2-22-1999

Effect of the elastic modulus of the matrix on magnetostrictive strain in composites

Y. Chen
Iowa State University

John E. Snyder
Iowa State University

Carl R. Schwichtenberg
Iowa State University

Kevin W. Dennis
Iowa State University, dennis@ameslab.gov

D. K. Falzgraf
Iowa State University

See next page for additional authors

Follow this and additional works at: http://lib.dr.iastate.edu/ameslab_pubs

Part of the Electromagnetics and Photonics Commons, and the Engineering Physics Commons

The complete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ameslab_pubs/167. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.
Effect of the elastic modulus of the matrix on magnetostrictive strain in composites

Abstract
The effect of the matrix material on the magnetostriction of composites containing highly magnetostrictive particles has been studied. Experimental results showed that the elastic modulus of the matrix is an important factor determining the bulk magnetostriction of the composite. For a series of composites with the same volume fraction of magnetostrictive particles but different matrix materials, the bulk magnetostriction was found to increase systematically with decreasing elastic modulus of the matrix. A model theory for the magnetostriction of such composites has been developed, based on two limiting assumptions: uniform strain or uniform stress inside the composite. The theory was then used to predict the magnetostriction of the entire material from the volume fractions of the components, their elastic moduli and magnetostrictions. These predictions were in agreement with the experimental results. It is concluded that to obtain a high magnetostriction and adequate mechanical properties of a composite, the elastic moduli of the magnetostrictive phase and the matrix should be as close as possible in value.

Keywords
Composite materials, Magnetostriction, Elastic moduli, Magnetic materials, Elasticity theory

Disciplines
Electromagnetics and Photonics | Engineering Physics

Comments
The following article appeared in Applied Physics Letters 74 (1999): 1159 and may be found at http://dx.doi.org/10.1063/1.123473.

Rights
Copyright 1999 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.

Authors
Y. Chen, John E. Snyder, Carl R. Schwichtenberg, Kevin W. Dennis, D. K. Falzgraf, R. William McCallum, and David C. Jiles

This article is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/ameslab_pubs/167
Effect of the elastic modulus of the matrix on magnetostrictive strain in composites

Citation: Applied Physics Letters 74, 1159 (1999); doi: 10.1063/1.123473

View online: http://dx.doi.org/10.1063/1.123473

View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/74/8?ver=pdfcov

Published by the AIP Publishing

Articles you may be interested in

Large energy absorption in Ni–Mn–Ga/polymer composites
J. Appl. Phys. 97, 10M319 (2005); 10.1063/1.1857653

Effective Elastic Properties of an AlSiC Composite Using Two-point Statistical Mechanics Approach

Large Scale Finite Element Modelling of the Effective Elastic Properties of Particle Reinforced Composites

Effective magnetostriction and magnetomechanical coupling of terfenol-D composites
Appl. Phys. Lett. 78, 3490 (2001); 10.1063/1.1377046

Elastic properties of magnetostrictive thin films using bending and torsion resonances of a bimorph
J. Appl. Phys. 88, 5827 (2000); 10.1063/1.1318388
Effect of the elastic modulus of the matrix on magnetostrictive strain in composites

Ames Laboratory, Iowa State University, Ames, Iowa 50011

(Received 26 May 1998; accepted for publication 11 December 1998)

The effect of the matrix material on the magnetostriction of composites containing highly magnetostrictive particles has been studied. Experimental results showed that the elastic modulus of the matrix is an important factor determining the bulk magnetostriction of the composite. For a series of composites with the same volume fraction of magnetostrictive particles but different matrix materials, the bulk magnetostriction was found to increase systematically with decreasing elastic modulus of the matrix. A model theory for the magnetostriction of such composites has been developed, based on two limiting assumptions: uniform strain or uniform stress inside the composite. The theory was then used to predict the magnetostriction of the entire material from the volume fractions of the components, their elastic moduli and magnetostrictions. These predictions were in agreement with the experimental results. It is concluded that to obtain a high magnetostriction and adequate mechanical properties of a composite, the elastic moduli of the magnetostrictive phase and the matrix should be as close as possible in value. © 1999 American Institute of Physics [S0003-6951(99)03106-X]

There has recently been interest in the development of magnetomechanical torque sensors because of the sensitivity of magnetic properties to torsional stress. Clark and Greenough have discussed rare-earth-iron compounds, however the high cost and brittleness of these materials restrict applications. Composites of highly magnetostrictive particles in a different matrix material, as investigated by Clark and Belson and by Sandlund et al., have the potential for maintaining adequate magnetostriction while meeting mechanical performance specifications. Herbst et al. have also studied SmFe2/Fe and SmFe2/Al composites and described a model to predict the magnetostriction. Recently Nan has also proposed a mathematical model.

