IR, Raman, and NMR Studies of the Short-Range Structures of 0.5Na2S + 0.5[xGeS2 + (1–x)PS5/2] Mixed Glass-Former Glasses

Thumbnail Image
Supplemental Files
Date
2014-01-21
Authors
Bischoff, Christian
Schuller, Katherine
Dunlap, Nathan
Martin, Steve
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Martin, Steve
Distinguished Professor
Research Projects
Organizational Units
Organizational Unit
Materials Science and Engineering
Materials engineers create new materials and improve existing materials. Everything is limited by the materials that are used to produce it. Materials engineers understand the relationship between the properties of a material and its internal structure — from the macro level down to the atomic level. The better the materials, the better the end result — it’s as simple as that.
Journal Issue
Is Version Of
Versions
Series
Department
Materials Science and Engineering
Abstract

A nonlinear and nonadditive composition-dependent change of the ionic conductivity in mixed glass-former (MGF) glasses when one glass former, such as PS5/2, is replaced by a second glass former, such as GeS2, at constant alkali modifier concentrations, such as Na2S, is known as the mixed glass-former effect (MGFE). Alkali ion conducting glasses are of particular interest for use as solid electrolytes in alkali-based all-solid-state batteries because sulfide amorphous materials have significantly higher alkali ion conductivities than their oxide glass counterparts. In this study of the ternary MGF system Na2S + GeS2 + PS5/2, we report the careful structural characterization of these glasses using a combination of vibrational, infrared (IR), Raman, and nuclear magnetic resonance (NMR) spectroscopies. Our measurements of the 0.5Na2S + 0.5[xGeS2 + (1–x)PS5/2] MGF system show that this glass system exhibits a strongly negative MGFE and non-Arrhenius ionic conductivities. While this negative MGFE in the Na+ ion conductivity makes these glasses less attractive for use in solid-state Na batteries, the structural origin of this effect is important to better understand the mechanisms of ion conduction in the glassy state. For these reasons, we have examined the structures of ternary 0.5Na2S + 0.5[xGeS2 + (1–x)PS5/2] glasses using Raman, IR, and 31P MAS NMR spectroscopies. In these studies, it is found that the substitution of PS5/2 by GeS2, that is, increasing x, leads to unequal sharing of the Na+ in these glasses. Thus, in all MGF compositions, phosphorus groups are associated with a disproportionately larger fraction, fNa(P) > 0.5(1 – x), of the Na+ ions while the germanium groups are found to be Na+-deficient relative to the total amount of Na+ present in the glass, that is, fNa(Ge) < 0.5x. From the spectroscopic study of these glasses, a short-range order (SRO) structural model is developed for these glasses and is based on the germanium and phosphorus SRO groups in these glasses as a first step in understanding the unique negative MGFE and non-Arrhenius behavior in the Na+ ion conductivity in these glasses.

Comments

Reprinted with permission from J. Phys. Chem. B, 2014, 118 (7), pp 1943–1953 doi: 10.1021/jp4111053. Copyright 2014 American Chemical Society.

Description
Keywords
Citation
DOI
Copyright
Wed Jan 01 00:00:00 UTC 2014
Collections