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Figure 3.4: A B-spline. 

3.5 

satisfies 

fit ^ —j "t" 1) 

0, otherwise, 

vanishes outside the interval (fcj_2, ̂ j+2) ( slope at kj_2, ̂ j-t-2)' Such 

a natural cubic spline is termed B-spline and denoted by Bj_2. A B-spline that starts 

at knot Ajq, and terminates at is denoted by Bq and is illustrated in Figure 3.4. 

The B-spline consists of four polynomials joined together as shown in Figure 3.4. 

The B-spline is obtained by setting = 4 in Equation 3.29. Also from the 

definition, mg = = /q = f^ = 0, and use 

A'O = <^0 = 3[(/i -/o)//ii], A^-i-1, = 3[(/jY -
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Using these end conditions and Equations 3.27, 3.28, and 3.29, we obtain 

. (3.30) 

The first and last rows of Equation 3.30 gives 

m3 = -Sf^lh. (3.31) 

The remaining three rows combine to give 

"*1 = IS + a - a} .">3 = {-"/2 + /l - /a} • (3-32) 

From equations 3.31 and 3.32, we obtain 

h = W2> /3 = V4/2, /2 = arbitrary. 

If the values are picked to be /2 = 2/3, /i = /3 = 1/6, the B-spline is said to be 

normalized. Then, 

/2 + 1/4/2 + 1/4/2 = 1-

This means that for the B-spline in Figure 3.4, 

5o(fci) = 1/6,^0(^2) = 2/3, and ^0(^:3) = 1/6. 

The B-spline that was obtained is only a basis function. But using this basis function, 

all the B-splines that are non-zero in the range [Arg = a, = 6] can be obtained. 

All the other B-splines can be constructed by shifting Bq to the right knot. Thus if 

2  1 0  0  0  

1 
2 2 1 

5 0 0 

0 1 
2 2 1 

2 0 

0 0 1 
2 2 1 
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0 0 0 1 2 

mi 0 
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Figure 3.5: B-splines with support in [0,4]. 

^0 is shifted one knot to the right, we obtain J5j. This is provided that all the knots 

are equally spaced. Some of the key points to be noted are listed below: 

1. For the given knot sequence K = {^0,^1,...,^]^}, the set of B-splines that 

have non-zero support in [a,b] are B_3,52,...,and Thus for N-f-1 knots, 

there are N-t-3 B-splines that have non-zero support. Figure 3.5 shows the B-splines 

(5_3, B_2t • •, 5]^, ̂ 2, -S3) with non-zero support for N=4. 

2. At any point in [a,b], there are at most four B-splines that have non-zero values. 

This is due to the fact that any point falls in the support of a maximum of four 

splines. For any point x in [fcp the non-zero B-splines are B^_3, 5j_2j 

and 

3. Further, since the B-spHnes are normalized, the sum of the values of the B-splines 
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at this point sum to unity. This is given by, 

N - 1  
Y. = 

!=-3 

4. The cubic spline for the knot sequence K can be written as 

N - 1  
S { x ) =  a i B i i x )  (3.33) 

i=-3 

The a^-'s are the spline coefEcents and they uniquely determine the function being 

approximated. 

5. Cubic B-splines are of order four. The support of a B-spline of order n is n+1 

knots. The nth order B-spline, whose support is [fc^, is denoted by 

6. The most efficient way of computing of B-splines of order n is to start from a 

B-spline of order one, and use the recurrence relation 

•®z,n(®) ~ 1(®) + L. fc. (3.34) 

Here i = —3,..., iV — 1 and n = 1,2,3,4 Thus B-splines of order two are obtained 

from B-splines of order one. It is also clear from Equation 3.34 that the B-splines are 

a function of the knots alone. The definition of the B-spline of order one is given by 

0, a: < ki, 

1 ,  k i < x < k i ^ i ,  i  = - 3 , - 2 , . . . , A r  +  3 ,  ( 3 . 3 5 )  

Note: When the order is not specified, the splines are assumed to be cubic splines. 

Bi{x) is a cubic spline. 
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Constructing an interpolating cubic spline 

The objective is to construct an interpolating cubic spline S(x) given 

Sikj) = yj, ;=0,l, . . . , i V  

. The cubic spline has B-splines as basis functions. Thus from Equation 3.33 

N - 1  
S { x ) =  X] =  i = 0, 1 , . . . , TV. (3.36) 

z=—3 

The values of B^{kj) can be computed using Equation 3.34. It is to be noted that for 

the jth Equation the non-zero B-splines are and In Equation 

3.36, there are N -[• I equations and iV -f 3 unknown coefficients. The remaining 

two conditions are obtained from the end conditions, iS"'(A:o) = = 0. From 

Equation 3.33 

S{kQ) = a_35_3(fco) + a_2-S_2(fco) + 

and 

5(fcjv) = aiV-3^iV-3(%) + aiV-2^iV-2(%) + ^ N - l ^ N -l i ^ N ) -

Then the leist two equation required for solving 3.36 are 

S"{kQ) = a_35_3"(^o) + «-2^-2"(^o) + a-l-®-l"(^o) = 0^ (3-37) 

5"(%) = aiV-35jV-3"(%) + a^•2^^•-2"(%) + «iV-l-^iV-l"(%) = 0-

The required second derivatives are given by (Lancaster and Salkauskas 1986) 

=  ( k i  -  k _ i ) { k i  -
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= ( k i - k _ - { ) ( k 2 - k _ y Y  

0 
%-3 (%) - %_i)(%+i - %_2)' 

%-2 (^iv) I •*• - %_2 } ' 

%-l (%) - %-l) 

