradient over the diffuse interface region. Having a larger interface thickness is energetically
favorable since it lowers the phase-field gradient. On the other hand, to decrease the chemical
free energy, the interface needs to be sharper since the chemical free energy within the interfacial
region is higher than that for the bulk phase. Therefore, the interface thickness is determined
by the competitive action of these two energies. Depending on the purpose of the simulation,
this free energy functional can include, elastic energy, electrostatic energy, and so on, as well

as the bulk chemical free energy and interfacial energy.

Using the free energy functional (Eq. 4.2), the solute diffusion can be postulated as

% =V. {MCV (‘Zj)] (4.3)
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where M, is the mobility of the solute diffusion field and it is a positive value [98, 102].

Therefore, the governing equations are

06 . O6F 2o, Of
A R <6¢ a¢> 44
and
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4.2 Quantitative Simulation

To decide the values of the phenomenological parameters in the phase-field equation, espe-
cially for the case of solidification, mathematical mapping of those parameters of the phase-field
equation to the physical parameters of the sharp-interface model is needed since the goal of the
phase-field model is to reproduce the results of the sharp-interface model. Especially for the
quantitatively reliable simulations, developing an appropriate mapping method is the critical

issue since the early ages of the phase-field model.

4.2.1 The Sharp-interface limit analysis

Caginalp[103] showed that the phase-field model in the limit of the vanishing interface
thickness can be reduced to the classical sharp-interface model (Stefan problem), and Wheeler,
Boettinger, and McFadden[104] and Wang et al.[105] obtained the value of the parameters in
the phase-field model at this limit, as the simplest way of representing the parameters with
the experimentally measurable quantities. In this limit, the temperature variation over the
interface region can be regarded as zero and the interface temperature is fixed to the melting
temperature in case of pure materials. That makes the analysis simple, and qualitatively
reasonable solidification morphologies can be simulated. As results of the sharp-interface limit
analysis, Wheeler, Boettinger, and McFadden represents the phase-field model parameters, W,

€4, and My as
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where W is the height of the energy barrier between the free energies of two bulk phases, and
ag is a scalar value which depends on the definition of the interface region.

However, because the parameters are derived in this limit, the simulation results cannot
properly recover the sharp interface model results unless the interface thickness is very thin,
i.e. thinner than or comparable to the capillary length [106, 91, 107, 108, 109], which is on
the order of 107 m for most metals. For properly resolving the interface region, the grid
spacing should be smaller than the interface thickness. On the other hand, the scale of the
overall microstructural morphology for normal growth conditions is on the scale of microns,
and diffusion length scale is on the order of millimeters. Because these span length scales over
seven orders of magnitudes, there can be a very high computational cost.

When a thicker interface than the capillary length is used for dendritic growth calculation,
the individual values of the dendrite tip radius and velocity considerably depend on the interface
thickness and diffuse boundary layer thickness while the Péclet number related with the product
of those values is in a good agreement with Ivantsov solution [91, 109]. Therefore, for a
practically accessible computational time, the far-field undercooling on the order of L/Cp is
required, in which range, a small dendrite tip radius can be obtained [110].

Moreover, the phase-field mobility (Eq. 4.8) is derived under the condition of a negligible
curvature undercooling comparing to the kinetic undercooling. Therefore, it is not appropriate
to use for the opposite case, i.e. the limit where the kinetic undercooling is negligibly small

compared to the curvature undercooling [106].
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4.2.2 The Thin-interface limit analysis

To overcome the severe limitations of the sharp-interface limit analysis, in 1996, Karma and
Rappel [106, 111] did asymptotic analysis for pure materials which is called the thin-interface
limit analysis. This analysis allows to quantitatively reliable phase-field simulations with a
relatively thicker interface than the capillary length scale. Simultaneously, this analysis enables
the low velocity growth simulation in the regime of the low undercooling less than L/Cp. This
results in a vanishing kinetic effect. Whereas the sharp-interface limit analysis assumes that
the interface thickness is vanishing so that the temperature field within the interface region
is constant, the thin-interface limit analysis is based on the assumption that the interface
thickness has finite value, i.e. non-zero, but still much thinner than diffusion boundary layer
thickness, dp = 2a/V, and tip radius. In addition to the previous assumption, by assuming
that the conductivities in the solid and liquid phases are equal, the temperature field over
the interface region is derived, and the parameters in the phase-field model are represented
with measurable physical quantities. This allows the interface thickness to be on the order of
capillary length. By using this thicker interface, relatively low grid resolutions can be used,
which is crucial to cut down the computational cost.

