A Profile of Putative Parasitism Genes Expressed in the Esophageal Gland Cells of the Root-knot Nematode Meloidogyne incognita

Thumbnail Image
Date
2003-05-01
Authors
Huang, Guozhong
Gao, Bingli
Maier, Tom
Allen, R.
Davis, Eric
Baum, Thomas
Hussey, Richard
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Baum, Thomas
Distinguished Professor
Research Projects
Organizational Units
Organizational Unit
Plant Pathology and Microbiology
The Department of Plant Pathology and Microbiology and the Department of Entomology officially merged as of September 1, 2022. The new department is known as the Department of Plant Pathology, Entomology, and Microbiology (PPEM). The overall mission of the Department is to benefit society through research, teaching, and extension activities that improve pest management and prevent disease. Collectively, the Department consists of about 100 faculty, staff, and students who are engaged in research, teaching, and extension activities that are central to the mission of the College of Agriculture and Life Sciences. The Department possesses state-of-the-art research and teaching facilities in the Advanced Research and Teaching Building and in Science II. In addition, research and extension activities are performed off-campus at the Field Extension Education Laboratory, the Horticulture Station, the Agriculture Engineering/Agronomy Farm, and several Research and Demonstration Farms located around the state. Furthermore, the Department houses the Plant and Insect Diagnostic Clinic, the Iowa Soybean Research Center, the Insect Zoo, and BugGuide. Several USDA-ARS scientists are also affiliated with the Department.
Journal Issue
Is Version Of
Versions
Series
Department
Plant Pathology and Microbiology
Abstract

Identifying parasitism genes encoding proteins secreted from a nematode's esophageal gland cells and injected through its stylet into plant tissue is the key to understanding the molecular basis of nematode parasitism of plants. Meloidogyne incognita parasitism genes were cloned by microaspirating the cytoplasm from the esophageal gland cells of different parasitic stages to provide mRNA to create a gland cell-specific cDNA library by long-distance reverse-transcriptase polymerase chain reaction. Of 2,452 cDNA clones sequenced, deduced protein sequences of 185 cDNAs had a signal peptide for secretion and, thus, could have a role in root-knot nematode parasitism of plants. High-throughput in situ hybridization with cDNA clones encoding signal peptides resulted in probes of 37 unique clones specifically hybridizing to transcripts accumulating within the subventral (13 clones) or dorsal (24 clones) esophageal gland cells of M. incognita. In BLASTP analyses, 73% of the predicted proteins were novel proteins. Those with similarities to known proteins included a pectate lyase, acid phosphatase, and hypothetical proteins from other organisms. Our cell-specific analysis of genes encoding secretory proteins provided, for the first time, a profile of putative parasitism genes expressed in the M. incognita esophageal gland cells throughout the parasitic cycle.

Comments

This article is published as Huang, Guozhong, Bingli Gao, Tom Maier, R. Allen, Eric L. Davis, Thomas J. Baum, and Richard S. Hussey. "A profile of putative parasitism genes expressed in the esophageal gland cells of the root-knot nematode Meloidogyne incognita." Molecular Plant-Microbe Interactions 16, no. 5 (2003): 376-381, doi: 10.1094/MPMI.2003.16.5.376. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Wed Jan 01 00:00:00 UTC 2003
Collections