Six arbitrary nodes A:_3,k_2j^—l^^N+l^^N+2^ ^N+3 appended, three 

each to either end of the knot sequence. These knots have to satisfy k_^ < k_2 < 

... < ^jV+S" coefficients of Equation 3.36 can also be determined by method of 

least squares. 
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CHAPTER 4. MODELING WITH SPLINE NETWORKS 

Chapter 3 discussed modeling of one-dimensional functions using splines. The 

next step is to merge spline techniques with the proposed neural network, given by 

Equation 2.12, in Chapter 2. Equation 2.9 gives the neural network model for the 

one-dimensional approximation of a single input - single output system. Figure 2.5 

gives the schematic for the corresponding neural network architecture. Equation 3.33 

gives the expression for the cubic B-spline approximation, S(x), of a one-dimensional 

function. The similarities between Equations 2.9 and 3.33 are striking. In the former 

equation, the a^-'s are the connection weights from the the output of the ith neuron 

to the neuron in the output layer. In the latter equation, the a^-'s are the B-spline 

coefficients. The /j(a;)'s in Equation 2.9 are sigmoidal functions in comparison to the 

B-spline basis functions in Equation 3.33. 

One-dimensional Spline Network 

Figure 4.1 shows the architecture of this network. The activation functions of 

the neurons in the hidden layer are the B-spline basis functions. The B-spline basis 

functions are obtained as solutions of Equation 3.34. The connection weights from 

the input layer neuron to the hidden layer neurons are unity. The connection weights 

from the hidden layer neurons to the the output layer are obtained as solutions of 
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^ y = S(x) 

Figure 4.1: Single input- single output spline network. 

Equations 3.33 and 3.37. The neuron in the output layer peforms the summation 

operation. The number of neurons in the hidden layer are a function of the number 

of knots, and are picked by the user. The number of nodes in the hidden layer are 

picked by trial and error, whereas the number of knots in the B-spline are picked by 

the user. Picking the knots could be made a rather simple process. Yet obtaining 

the weights for the neural network is no trivial process. The neural network could 

even fail to converge. On the other hand, the B-spline coefficients can be obtained 

by solving linear Equations 3.33 and 3.37. Thus the spline network retains non-linear 

characteristics of the neural network but does not possess its ambiguities. 

Design of the network 

The design involves picking the number of neurons in the hidden layer, the basis 

functions, and the connection weights. Let there be N data points with abscissas and 

BgCx) 

X 

N-2 

B 
N-2 
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ordinates given by {xq jXj ,. . and {yQ,yi,,.. respectively. The 

range of the abscissa is given by [a = X Q , 6  = The knot sequence {^Q  = 

= 6} is also picked with the first and last knots of the sequence 

corresponding to the first and last abscissas respectively. The interior knots have to 

be in ascending order and do not have to coincide with the abscissas. The knots do 

not have to be equally spaced. 

The first step is to pick the basis functions. All the basis functions that have 

finite support in [a,b] have to be included. If the order of B-splines is n (degree = 

n — 1), then the number of B-spline basis functions is 

K = N + n — 2. (4.1) 

Thus, K is the number of nodes in the hidden layer. Extra knots have to be provided 

to the knot sequence so that all the B-spIines have support within this knot range. 

The updated knot sequence is given by {^—n+b n+2'• • •' ̂ iV'* • •' ̂ iV+n—2}* 

The B-spline basis functions that have support in [a,b] are given by 

B-spline starts at the knot and 

has a range Thus it has five knots in its support. A B-spline of order 

n is computed using the recurrence formula 

''^z-l-n-1 '^t+n ~ '^t+l 

The nature of the B-spline is going to solely depend on the positioning of the knots. If 

all the knots are equally spaced, all the B-splines are shifted versions of one B-spline. 

The next step is to determine the weights (wi) of the network. It is to be noted 
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that the weights are the coefficients in the equation 

N - 2  
S { x ) =  ^ (4.3) 

i=-3 

There are K weights and N data points, and cubic B-splines are selected for basis 

functions. Substituting the N data points into this equation, we obtain N linear 

equations with (TV + n — 2) unknowns. The n — 2 additional equations required for 

solving for the weights are obtained by using the end conditions. For a cubic B-spline, 

which is used most in this research, the two equations are given by 

S'W = 0-3B-3"(«^o) + <>_2B-2"(«^O) + = 0. 

S"(%) = 

All the notations have been explained in Chapter 3. Thus, obtaining the weights 

involves solving linear equations, which is fairly straight forward. Closer the knots, 

better the approximation. The number of knots picked in the range [a,b] should be 

the same as the number of data points used. To keep the method simple, one could 

use uniformly spaced knots corresponding to the abscissas. 

Illustration of one-dimensional spline network with different activation 

functions 

{1,2,3,4,5,6,7} and {12,14.2,16.6,20.5,26,31,37.4} are the absissas and ordinates 

respectively for a given set of data points. There are N = 7 data points. The 

knot sequence is chosen to be {-2,-1,0,1,2,...,7,8,9,10}. Cubic B-splines are used as 

activation functions. Thus there are {K = N + n — 2 = 9) nine neurons in the hidden 

layer. The cubic B-spline activation function that has support [1,5] is given in Figure 
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4.2. The result of approximation with the spline network using cubic spline activation 

functions is given in Figure 4.3. The root mean square error over ten points not used 

in the interpolation is given by 

E = 

\ 

10 6 
E ( E -  y j r  =  0.02«C. (4.5) 
j=l i=-2 

The result of using linear spline activation functions is given in Figure 4.4. Here the 

order of the B-sphne is two. The knot sequence for this case is {0,1,2,...,7,8}. The 

root mean square error over the same ten points is 

E = 0.1466® C. 