In preliminary work magnetostrictive composites were fabricated consisting of highly magnetostrictive particles in a low magnetostriction, high permeability matrix material. The differences in bulk magnetostriction were investigated and, as a result of this, a model theory was developed and verified. This model theory was then used to predict the bulk magnetostriction of such composites.

The composites were prepared by blending powders in an argon atmosphere. The particulate magnetostrictive material used in this study was Tb0.3Dy0.7Fe2 while the matrix materials consisted of metal and glass, the metals being Fe, Cu, Al, or CeFe2. Blended powder was poured into a 6 mm diameter die, pressed at 1–3 kN under an inert argon atmosphere and heated at 10 °C/min to 300–600 °C depending on the matrix material. The load was removed and the material cooled to ambient temperature while still under argon atmosphere. Magnetostriction was measured using strain gauges. The magnetic field was applied parallel to the cylindrical axis of the specimens and the strain was measured along the same direction.

The magnetostriction model was based on the limiting assumptions of uniform stress or uniform strain in an inhomogeneous material. Beginning with the elastic properties, the model predicts that the elastic modulus should lie between two bounds based on these limiting assumptions. The equations for the elastic modulus in the two cases are given below. The magnetostriction of the entire material was calculated in both instances, assuming that the stress in the whole material is generated only by the magnetostriction in the particles, scaled in proportion to the volume fraction of the particulate phase.

Assuming uniform strain throughout a composite material, the total stress in the linear regime over which Hooke’s law applies, can be found from

$$\epsilon E_c = \epsilon E_V V + \epsilon E_m V_m,$$

where ϵ = strain, V = volume fraction, and E = elastic modulus. The subscript c indicates the whole composite, m indicates the matrix, and i indicates the particulate magnetostrictive phase. Equating the strain throughout, the elastic modulus of the composite is given by

$$E_c = E_V V + E_m V_m.$$

Assuming that the stress throughout the material is uniform an alternative expression for the elastic modulus of a composite material is obtained. Again in the linear Hooke’s law regime, uniform stress implies the product $E \epsilon$ must be the same for each component, therefore

$$\sigma = E \epsilon = E_m \epsilon_m,$$

where σ = stress. The strain throughout the entire material is given by
stress an upper limit is obtained
of the saturation magnetostriction. For uniform strain a lower
Substituting Eq. ~3! into ~4! gives
and the elastic modulus is
In the magnetostriction model it is assumed that the stress
generated in the composite is caused entirely by the magne-
tostrictive phase and that the overall stress in the composite
when it is magnetically saturated is the product of the vol-
ume fraction of magnetostrictive phase and the stress exerted
by it. Under these conditions the following equation is ob-
tained
where \(\lambda_s \) is the saturation magnetostriction of the entire
material and \(\lambda_{st} \) is the saturation magnetostriction of the mag-
netostrictive phase alone. Substituting the expressions for the
elastic modulus from Eqs. ~2! and ~6! gives limiting values
of the saturation magnetostriction. For uniform strain a lower
limit of magnetostriction is obtained, while for uniform
stress an upper limit is obtained
The saturation magnetostriction of a composite material
should fall between the values of \(\lambda_{se} \) and \(\lambda_{st} \) given by these
equations.
Magnetostriiction curves of two series of samples were
measured in order to test these predictions. The first was a
series of specimens with a fixed volume fraction of the same
magnetostrictive phase in matrix materials with different
elastic moduli. The second was a series of specimens with
different volume fractions of the magnetostrictive phase
in the same matrix material. This allowed the effects of the
elastic modulus of the matrix and volume fraction of the
magnetostrictive phase to be studied independently. The
saturation magnetostriction and elastic moduli of both series
of specimens are given in Table I. Magnetostriiction curves
of the first series of composite materials are shown in Fig. 1.
These results show that the magnetostriiction of the material
increased with decreasing elastic modulus of the matrix.
Results on the second series are shown in Fig. 2. These indicate
that the saturation magnetostriiction of the material increased
with increasing volume fraction of the magnetostrictive
phase.