With this model, the limitation for the kinetic undercooling can be overcome, and the
thick interface width can be used. However, since the equal thermal diffusivities in solid and
liquid are used for this analysis, it cannot be applied to the case of unequal diffusivities. When
unequal thermal diffusivities are applied to this thin-interface limit model for pure materials,
there is a discontinuity of temperature field across the interface region, and an anomalous
term in the Gibbs-Thomson equation [112] which is dependent on the interface temperature

gradient.

4.2.2.1 The anti-trapping current

To compensate for the solute trapping effect which is a result of chemical potential jump
over a thick interface of an alloy simulation by the thin-interface limit, Karma [113] introduced

the anti-trapping current term into the solute diffusion equation. For accuracy and numerical
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ease, this anti-trapping current term has been adopted in many simulations for dilute binary
alloys [113, 114, 115, 116, 117, 118, 119, 120]. By using this anti-trapping current term, the
anomalous solute diffusion effect can be effectively controlled regardless of the grid size [121].

However, the model is limited to dilute binary alloys [121], and this artificial current term
sometimes makes thermodynamically unrealistic solute profiles in front of the interface. Then
Kim [121] extended the anti-trapping current model for dilute binary alloys to multicomponent

systems with arbitrary thermodynamic properties.

4.3 Calculation Method

The phase-field simulation is essentially solving the Allen-Cahn equation (Eq. 4.4) and
Cahn-Hilliard equation (Eq. 4.5) numerically. All the parameters and functions in those equa-
tions, such as a free energy density function, phase-field and concentration field mobilities, and
a gradient penalty coefficient must be defined using physical parameters, for physically reliable
results. This section will describe the model formulations and the numerical method used for
the current study for rapid alloy growth.

In the thin-interface limit model, temperature and/or concentration variations across the
interface region are not ignored. That allows quantitative calculations even with rather unre-
alistically thick interface, whereas ¢ should be comparable to the capillary length for quanti-
tatively valid simulations in the sharp-interface limit.

In the case of alloys, the difference of solutal diffusivities in the solid and liquid phases
is several orders of magnitude. When a relatively thick interface is used, this big diffusivity
difference between two adjacent phases causes several spurious interface diffusion kinetics and
solute trapping. Karma[113] resolved this problem by introducing the anti-trapping current
term in the phase-field evolution equation. This term gives a counterflux against unphysical
solute trapping flux. Although this work is for the specific case of dilute, one-sided binary
alloys, Tong et al. showed that the same forms of the governing equations can be effectively

valid for non-dilute alloys. Their governing equations for isotropic growth are as following:[122]
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where ¢ = +1 in solid phase, ¢ = —1 in liquid phase, 7 is the time scale parameter related to the

interface kinetic attachment, n is the anisotropy term, W is the interface thickness parameter
which corresponds to 6/4, A is the coupling parameter between the phase-field and chemical
diffusion dynamics, and U is the normalized supersaturation. According to the thin-interface

limit analysis [115], the relationship between A, 7, and W is

doA
[ (4.11)
ay
and
CLQ)\ 2
= — 4.12
T 5 %4 ( )

where the capillary length, dy = I'/AT, I' = oT/L, AT = Tj(cg) — T, a1 = 0.8839, and

as =0.6267 [113]. U =(e"—1)/(1 —k),and u =In{(2¢/c5) /(1 +k—[1 — k] 9)}
Concerning the anisotropy of interfacial energy, the gradient energy penalty coefficient, e, is

a function of the orientation of the interface normal, #, which is the angle between the direction

of normal vector of interface and a reference coordination axis, i.e.

e=en(0) (4.13)

where € is an average gradient energy penalty coefficient, and 7 is an interface orientation-

dependent term. For an 4-fold symmetric anisotropy of cubic crystals in two-dimensional
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system,

n =1+ escos(46) (4.14)

. Considering more general three-dimensional anisotropies of interfacial stiffness,  can be a

function of the components of the interface normal, i.e.

3 3
R 3 17
n(h) =1+ e (Z n; — 5) + € (32%‘ + 66n2n3n3 — 7) e (4.15)

i=1 =1

For an effective fast calculation, the governing equations are discretized with the fully
explicit finite difference method in uniform meshes. The forward difference for the temporal
derivatives and central difference for spatial derivatives are used. To make sure the solutions

converge, FDM stability condition should be satisfied: D(At)/(Ax)? < 1/2.
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CHAPTER 5. CALCULATION RESULT

5.1 Rapid Directional Growth Dynamics Of A Planar Front

5.1.1 Numerical method

To describe the dynamic response of a planar interface during the initial transient growth
stage of binary alloys under highly driven growth conditions, directional solidification in a
one-dimensional system is calculated with various pulling velocities, Vp. By being limited to a
one-dimensional geometry, we can set aside the curvature effect on growth dynamics and focus
on the relationship between solute redistribution and the interface kinetics. In this calculation,
the thin-interface limit model with the anti-trapping current is utilized for more quantitatively
valid description of the solute diffusion across the interface. Eq. 4.6 and Eq. 4.7 are used
as governing equations. Since this is the one-dimensional calculation, the anisotropy term is
unity. The parameters to solve these equations are shown in Eq. 4.8 and Eq. 4.9.