Figure 4.5 gives the result of with fewer data points, and cubic spline activation 

functions. In this case the abscissas are {1,3,5,7}. The root mean square error over 

the same ten points is E = 0.4268''C7. Figure 4.6 gives the result for linear spline 

activation functions for the updated data set. The root mean square error is E= 

0.4531°C. The technique of selecting the number of hidden layer neurons (knots) will 

be to start with two neurons, and keep adding neurons until the required accuracy is 

obtained. 

Higher Dimensional Spline Networks 

Three-dimensional spline basis functions take the place of one-dimensional spline 

basis functions, when it comes to surface approximation. As the name suggests 

surface splines are three dimensional stuctures. Interpolation with surface splines are 

computationally very expensive. Surface interpolation by tensor product method, 

which is computationally less intensive, is used for the spline network. This technique 
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Figure 4.2: B-spline (5]^). 

is both accurate and computationally attractive. Further, this technique can be 

easily extended to higher dimensional approximations. The technique for surface 

approximation is explained below. Higher dimensional approximation follow the same 

rules. 

The data points are assumed to lie on a rectangular lattice in the xy plane and 

functional values, z = f(x,y), are assigned to each point. Let there be M points in 

the x-direction and N points in the y-direction. The set of data points are given by 

S02.1 of the approximation is to determine 

the surface, S(x,y), that satisfies 

Sixi,yj) = zij, (4.6) 

for z = 1,2,..., M, and j = 1,2,.. . ,  i V .  The rectangular lattice is said to be uniform 

if the oj^'s and the j/j's are uniformly spaced. The surface spline S(x,y) is defined to 
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Cubic spline interpolation with 7 data points 
40 

X - Actual data points 

Decreasing steam control valve pressure for constant fan speed 

Figure 4.3: Spline network approximation. Fan speed = 350 rpm, steam control 
valve pressure decreases from 6 psi to 4.5 psi in steps of 0.25 psi. 
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Linear spline interpoiation with 7 data points 
40 

-- Result from Figure 4.3 

X - Actual data points 35 

25 

Decreasing steam control valve pressure for constant fan speed 

Figure 4.4: Approximation with linear spline activation functions. Fan speed = 350 
rpm, steam control valve pressure decreases from 6 psi to 4.5 psi in steps 
of 0.25 psi. 
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Cubic spline interpolation with 4 data points 
40 

- Result from Figure 4.3 

X - Actual data points 

^'30 

Decreasing steam control valve pressure for constant fan speed 

Figure 4.5: Approximation with fewer data points. Fan speed = 350 rpm, steam 
control valve pressure decreases from 6 psi to 4.5 psi in steps of 0.25 psi. 
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Linear spline Interpolation with 4 data points 
40 

-- Result from Figure 4.3 

X - Actual data points 

•§30 

20 
a. 

Decreasing steam control valve pressure for constant fan speed 

Figure 4.6: Linear spline approximation with fewer points. Fan speed = 350 rpm, 
steam control valve pressure decreases from 6 psi to 4.5 psi in steps of 
0.25 psi. 
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be 
N M 

Six,y) = 53 X) wijBij{x,y) (4.7) 
j = l i z = l  

The basis functions y )  are obtained using the tensor product method. By this 

method, 

i —  1,2,  
B i j ( x , y )  =  B i ( x ) B j ( y ) A  (4.8) 

I  i  = l ,2 , . . . , iV.  

Here 5^5 are the one-dimensional basis functions defined on the x-line. Bi and 

Bj are B-splines of order m and n respectively. Then, the support of B^j is the 

rectangular lattice defined by [xj^^yj] x Figure 4.7 illustrates the basis 

function obtained by the tensor product method. This bicubic spline has support 

[1,1] x [5,5]. It has been proved that there exists a unique set of weights {w^j} that 

satisfy Equation 4.7. The technique used for calculating the weights is as described. 

One dimensional spline curves are fit to each row of the data space. The set of 

B-spline basis functions are the same. But there are MxN coefficients or weights. 

The next step is to fit one-dimensional spline curves in the column direction. The 

actual data points are used, but the coefficents obtained in the row-wise interpolation 

are used as ordinates. The MxN coefficients obtained in this manner, constitute the 

MxN weights. One could have started with column-wise interpolation with Httle 

or no effect on the final result. This technique can be extended to any number of 

dimensions. The interpolation along the rows is denoted by 

M N 
S i { x , y )  = £ £ (4-9) 

i = l j = l  
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The M x N  coefficients j's) are obtained by solving the MxiV equations 

,  i  =  1 ,2 ,  
~ ^ij { (4-10) 

The interpolation along the columns is denoted by 

M N 
S2i^vyj) = Z] Z) ̂ i,jBi{x) (4.11) 

i=l;=l 

The MxN coefficients are obtained by solving the MxN equations 

= 1,2,... ,M, 
(4.12) 

j = l,2,...,iV. 

The schematic of a two input/two output spline network is given in Figure 4.8. 

The weights from the input layer neurons to the hidden layer neurons are unity. It is 

to be noted that the hidden layer is two-dimensional. It would be n-dimensional for 

a system with n inputs. There aje MxN neurons in the hidden layer. The activation 

functions for the hidden layer neurons are given by Equation 4.8. The connection 

weights from the hidden neurons to the output neurons are obtained as solutions 

to Equation 4.12. Thus the entire two input/single output spline network has been 

designed. 