A comparison of experimental measurements with model
calculations based on Eqs. ~8! and ~9! is given in Fig.
3. The model calculations show the predicted magnetostriictions,
as a function of the elastic modulus of the matrix, are
in good agreement with measurements. For a two-component
matrix ~glass+metal!, the value for elastic modulus of the
matrix was calculated by averaging the limiting cases of the
uniform strain value ~Eq. ~2!! and the uniform stress value
~Eq. ~6!!. The elastic modulus of the magnetostriictional phase
was 30 GPa and that of the glass was 50 GPa as shown in
Table I. Literature values were used for the elastic moduli of
Fe, Cu, Al, and CeFe2. The measured saturation magnetostriiction
decreased from \(90 \times 10^{-6} \) in a matrix with elastic
modulus of 36 GPa to a value of \(15 \times 10^{-6} \) in a matrix with
elastic modulus of 149 GPa. When the elastic moduli of the
matrix and magnetostrictive phases were similar the pre-

<table>
<thead>
<tr>
<th>Sample</th>
<th>Vol. % components</th>
<th>Elastic modulus of matrix (E_m) (GPa)</th>
<th>Measured saturation magnetostriction (\lambda_c (10^{-6}))</th>
<th>Predicted magnetostriction</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10/90 T+ matrix A</td>
<td>149</td>
<td>15</td>
<td>20 26</td>
</tr>
<tr>
<td>B</td>
<td>10/90 T+ matrix B</td>
<td>104</td>
<td>25</td>
<td>28 33</td>
</tr>
<tr>
<td>C</td>
<td>10/90 T+ matrix C</td>
<td>65</td>
<td>55</td>
<td>46 48</td>
</tr>
<tr>
<td>D</td>
<td>10/90 T+ matrix D</td>
<td>36</td>
<td>90</td>
<td>79 79</td>
</tr>
<tr>
<td>E1</td>
<td>10/90 T+ matrix E</td>
<td>50</td>
<td>60</td>
<td>58 60</td>
</tr>
<tr>
<td>E2</td>
<td>30/70 T+ matrix E</td>
<td>50</td>
<td>200</td>
<td>190 201</td>
</tr>
<tr>
<td>E3</td>
<td>60/40 T+ matrix E</td>
<td>50</td>
<td>462</td>
<td>441 469</td>
</tr>
<tr>
<td>E4</td>
<td>80/20 T+ matrix E</td>
<td>50</td>
<td>640</td>
<td>656 684</td>
</tr>
<tr>
<td>T</td>
<td>Th0.3Dy0.7Fe2</td>
<td>30</td>
<td>930</td>
<td></td>
</tr>
</tbody>
</table>

Table I. Measured and modeled saturation magnetostrictions of composites. Matrix materials were:
A(Fe+glass), B(Cu+glass), C(Al+glass), D(CeFe2+glass), E(glass).
predicted limits for the saturation magnetostriction, λ_{sa} and λ_{sr}, were close in value, but the difference between these predicted limits increased with increasing difference between the moduli of the matrix and magnetostrictive phases. These results suggest that the elastic modulus of the matrix material has a significant impact on the saturation magnetostriction of composites, with a lower matrix modulus leading to higher bulk magnetostriction.

Model calculations were performed to obtain the magnetostriction as a function of the volume fraction of magnetostrictive phase using the same elastic modulus values of 30 GPa for the magnetostrictive phase and 50 GPa for the matrix. The results are compared with experimental measurements on a series of materials with the same values of matrix elastic moduli as shown in Fig. 4. In this figure, the solid line represents the modeled results based on the assumption of uniform stress and the dotted line represents the modeled results based on the assumption of uniform strain.

The model developed in the present work predicts that the magnetostriction of these composites should fall between an upper limit (based on uniform stress) and a lower limit (based on uniform strain). The calculated magnetostrictions obtained on the basis of this model are in good agreement with the experimental results. In both experimental measurements and modeling the elastic modulus of the matrix seems to play a significant role in determining the bulk magnetostriction of a composite. Specifically the results show that the lower the elastic modulus of the matrix the higher the bulk magnetostriction of the composite. In practical terms the elastic modulus of the matrix cannot be too low without adversely affecting the mechanical performance of the material as a whole. In fact matching the elastic moduli of the matrix material and the magnetostrictive phase is probably the way to optimize this situation and obtain the necessary high bulk magnetostriction phase together with adequate mechanical properties for a magnetostrictive composite.

Ames Laboratory is operated by the U.S. Department of Energy by Iowa State University under Contract No. W-7405-ENG-82. This work was supported by the Office of Energy Research, Office of Computational and Technology Research, Advanced Energy Projects Division. The authors would like to thank the referee for calling attention to the work of C.-W. Nan, which was published after this letter was originally submitted.
