Solid-State Processing Approach to Enhance the Mechanical Properties of Polypropylene

Sharon Lau
Iowa State University, slau@iastate.edu

Srikanthan Ramesh
Iowa State University, sramesh@iastate.edu

Iris V. Rivero
Iowa State University, rivero@iastate.edu

LaShanda Korley
University of Delaware

Follow this and additional works at: https://lib.dr.iastate.edu/imse_conf

Part of the Industrial Engineering Commons, Mechanics of Materials Commons, and the Operational Research Commons

Recommended Citation

https://lib.dr.iastate.edu/imse_conf/130
Solid-State Processing Approach to Enhance the Mechanical Properties of Polypropylene

Abstract
Agenda: Background; Research Problem; Methodology; Results and Discussion; Conclusions.

Disciplines
Industrial Engineering | Mechanics of Materials | Operational Research

Comments

This presentation is available at Iowa State University Digital Repository: https://lib.dr.iastate.edu/imse_conf/130
Solid-State Processing Approach to Enhance the Mechanical Properties of Polypropylene

Sharon Lau, Srikanthan Ramesh, Iris V. Rivero
Iowa State University, Department of Industrial and Manufacturing Systems Engineering, 3004 Black Engineering Building, Ames, IA, 50011-2164, USA

LaShanda Korley
University of Delaware, Chemical and Biomolecular Engineering, 150 Academy Street, Newark, DE 19716, USA
Agenda

- Background
- Research Problem
- Methodology
- Results and Discussion
- Conclusions
Background

- **Isotactic Polypropylene (i-PP)**
 - Commercially available thermoplastic polymer
 - Packaging and labeling, textiles and stationery [1]
 - Optimal price-performance ratio, recyclability [2]
 - Inferior mechanical strength [3]
 - Solid-state processing to improve mechanical strength

- Polyethylene terephthalate, Polystyrene and Polyvinyl Chloride (Fig. 1 and Fig. 2) [4]
- Nucleating agents to enhance mechanical properties [5]

Background

- Nucleating agents are additives
- Sorbitol-based derivatives such as 1, 3, 2, 4-dibenzylidene sorbitol (MDBS) [7]
- Melt blending or solubilizing [8]
- Difficult to attain uniform dispersion [9]

Fig. 3. Working mechanism of nucleating agents
Background

- Cryomilling - Solid-state grinding technique
- Mechanical attrition of particles - cryogenic environment (-196 °C)
- Induces molecular physicochemical changes [11]

Research Problem

- Can cryomilling homogeneously disperse small quantities (0.2wt%-1 wt.%) of MDBS within i-PP matrix?
- Does cryomilling PP/MDBS improve the mechanical properties of i-PP?
Methodology

Table 1. %MDBS

<table>
<thead>
<tr>
<th>Material</th>
<th>% MDBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>0.00</td>
</tr>
<tr>
<td>A2</td>
<td>0.20</td>
</tr>
<tr>
<td>A3</td>
<td>0.40</td>
</tr>
<tr>
<td>A4</td>
<td>0.60</td>
</tr>
<tr>
<td>A5</td>
<td>0.80</td>
</tr>
<tr>
<td>A6</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Fig. 5. Flowchart of experimental methods
X-Ray Diffraction

Fig. 6. XRD graph
Fig. 7. Cooling curve from DSC analysis

Table 2. DSC cooling and heating data

<table>
<thead>
<tr>
<th>Wt.% MDBS</th>
<th>T_m (1st) (°C)</th>
<th>T_m (2nd) (°C)</th>
<th>T_c (°C)</th>
<th>ΔH_m (J/g)</th>
<th>Crystallinity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>165.8</td>
<td>164.6</td>
<td>117.3</td>
<td>29.4</td>
<td>14.1</td>
</tr>
<tr>
<td>0.2</td>
<td>166</td>
<td>165.2</td>
<td>128.8</td>
<td>31.7</td>
<td>15.2</td>
</tr>
<tr>
<td>0.4</td>
<td>166.8</td>
<td>165.5</td>
<td>128.3</td>
<td>34.8</td>
<td>16.7</td>
</tr>
<tr>
<td>0.6</td>
<td>165.9</td>
<td>165.1</td>
<td>128.6</td>
<td>32.7</td>
<td>15.6</td>
</tr>
<tr>
<td>0.8</td>
<td>166.6</td>
<td>165.9</td>
<td>128.6</td>
<td>33.6</td>
<td>16.1</td>
</tr>
<tr>
<td>1</td>
<td>166.4</td>
<td>165.4</td>
<td>129</td>
<td>38.6</td>
<td>18.5</td>
</tr>
</tbody>
</table>
Mechanical Properties

Fig. 8. Test setup and coupon

Fig. 9. Stress-Strain curve for PP/MDBS samples
Table 3. Tensile test data

<table>
<thead>
<tr>
<th>Sample #</th>
<th>Description</th>
<th>Ultimate tensile stress (MPa)</th>
<th>Modulus of elasticity (MPa)</th>
<th>Elongation @ break (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>PP</td>
<td>33.12 ± 0.67</td>
<td>1,109.36 ± 78.49</td>
<td>0.25 ± 0.00</td>
</tr>
<tr>
<td>A2</td>
<td>0.2%</td>
<td>36.65 ± 0.70</td>
<td>1,418.98 ± 78.59</td>
<td>0.06 ± 0.01</td>
</tr>
<tr>
<td>A3</td>
<td>0.4%</td>
<td>35.44 ± 0.33</td>
<td>986.53 ± 49.70</td>
<td>0.08 ± 0.01</td>
</tr>
<tr>
<td>A4</td>
<td>0.6%</td>
<td>35.52 ± 0.53</td>
<td>1,203.65 ± 55.77</td>
<td>0.07 ± 0.01</td>
</tr>
<tr>
<td>A5</td>
<td>0.8%</td>
<td>35.54 ± 0.70</td>
<td>1,141.42 ± 56.47</td>
<td>0.06 ± 0.00</td>
</tr>
<tr>
<td>A6</td>
<td>1.0%</td>
<td>38.02 ± 1.04</td>
<td>1,932.91 ± 44.45</td>
<td>0.04 ± 0.00</td>
</tr>
</tbody>
</table>

Fig. 10. Box plot of tensile strength and strain data
Conclusions and Broader Impacts

- Lower malleability
- Higher strength
- Broaden industrial applications
- Reduce cycle time
- Lower cost
- New processing technique
Questions?
slau@iastate.edu