Modeling the HVAC System 

The schematic of the HVAC system is given in Figure 1.1. The control variables 

are fan speed (air flow rate), water flow rate, and steam pressure. The controlled 

variable is the outlet air temperature. It was observed that the air temperature 

differential is a function of the control variables and fairly independent of inlet air 
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y in distance units 
X in distance units 

Figure 4.7: Surface B-spline basis function. 
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Figure 4.8; Two input - two output spline network. 
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temperature. The outlet air temperature differerential is, for this reason, taken to 

be the controlled variable. Thus the schematic of the model for the HVAC can be 

simplified to the form in Figure 4.9. The objective of the model is to provide the 

air temperature differential, given the three control variables. The air temperature 

differential is the difference in temperatures between the incoming and outgoing air 

streams. Normally the system variables would be picked to facilitate the generation of 

the required temperature differential. For the HVAC system, the air flow rate, water 

flow rate, and the steam pressure are controlled by the supply fan, water pump, and 

the pneumatic control valve respectively. The fan speed varies from 350 rpm to 750 

rpm. The pressure on the control valve varies from 4.5 psi to 6 psi. The water pump 

was set to have three discrete speeds: low, medium and high. A spline network is 

used to model the system. Since the water pump has three discrete settings, three 

spline networks were used. Each one of the networks correspond to one of the settings 

of the water pump. Thus, the networks have fan speed and steam pressure as inputs, 

and air temperature differential as the output. The schematic of such a network 

is given in Figure 4.10. The dimension of the hidden layer is 8 x 6. The columns 

correspond to the steam pressure. The network is designed using the steps described 

in the previous section. The activation functions for the hidden layer neurons are 

given by 

i  = 1, 2 , . . . , 8 ,  
B i j { x , y )  = B i { x ) B j { y ) ,  (4.13) 

i = l,2,...,6. 

B i { x )  and B j { x )  are both cubic B-splines. Such an activation function is called a 

bicubic spline. Figure 4.11 gives the output temperature differential surface to be 

approximated. Figure 4.12 gives the temperature differential surface approximated 
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Figure 4.9: Black box model of the HVAC system. 

by the network in Figure 4.10 for water pump setting on high. This network had 8 x 

6 neurons in the hidden layer. Figures 4.13 gives the approximation error. The error 

is higher where knots had a larger separation. The approximation error is negligible 

over a test sample of 56 operating conditions, and is given in Table 4.1. The error is 

larger when linear splines are used for interpolation along the rows, and cubic splines 

along the columns. Such activation functions are called linear-cubic. In this case, 

Bj(x) is cubic, and Bj{x) is linear. The error is larger in this case as illustrated in 

Table 4.1. 

To aid in fault diagnosis, the hot water to air heat exchanger, and the steam 

to water heat exchanger are also modeled using spline networks. The schematics 

of the black box models for these are given in Figures 4.14 and 4.15 respectively. 

The model of the steam to hot water heat exchanger gives the water temperature 

differential for certain steam pressure, and water flow rate. A two input-single output 
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Figure 4.10: Spline network model for the HVAC sytem. 
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Control valve pressure 0 0 
Decreasing fan speed 

Figure 4.11: Surface to be approximated (water pump speed - high). Steam control 
valve pressure decreases from 6 psi to 4.5 psi in steps of .25 psi. Fan 
speed decreases from 750 rpm to 350 rpm in steps of 50 rpm 
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* 

Control valve pressure ® Decreasing fan speed 

Figure 4.12: Surface approximated by the network for water pump speed - high. 
Steam control valve pressure decreases from 6 psi to 4.5 psi in steps of 
.25 psi. Fan speed decreases from 750 rpm to 350 rpm in steps of 50 
rpm 
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9-0.4 

Control valve pressure Decreasing fan speed 

Figure 4.13: Error surface. Steam control valve pressure decreases from 6 psi to 4.5 
psi in steps of .25 psi. Fan speed decreases from 750 rpm to 350 rpm 
in steps of 50 rpm 
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Table 4.1: Summary of results. 

MODELING NUMBER OF ROOT MEAN ACTIVATION 
TECHNIQUE TEST POINTS SQUARE ERROR FUNCTION 
Spline network 

with 6x8 56 0.1976 bicubic 
hidden layer 

Least 
squares 56 0.1978 bicubic 
method 

Spline network 
with 6x8 56 0.21 linear-cubic 

hidden layer 
Spline network 

with 5x7 56 0.4940 bicubic 
hidden layer 

Spline network 
with 5x7 56 0.6896 linear-cubic 

hidden layer 

spline network was used to model this unit. Steam flow and water flow rates are the 

inputs. The hidden layer had 7x5 neurons. The modeled surface is given in Figure 

4.16. Three two input-single output networks are used to model the hot water to air 

heat exchanger. The three networks are for the three different waterpump settings. 

The hidden layer for each one of the networks had 8x6 neurons. 

Table 4.1 summarizes the results. The spline networks have done a commendable 

job in replicating the working of the HVAC system. As the table shows, the error 

increases as the dimension of the hidden layer decreases. This is understandable. 

The least squares method of determining the coefficients would work better when 

the data being approximated is not very smooth. Using basis functions that are 

of degree less than three could decrease the accuracy. Picking the right dimension 
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Figure 4.14: Black box model of the hot water to air heat exchanger. 
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Figure 4.15: Black box model of the steam to hot water to heat exchanger. 
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35 >, 

2 

Decreasing water flow rate Control valve pressure 

Figure 4.16: Water temperature differential surface for the steam to hot water heat 
exchanger. Steam control valve pressure decreases from 6 psi to 4.5 
psi in steps of .25 psi. Water flow rate is high, medium-high, medium, 
medium-low, and low for 1, 2, 3, 4, and 5 respectively. 
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is not critical. One quick and dirty approach is to start with the end point and 

a middle point in each dimension. Neurons can then be added until the necessary 

accuracy is obtained. Training the network is extremely straightforward. There are 

no endless training phases. Convergence is always guaranteed. If functions with 

numerous transitions are being modeled, one may have to pick more knots around 

regions of high activity. Gradient methods could be used to detect such regions of 

rapid transitions. The functions that govern the operation of HVAC system are fairly 

monotonic. So the knots could be uniformly spaced. Thus, it has been proved that 

spline networks are an excellent alternative to artificial neural networks for functional 

approximation applications, that involve fairly smooth functions. 

