Real-Time Sensing of Soil Nitrate Concentration in the Parts per Million Range While the Soil Is in Motion

Thumbnail Image
Date
2013-09-01
Authors
Jones, Roger
Rathke, Samuel
Laird, David
McClelland, John
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Research Projects
Organizational Units
Organizational Unit
Journal Issue
Is Version Of
Versions
Series
Department
Ames National Laboratory
Abstract

Reactive nitrogen (Nr) is a term used to describe non-nitrogen gas (non-N2) forms of nitrogen (N) in the biosphere. It causes major pollution problems when it occurs in excess, and it has many sources, including fertilizers used in production agriculture. Currently there is no on-the-go soil nitrate sensor that could guide the application of the optimal amount of fertilizer, which often varies significantly within a field. We report for the first time nitrate-in-soil measurements performed on moving soil samples at concentration levels relevant for fertilizer application. An infrared emission technique called transient infrared spectroscopy (TIRS) was tested on soil samples spiked with different nitrate concentrations in the parts-per-million range and moving at a velocity of 2.6 m/s (5.8 miles per hour) in the laboratory. The TIRS Fourier transform infrared (FT-IR) spectra were modeled by partial least squares and produced a standard error of cross-validation (SECV) of 6.3 parts per million (ppm) N and an R 2 of 0.938 for 512-scan spectra. These results are compared to those using fewer TIRS scans and to those from photoacoustic spectroscopy (PAS) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) measurements on stationary samples. TIRS 128-, 32-, and 8-scan spectra yielded SECVs of 11.2, 11.4, and 18.4 ppm N and R 2 values of 0.800, 0.831, and 0.583, respectively. The PAS and DRIFTS measurements produced SECVs of 12.4 and 9.0 ppm N and R 2 values of 0.766 and 0.876, respectively.

Comments

This paper was published in Applied Spectroscopy 67 (2013): 1106 and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: doi: 10.1366/13-07064.

Description
Keywords
Citation
DOI
Copyright
Tue Jan 01 00:00:00 UTC 2013
Collections