The latent heat release at the solid/liquid interface and the heat diffusion process are
ignored in this calculation. The parameter A is first set to A = 7. The material parameters
of Ni-Cu binary alloys used in this calculation are listed in Table 5.1. The constant chemical
diffusivity in liquid phase, Dy = 107? m?/sec, is used and the diffusion in the solid phase is
neglected. The polynomials for ¢ and c§ as functions of temperature are obtained by fitting

to the equilibrium Ni-Cu binary alloys phase diagram and used for the phase-field calculation.

¢§ = 5.34508 x 10171 +1.55652 x 107973 —5.36312 x 107572 —0.002773677+290.9179 (5.1)
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Table 5.1 The material parameters used in the calculations

Ni Cu
Melting temperature (K) 1728 1358
Latent heat (J/m3) 2350%x 106 1728x106
Interface energy (J/m2) 0.37 0.29
Molar volume (cm3/mole) 7.42 7.42

& = —4.02814x 107171 +2.03968 x 107973 4-1.95303 x 107072 —0.00277277T —227.622 (5.2)

Since the latent heat generation is neglected, the temperature gradient, G, is assumed as
a constant. The calculation domain is moving along with the interface. Zero-flux boundary
conditions for both phase-field and chemical diffusion field are applied. This boundary condi-
tion is reasonable because the domain length is chosen to be large enough so that neither the
phase-field nor the liquid solute field would reach domain boundaries. The temperature field
is set as

T(z)=T"+G(z—2") (5.3)

* is an interface position, T* is the interface temperature, and Az is a grid spac-

where z
ing. At t=0, the uniform initial liquid concentration equals ¢y, and the solid concentration
is given as c¢g(T'(z)). For all the current calculations, g is set to 0.61, which corresponds to
T (co)=1547.34 K, and TE(co)=1497.21 K. The growth starts with 7%(¢t = 0)=1546.3 K which
is the temperature about 1 K less than 77 (co), because it needs a small amount of interface
undercooling to trigger the growth. Once the calculation starts, the fixed temperature field
is pulled with Vp. The calculation continues until it shows the steady state growth behavior
which is indicated by the constant V* = Vp and cg = c¢o with time. G=10 K/mm and the
range of Vp between 0.001 and 10 m/sec are used in this investigation. According to Eq. 4.8,
the interface thickness, W, depends on the parameter A and the temperature-dependent cap-

illary length, do(7™). Although A is fixed in this calculation, the interface thickness, W, varies

in accordance with T* during calculations. At each time step, do(T™*) = I'/(T (co) — T™) is
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calculated and applied to the governing equations. Since the Gibbs-Thompson coefficient, I,
and 77 (cg) are constant, do(7™*) decreases with 7, and the interface thickness becomes thinner
at the lower T*. For adequate numerical resolution over the interface region, we continually
adjust the Ax during calculations to maintain at least 10 grid points over the interface region.

The thin-interface limit (TIL) phase-field model used in this calculation reduces the possibil-
ity of numerical error that comes from an interface that is thicker than the physical solid /liquid
interface. For a quantitatively exact description of interface kinetics, the interface thickness
for the phase-field model is required to be on the order of the real physical interface thickness.
The experimental data of the interface thickness, however, is not available for all the alloy
systems and temperatures. Even if we know the physical interface thickness, the phase inter-
face for metallic systems is usually on the order of Armstrongs, making Ax much smaller and
the calculation time increases considerably. By using the TIL phase-field model, we expect
that the calculation results may be quantitatively valid even if the interface thickness in the
calculations is a little thicker than the real interface thickness. The anti-trapping current term
has been used to eliminate the unphysical solute diffusion phenomena in the interface region
that could be induced by the thick interface in the TIL phase-field model[113]. Such an effort
to correctly describe the solute diffusion in the interface region is very important in simulating
the rapid solidification dynamics where chemical solute trapping might occur, since the solute
trapping phenomenon is closely related to the solute diffusion process across the interface and
might have a strong influence on the interface dynamics. For the same reason, temperature-
dependent W, which is physically realistic, is necessary since solute trapping phenomenon is
very sensitive to the interface thickness.