Spline Networks versus Artificial Neural Networks 

A comparative study is given below that compares spline networks with neural 

networks. The objective is to show how the spline networks have improved on the 

disadvanatges of neural networks, that were discussed in Chapter 2. 

1. Size of input/output data; The number of input/output pairs available for 

modehng the surface in Figure 4.12 were 56. The input vector and the output vectors 

were two-dimensional and one-dimensional respectively. The neural network failed 

to converge for the given input/output set. Numerous combinations of layers, and 

number of neurons per layer were tried. The neural network requires a much larger 

input/output training set. The size of the input/output set for neural networks is 

rather ambiguous. Spline networks do not have such convergence problems. If fewer 

data points are used, the modeling error will be higher. To make a comparative study, 

one-dimesional data from Figure 4.3 was used. A neural network with six neurons 
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in the hidden layer was used. The hidden layer neurons had sigmoidal activation 

functions, and the ouput neuron had linear activation function. 

2. Training time: Training spline networks are much faster than training neural 

networks. Figure 4.17 shows the result of training one-dimensional data using both 

splines and neural networks. The spline network took 1529 floating point operations 

(flops) and a cpu time of 0.533 seconds. On the other hand, the neural network took 

a cpu time of 115 seconds and 3,102,456 flops. The surface spline approximation in 

Figure 4.12 took a cpu time of 1.65 seconds and 109,074 flops. It took 3,104 training 

cycles before the neural network converged. The numerous hours spent in identfying 

the required neural network is not included, 

3. Spline networks do not have any convergence problems. 

4. Neural networks involve solving complex non-linear equations, whereas spline 

networks involve soving linear equations. 
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Spline network versus neural network 
40 

- Spline network approximation 

35 
- Neural netwoik approximation 

X - Actual data points 

Decreasing control valve pressure 

Figure 4.17: One-dimensional spline network approximation versus neural network 
approximation. Fan speed = 350 rpm, steam control valve pressure 
decreases from 6 psi to 4.5 psi in steps of 0.25 psi. 
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CHAPTER 5. FAULT DETECTION USING THE ARTIFICIAL 

INTELLIGENCE APPROACH 

To classify faults in systems, one can take several approaches. There could exist 

a good working mathematical model of the system, and the parameters of this model 

could be measurable or obtained through estimation. If this mathematical model 

encompasses all the behavioral patterns of the system, then using the mathematical 

model would be the best approach. But most real-life systems cannot be completely 

represented by mathematical equations. Another technique is to teach a neural net­

work known fault conditions and the factors that are responsible. This is basically a 

pattern recognition problem. The neural network is trained to classify error signals, 

as belonging to a certain class of faults. Neural networks are trained on numerical 

data. The input to the neural network could consist of various error signals. The 

output layer has as many neurons as there are error classes. Thus each one of the 

neurons correspond to a certain class. When the output of a neuron is one, it means 

that the network has identified the error class corresponding to that neuron. These 

networks assign an error to only one class, though in reality it could belong to more 

than one class. 

These two techniques discussed use mathematical models, and numerical data 

respectively. But there exists information that cannot be stated mathematically, or 



79 

in the form of numerical input/output pairs. This information exists in the minds of 

technicians and people who run the systems. This is the kind of knowledge that is 

obtained over period of time from hands on experience. There should be some way of 

tapping in to the wealth of knowledge stored in these minds. Fuzzy logic techniques 

help us to exploit what one may call common-sense rules. These are often referred 

to as linguistic rules in fuzzy logic. For the HVAC system under consideration, only 

an error in water flow rate could affect the water temperature differential as well 

as the air temperature differential. Thus, if the technician finds out that both the 

differentials have departed from expected values, then he would infer that the water 

pump is at fault. " IF the air temperature differential error is significant AND the 

water temperature error is significant THEN the water pump is faulty", is an example 

of a linguistic rule. Fuzzy logic techniques allow us to incorporate all these linguistic 

rules so as to provide mapping from input to output variables. 

Fuzzy Logic System 

The basic components of a fuzzy logic system are the fuzzifier, inference engine, 

and the defuzzifier (Lee 1990). This is illustrated in Figure 5.L The fuzzifier cissigns 

input variables membership values to different fuzzy sets. The universe of discourse 

of each variable is divided into linguistic overlapping sets. The number of these sets 

is decided by the user. Figure 5.2 gives the universe of discourse of both the input 

variables, A and B, to be {0,4}. The universe of discourse of the output variable, 

C, is {0,40}. The universe of discourse is divided into low(L), medium(M), and 

high(H) regions. This is facilitated using membership functions. In Figure 5.2, the 

membership functions are triangular. The membership functions could take other 
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Decision 

making logic 
Fuzzifier Defuzzifier 

Figure 5.1: Fuzzy logic system. 

shapes. The overlapping nature of the membership functions makes it possible to 

assign the input variables to more than one fuzzy set. In Figure 5.2, if the value 

of the input variable A is 1.2, it belongs to the fuzzy sets low and medium. The 

membership values to the different fuzzy sets are given by 

f i l { A =  1 . 2 )  =  0.8 (5.1) 

/zjv/(A=1.2) = 0.2 

lijjiA-1.2) = 0. 

The membership values give the degree to which input belongs to each one of the 

fuzzy sets. Fuzziness measures the degree to which an event occurs. The underlying 

philosophy in fuzzy logic is that membership to any class is fuzzy. This implies that 

one can only tell the degree to which an element belongs to a certain class. 

The inference engine consists of the knowledge base and the fuzzy reasoning 
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Figure 5.2: Universe of discourse for the input variables. 
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scheme. The knowledge base consists of all the "IF - THEN" rules. These rules 

linguistically relate the input variables to the output variables. All of these rules 

are summarized into a fuzzy association matrix (FAM). These rules are based on 

common-sense rules, and other available information on the nature of the system. 

The FAM that relates the input variables, A and B,  to C are given in Figure 5.3. 

The first row of this matrix reads: 

IF A is low AND B is low THEN C is low, 

IF A is low AND B is medium THEN C is low, and 

IF A is low AND B is high THEN C is medium. 

Usually only the elements that correspond to significant FAM rules are filled. The 

element in the second row and second column of Figure 5.3 is not filled, indicating 

that this particular situation does not arise. The fuzzy reasoning scheme could use 

the Mamdani fuzzy reasoning scheme or the Mizumoto's fuzzy reasoning scheme. In 

either scheme, the objective is to assign membership values to the different output 

fuzzy sets. The output fuzzy sets are low, medium, and high. The first step is to 

determine all the rules from the FAM that are applicable for the input: A=\.2, B=0.8. 

A has membership in the low and medium fuzzy sets, whereas B has membership in 

the medium and high fuzzy sets. Thus the fuzzy rules that apply are, 

IF A is low AND B is high THEN C is medium, and 

IF A is medium AND B is high THEN C is high. 

IF A is low and AND B is medium THEN C is low. 

The fourth rule that correpsonds to A and B belonging to medium fuzzy sets is not 

significant. Then according to the Mamdani scheme (Lee 1990), the membership 
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Figure 5.3: Fuzzy association matrix(FAM). 

values to the three sets are, 

HL{C) = min{ni[A),n^j{B)) (5.2) 

= mm(0.2,0.2) 

= 0.2 

H M { C )  = r n i n { n i { A ) , n u { B ) )  

= mm(0.8,0.8) 

= 0.8 

= min(0.2,0.8) 

= 0.2 

The Mizumoto reasoning scheme (Lee 1990) uses the product of membership functions 

instead of the minimum. 

The final unit in the fuzzy logic system is the defuzzifier. This unit converts 
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the fuzzy membership values of the output to a crisp number. There are several 

defuzzification techniues. One of the more popular techniques is the center of gravity 

method. In this technique the output is given by 

C = ^ (5.3) 

= 20. 

Here, Cjs are the centers of the fuzzy sets, and ^js are the respective membership 

values. From Figure 5.2, cj^ = 10, = 20, and cjj = 30. In effect, numerical data 

has been mapped to numerical data. A neural network learns this mapping based 

on numerical input/output pairs. There has been lot of effort to combine the powers 

of neural networks and fuzzy logic. This has resulted in fuzzy-neural, neuro-fuzzy 

and many other innovative networks. A neural network that uses fuzzy concepts is 

discussed in the following section. 

Fuzzy Neural Network 

Neural networks are widely used in pattern classification problems. In such 

networks there are as many output neurons as there are pattern classes. When an 

input feature vector is presented to the network, only one of the output neurons is 

activated. The network is trained to assume that the pattern classes are distinct. But 

in reality, this is hardly the case. Two or more pattern classes could overlap. The 

neuron in the output layer that is activated the most is turned on. All the others are 

simultaneously turned off. It could happen that the output of two neurons are 0.5 and 

0.495. The neuron reading 0.5 is turned on, thus denoting belongingness to a certain 
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pattern. On being presented with an almost identical feature, the output of the same 

neurons could be 0.495 and 0.5 respectively. Thus nearly identical features may be 

grouped into different classes. This kind of ambiguity arises due to the belonginess 

of features to different classes. This reminds one of fuzzy logic and the degree of 

belonginess to different sets. Thus, fuzzifying the input feature space and the output 

pattern class space could be the solution to deal with belongingness to more than 

one class. This is the underlying principle of the fuzzy neural networks discussed in 

this section (Pal and Mitra 1992). 

In this fuzzy neural network based pattern classification, a neural network is the 

heart of the system. Let the number of variables in the feature vector (F) be m, the 

number of pattern classes be C, and the number of training samples be N. The first 

step is to fuzzify the input feature vector. Each one of the features in F is fuzzified. 

The universe of discourse of the features are fuzzified into various sets. Let these sets 

be low, medium, and high. Thus if one starts with the m-dimensional feature vector 

Fi = Fi2, fuzzification we obtain the 3m-dimensional vector 

M M •  •  • ' ( ^ • ' ^ )  

To fuzzify the input features, overlapping membership functions are used. The mem­

bership functions could be triangular, gaussian, or any other function. The universe of 

discourse for the jth feature (Fj) is determined by finding the range [Fj^j^, i^jmax\-

This range is then divided into three overlapping sets. Once the membership functions 

have been decided for all m features, the fuzzified feature vector given by Equation 

5.4 is easily obtained. This fuzzification phase is illustratred in Figure 5.4. 

The next step is assigning member functions to the output of the neural network. 

The output is of dimension C. For each pattern class, all the training samples that 
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Figure 5.4: Input fuzzification phase. 

have some degree of membership to that class are determined. The mean and variance 

vectors for that class are determined from these training samples. Consider the nth 

class. Let there be Q training vectors that have some degree of membership to this 

class. On and Vn are the mean and standard deviation vectors respectively for the 

nth class. 