Figure 5.1 shows ¢, ¢, and T-fields at t=0.045 sec with Vp=0.1 m/sec. It is still under
initial transient growth and does not reach the steady state. The ¢-field shows the interface
region where ¢ varies continuously from +1 to -1. The exact interface position, z*, is defined
as the position where ¢ equals zero. In Figure 5.1, the measured z* is 14.9 um. Since Dg was
ignored, the c-field in the solid phase in Figure 5.1 (b) indicates the trace of ¢ which gradually

increases during this initial transient period. This c-field clearly shows the difference between
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Figure 5.1 (a) The phase-, (b) concentration-, and (c) tem-
perature-fields at t=0.045 sec, calculated with
Vp=0.1 m/sec.
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c;, and cg, which is due to the chemical partitioning. cg is defined as the concentration where
it starts to increase near the solid-side interface. cj is identified with the maximum value of
the c-profile. We can see the solute diffusion layer in the liquid phase ahead of the interface.
The gradient of T-field remains in G. T™ is identified with the temperature at the nearest
grid point to z*(¢ = 0). Since Az is sufficiently small, this value of T™ is almost same as the
temperature at ¢ = 0.

By tracking the changes of z*, c§, ¢}, and T, the variations of V* and ky in time can
be obtained. Figure 5.2 is an example of the time-dependent traces of interface conditions,
measured from the same calculation shown in Figure 5.1 with Vp=0.1 m/sec. In the Figure 5.2

(c), the solid curve and dashed curve indicate ¢ and c§, respectively.

5.1.2 Transient dynamics trajectories with various pulling velocities

The variations of T* and V* in time during the initial transient growth with various Vps are
shown on a T-V space in Figure 5.3. All the calculations are started from the same temperature,
T*=1546.3 K (t=0). Once the calculation starts, T* decreases since the temperature field
cools at a constant rate and V* is much lower than Vp. After a monotonic decrease of T* with
increasing V*, V* suddenly rises at a critical interface temperature, 7. This abrupt increase
of V* continues to a critical interface velocity, V. Both T and V* seem invariable with
Vp. At VT, both V* and T* increase again if Vp < VT, and if Vp > VT, both V* and T*
keep decreasing. Once V* reaches Vp, the steady state condition is generally achieved. In the
current calculation, only the calculation with Vp=0.001 m/sec did not reach the steady state

and exhibited a continuous oscillation of V* and T*.

5.1.3 Analytical liquidus and solidus curves

These initial transient growth trajectories in Figure 5.3 are compared with the steady state

of planar front growth theory. The steady state interface temperature of a planar front as a
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function of the interface velocity was calculated with the analytical model for dilute alloys[26]

k
msco (1 v +kvin (5)
kv 1~k

Ts (co, V) = Thy + — BV (5.4)
where T A“/‘[ is the melting temperature of the pure solvent material and m$ is the slope of
equilibrium linear liquidus line. 3 is the attachment kinetic coefficient (=1/u). ke = c%/cq is
the equilibrium partition coefficient at the interface for ¢g. Since linear solidus and liquidus
lines are assumed in this model, k. is constant with temperature. The temperature calculated
by this model is the same as the solidus temperature for ¢y in a kinetic phase diagram which

depends on the interface velocity. Thus, the liquidus temperature for ¢g is

1560
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Figure 5.3 The calculated traces of T* and V* during the transient direc-
tional growth with various Vps. The dotted curves are theoret-
ical prediction of the kinetic solidus and the liquidus tempera-
tures for cp=0.61.
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Tr, (co, V) = (1 = kv) (Ti; — Ts (co)) + Ts (o) (5.5)

where the solidus temperature, Ts(cp), is calculated by the previous temperature. Solute
drag effect is ignored in this model. For ky, Aziz’s solute trapping model is applied. By
using the values of Vp=0.016 m/s and $=2000 K sec/m, we could obtain the solidus and
liquidus temperature curves (dotted curves in Figure 5.3) which are roughly consistent with
the steady state temperature calculated by the current simulation results. Since this analytical
model is for dilute solutions and straight solidus and liquidus in the phase-diagram, the exact
agreement with the current simulation results is not expected. Even so, the analytical theory
is consistent enough with the current results to associate the steady state temperature with
the initial transient solidification path.

From the comparison with the steady state T-V curve, T is slightly lower than T§ and V'*
corresponds to the steady state temperature for planar front growth at 7+. Once V* reaches
VT, the transient interface dynamics might follow the steady state T-V curve regardless of Vp.

The critical temperature T could not be described by the steady state analytical theory.

5.1.4 Continuous oscillation dynamics

All the calculated initial transient growth paths after passing VT follow the steady state
curve until V* reaches Vp, except for Vp=0.001 m/sec. The steady state is not achieved with
Vp=0.001 m/