= ' [ 0 n i , 0 n 2 , - - - , 0 n m ]  w h e r e ,  (5.5) 

Oki = E 
z=l  ^  

For each input feature vector, its distance from all the C classes are determined. The 

distance of F^- from the nth class is calculated using (Pal and Mitral992) 

^in ~ 

m  
Z  l {F i j  -  (5.6) 

i=i 
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for n = 1,2,..., C. The membership values of each input feature to any one of the 

C classes can now be determined. The membership of F^- to the nth class is given by 

l^n{^i) = , . f ' (5-7) 

' + (1̂ ) 
forn = 1,2,..., C. The parameters and /e are constants that control the fuzziness. 

When the feature vector, F^, belongs just to the nth class, 

din = 0' (5.8) 

In the fuzziest case, the input feature vector will have some membership value to all 

the classes. 

Once the output membership functions have been decided, the neural network 

can be trained using the backpropagation algorithm discussed in Chapter 2. The net­

work is trained with input/output vector pairs. The input vector is 3m-dimensional, 

and the output vector is C-dimensional. The output vector gives the membership 

values of the input vector to each one of the classes. This technique is used to aid in 

the classification of HVAC faults. 

Fault Detection Scheme and Results 

The objective of the fault detection scheme is to detect and locate fault utiliz­

ing the minimum hardware. The proposed detection scheme has four temperature 

sensors. These are the input and output air temperature sensors, and the input and 

output water temperature sensors. At the outset, the intent was to classify all kinds 

of faults. Though every possible effort was made to this extent, it was realized to 
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be a very steap goal. This was owing to factors such as lack of necessary hardware, 

and the inability to simulate many of the fault scenarios. The goals of the fault 

detection scheme were narrowed down to detection of faults in the control variables: 

steam pressure, water flow rate, and fan speed (air flow rate). This still would be a 

powerful fault diagnostic system. 

The HVAC model described in Chapter 4 sounds the alarm when there is dis­

crepancy between the system output air temperature differential and that of the 

model. The system has to deviate by more than one degree Celsius, before the alarm 

is sounded. This takes into account modeling error and measurement noise. The two 

measurements that are available are the air temperature differential and the water 

temperature differential. The objective is to determine the control variable that is 

responsible for the error. It needs to be mentioned that different levels of deviations 

in the control variables can produce almost identical errors in the two measurements. 

Using the spline-neural model for the steam to hot water exchanger, the error in the 

water temperature differential (E(^W^)) can be calculated. The error in the output 

air temperature differential (E(^T)) is obtained using the model for the entire HVAC 

system. These error measurements were normalized by dividing these values by the 

respective expected temperature differentials. The normalized error variables ranged 

from zero to one. These normalized differentials seem to correlate better with the 

control variables, and are used to classify the error patterns. 

Numerous error scenarios in the control varibles were simulated using the differ­

ent models. The error in the output air temperature differential had to be greater 

than one degree Celsius. Further, it was assumed that the maximum error in the con­

trol variables could be half the step change. Thus, if the fan settings were in steps of 
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50 rpm, the maximum error would be 25 rpm. The error measurements belonged to 

three different classes. Overlap of classes was obvious. Thus, a fuzzy neural approach 

was justified. 

The input feature vector to the fuzzy neural network consisted of the normalized 

air and water temperature differential errors. Each error is fuzzified into three sets: 

low, medium and high. Triangular membership functions given by, 

® (^•^) 

< X < X2 

xq - x i  

X • - x o  

x i  - x o  
x  •  - x 2  

x i  - x 2  

x  - x i  

^2 
(5.10) 

are used to fuzzify the input feature vector. Here ojq = 1, = .5 andx2 = 1- The 

membership functions are given in Figure 5.5. 

For every input feature vector, the corresponding output fuzzy class vector is 

obtained using the technique in the section on fuzzy neural network. In equation 5.7, 

and fe were chosen to be one and three respectively. The classes for any input 

feature vector could take on values between zero and one. The overall schematic 

of the fault classification network is given in Figure 5.6. The neural network has 

two hidden layers with eight neurons each. This was arrived at after numerous trial 

and error runs. The input layer has six neurons corresponding to the fuzzified input 

feature vector. The output layer has three neurons corresponding to the three classes. 

It took 15,000 training cycles to bring the sum squared error below .01 as depicted 

in Figure 5.7. The learning rate was chosen to be 0.5. The network had sigmoidal 
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Figure 5.5: Triangular membership functions. 

activation functions and was trained using back-propagation. 

Fifty different simulated error samples were tested on the network. The error 

definitely belonged to a certain clciss if the membership function to that class wais 

greater than 0.5. Otherwise, the class with the greater membership value was picked. 

Of the fifty samples, forty one were diagnosed correctly. Of these, thirty three had 

membership values greater than 0.5 to one of the classes. Figure 5.8 shows the feature 

space that was classified. The fault diagnostics system was successful in detecting 

the faults, and pinpointing the responsible control variable. Degradation in the heat 

exchangers may produce similar fault signatures. But those parts are less likely to 

fail. 
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CHAPTER 6. CONCLUSION 

The main goal of the research was to do a dissertation with practical applications. 

Working with a real-life HVAC system, has helped the author to understand the 

differences between working with real situations and simulated ones. The amount of 

time it takes to collect data is almost Hereculean. A dozen hours of collecting data 

would leave me with a handful of readings. The HVAC system is very sluggish. Like 

most practical systems, it is almost impossible for this system to replicate previous 

results. The number of times that readings had to be retaken was innumerable. The 

steam pressure could be fluctuating, or the fan speed was nowhere near where it 

should have been. After nine months of collecting data, it appeared that one could 

be doing this for ever. This leaves one with the impression that, it would be so 

much easier to simulate data. If the data generated from a model is used to generate 

another model, what do we stand to gain? Further, if a mathematical model exists, 

why spend endless time on a problem that has been solved? 

The industry seems to be so far behind what people in the academia consider 

to be state of the art technology. Most manufactures of control systems rely on the 

old, but almost reliable PID controllers. Adaptive control, and robust control are 

buzz words that are left on the book shelves. A lot of effort has to be made to bridge 

the gap between the researcher sitting at the computer, and the engineer on the 
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plant floor. Industries are not solely to be blamed for their inertia towards change. 

Whereas a researcher may be excited with the degree of complexity of his work, the 

industry is more concerned with the practicality of his work. 

The research objective was to do more than modeling with neural networks. 

Neural networks can definitely model HVAC systems. But the level of uncertainty 

when working with neural networks, weis a major concern. To develop a network that 

is easier to train was the main thrust of this research. Chapter 2 does an excellent 

analysis of behind the scenes operation of a neural network. For a functional approx­

imation problem, the neural network performs piecewise sigmoidal approximation. 

The network shifts the sigmoidal functions around in a manner, that can not be con­

trolled by the user. The network does not have any apriori information regarding the 

nature of the function. Thus, it does not know how many hidden layers, or neurons 

per layer are required. Though interpolation with sigmoidal functions can result in 

highly smooth functions, they have large supports and are not very flexible. It was 

shown in Chapter 2 that some activation functions can perform better than others in 

certain situations. The neural networks are being severely handicapped when they 

are being limited to a single activation function. This led to the proposed network, 

where each neuron in the network was responsible for a certain region of the func­

tional domain. Ideally, the neurons can take on any activation function. But this 

would make the modeling task computationally expensive, and extremely complex. 

Thus, the activation functions were picked to be lower order polynomials. The sup­

port of these activation functions are picked to be small enough to keep the error 

within tolerable limits. 

The proposed spline network is a piecewise functional approximation. To make 
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it realizable, the network was reduced to a piecewise lower order polynomial approx­

imation. Initially, the functional approximation was going to be continuous but not 

smooth. Here smoothness is used in the context of possessing higher order derivatives. 

At that time, the only splines the author was aware of were mechanical splines used in 

drafting. It was coincidence that broadened his horizon to spline interpolation. Using 

spline techniques made it possible to generate smoother approximations. This dis­

sertation introduces Spline Network for functional approximations. The activation 

functions for this network are lower order polynomials called B-splines. B-splines 

could be linear, quadratic, or cubic. The support of these activation functions are 

picked by the user. This is definitely one of the greatest advantages that spline-neural 

networks have over conventional neural networks. In conventional neural networks, 

the support is picked during the long training phase. If the functions being approxi­

mated are monotonous, the activation functions for the spline-neural networks could 

be uniformly spaced. If there are lot of vaxiations, one could cluster a lot of acti­

vation functions with smaller supports in the region of high activity. Unlike neural 

networks, this network does not have any convergence problems. The weights of this 

network are picked by solving linear equations. Spline-neural networks are extremely 

easy to train. 

Chapter 4 illustrates the ability of spline networks to model the highly complex 

HVAC system. The HVAC system has been modeled with great accuracy. Three 

different models were generated. The overall system model is used to sound the 

alarm. It informs the user of discrepancy in the system operation. The model of 

the steam to hot water heat exchanger gives the difference in temperatures between 

the outgoing and incoming water streams. If there is error in water temperature 
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differential, it indicates a fault in steam flow, water flow, or the heat exchanger. The 

model of the hot water to air heat exchanger gives the air temperature diflFerential 

for the actual system water temperature differential. This would indicate whether 

there actually is an error in this part of the system. A lot of refinements can be 

made to this model. The HVAC system did not have the facility to measure so many 

parameters. Further, it was not possible to model the different fault scenarios. Thus, 

due to hardware limitations, this model is not complete. The model can be made 

to include transient characteristics of the system. Spline networks can also be used 

to model non-linear dynamical sytems. This is definitely an area for future research. 

The working of neural networks and spline networks were compared in Chapter 4. For 

one-dimensional data, the spline neural network training was more than two hundred 

times faster than training the artificial neural network. For higher dimensional data, 

the time taken increases almost exponentially. The time taken to get the required 

neural network structure could be in the order of weeks. It was also found that there 

was not enough input/output data for the neural network to learn the system model. 

Spline networks have definitely proven their ability to model complex systems, that 

exhibit smooth functional characteristics. 

The working model sounds the alarm when there is an intolerable error in the 

outlet air temperature. The next step is to detect the guilty system component. 

A powerful fault detection scheme should harness all the the information available, 

be it mathematical, numerical or linguistic. Since there are no mathematical mod­

els to work with, fuzzy neural networks are an ideal choice. Neural networks have 

established their identity as pattern classifiers. But traditional neural network pat­

tern classifiers assign features to a single class. In reality, they may belong to more. 
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For this reason, the philosophy of fuzzy logic is exploited in fuzzy neural networks. 

The input features are trained to belong to naore than one output class. Chapter 

5 illustrates fuzzy-neural techniques in fault classification. Due to lack of time and 

necessary hardware, it was not possible to identify all the faults. Faults in steam 

pressure, fan speed, and water flow rate were classified with about eighty percent 

accuracy. 

The objective of this research was not to attack conventional neural networks, but 

is to look at neural networks from a different perspective, in an effort to overcome 

some of the drawbacks of neural networks. The vision of a piecewise functional 

neural network led to the spline network. The spline network could be an excellent 

alternative to neural networks for certain functional approximation problems. The 

areas of functional approximation problems, where spline networks can do a better 

job is yet to be determined. But, it has been proved that for noise-free and slowly 

varying functions, spline networks could do a commendable job. For such functions, 

spline network training is faster and easier than training neural networks. 
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