
Creative Components Iowa State University Capstones, Theses and
Dissertations

Spring 2019

Security Analysis of Vehicle to Vehicle Arada Locomate On Board Security Analysis of Vehicle to Vehicle Arada Locomate On Board

Unit Unit

Ramanni J Veeraraghava

Follow this and additional works at: https://lib.dr.iastate.edu/creativecomponents

 Part of the Digital Communications and Networking Commons, Hardware Systems Commons, and the

Other Computer Engineering Commons

Recommended Citation Recommended Citation
Veeraraghava, Ramanni J, "Security Analysis of Vehicle to Vehicle Arada Locomate On Board Unit" (2019).
Creative Components. 271.
https://lib.dr.iastate.edu/creativecomponents/271

This Creative Component is brought to you for free and open access by the Iowa State University Capstones,
Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Creative
Components by an authorized administrator of Iowa State University Digital Repository. For more information,
please contact digirep@iastate.edu.

http://lib.dr.iastate.edu/
http://lib.dr.iastate.edu/
https://lib.dr.iastate.edu/creativecomponents
https://lib.dr.iastate.edu/theses
https://lib.dr.iastate.edu/theses
https://lib.dr.iastate.edu/creativecomponents?utm_source=lib.dr.iastate.edu%2Fcreativecomponents%2F271&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=lib.dr.iastate.edu%2Fcreativecomponents%2F271&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/263?utm_source=lib.dr.iastate.edu%2Fcreativecomponents%2F271&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=lib.dr.iastate.edu%2Fcreativecomponents%2F271&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/creativecomponents/271?utm_source=lib.dr.iastate.edu%2Fcreativecomponents%2F271&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

Security Analysis of Vehicle to Vehicle Arada Locomate On Board Unit

by

Sudharrshan Veeraraghava Ramanni Janaarthanan

A creative component submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Engineering

Program of Study Committee:
Lotfi Ben Othmane, Co-major Professor

Doug Jacobson, Co-major Professor

The student author, whose presentation of the scholarship herein was approved by the program of
study committee, is solely responsible for the content of this dissertation/thesis. The Graduate
College will ensure this dissertation/thesis is globally accessible and will not permit alterations

after a degree is conferred.

Iowa State University

Ames, Iowa

2019

ii

TABLE OF CONTENTS

Page

LIST OF TABLES . v

LIST OF FIGURES . vi

ACKNOWLEDGMENTS . viii

ABSTRACT . ix

CHAPTER 1. INTRODUCTION . 1

1.1 Problem . 1

1.2 Approach . 2

1.3 Hardware . 2

1.4 Organization . 2

CHAPTER 2. BACKGROUND . 4

2.1 Arada Locomate On-Board Unit . 4

2.2 Penetration testing tools . 5

2.2.1 NMAP . 5

2.2.2 Metasploit . 6

2.2.3 Binwalk . 6

2.3 Reverse Engineering tools . 6

2.3.1 Radare2 . 6

2.3.2 IDA Pro . 7

2.4 Debugging tools . 8

2.4.1 QEMU Emulator . 8

2.4.2 Cross Compilation . 8

iii

2.4.3 GDB . 9

CHAPTER 3. RELATED WORK . 12

3.1 Telematics in modern vehicles . 12

3.2 CAN bus security . 13

3.3 Security analysis of modern automotive technologies 13

CHAPTER 4. PENETRATION TESTING OF ARADA LOCOMATE 15

4.1 Introduction . 15

4.2 Flaw Hypothesis . 16

4.3 Experiments . 16

4.3.1 Dropbear Xauth vulnerability . 16

4.3.2 Vmsplice privilege escalation . 17

4.3.3 Busybox Crash . 19

4.3.4 USB Daemon . 21

4.3.5 Admin user vulnerability . 21

4.3.6 Encryption keys and certificates . 21

4.3.7 Firmware analysis . 22

4.4 Summary . 23

CHAPTER 5. ANALYSIS OF PORT 6666 . 25

5.1 Introduction . 25

5.2 USBD Program . 25

5.3 Buffer overflow hypothesis . 27

5.4 Injection attack on port 6666 . 27

5.4.1 Port 6666 fuzzer . 29

5.4.2 Program stack . 31

5.4.3 Result . 34

iv

CHAPTER 6. CONCLUSION AND FUTURE WORK . 37

6.1 Conclusion . 37

6.2 Future work . 37

BIBLIOGRAPHY . 39

v

LIST OF TABLES

Page

4.1 Open ports of Arada Locomate. 15

4.2 Flaw Hypothesis for programs in Arada Locomate. 16

5.1 Switch case and relevant figures . 26

5.2 Description of functions in the usbd program. 35

5.3 Description of switch cases in usbd server() program. 36

27

Figure 5.2 usbd server function call

5.3 Buffer overflow hypothesis

A buffer overflow happens when the size of the input is not moderated either while reading or

processing it in the memory. The read() function constitutes the function that reads data from

the port. This hypothesis is based on the read function to test if it can acquire more data than

specified as a maximum in the function call. If the read() allows reading more than the maximum

size specified, then the buffer overflow can be performed which can give access to the program

stack. The next section describes the experiments conducted to test the hypothesis.

5.4 Injection attack on port 6666

Inspecting the stack of the program requires a debugger running in the system. Arada Locomate

is proprietary hardware that has customized Linux version, selected libraries and commands. In

addition to it, the file system is a Read-Only file system which restricts the hacker’s accessibility. To

setup debugger in the hardware, a cross-compiled GDB executable with statically linked libraries

28

Figure 5.3 Port 6666 opening Figure 5.4 Network setup functions

Listing 5.1 Code snippet of the Port 6666 Fuzzer

1 import sys , socket , time

2 host = ” 1 2 7 . 0 . 0 . 1 ” // Address o f emulator i s through l o c a l h o s t

3 port = i n t (6666) // Def ine the port

4 l ength =250 // I n i t i a l Length o f the s t r i n g

5 whi l e (1) :

6 c l i e n t = socket . socke t (socke t . AF INET , socket .SOCK STREAM)

7 // Create a socket v a r i a b l e

8 c l i e n t . connect ((host , port)) // connect to the port

9 output = ”C”∗ l ength

10 c l i e n t . s e n d a l l (output . encode (’ ut f −8 ’))

11 c l i e n t . c l o s e ()

12 p r in t (” Length Sent : ” + s t r (l ength)

13 l ength += 100

29

Figure 5.5 Read function

was built that supports MIPS 32 version of the hardware. But, the results show that the GDB was

unable to run due to a customized Linux version.

The alternative is to use an emulator that recreates the firmware and root file system of the

hardware. An added advantage with the emulator is that it allows the user to perform unlimited

control over the firmware. QEMU emulator supports various architecture as discussed, and the

setup was done using a MIPS based kernel. GDB packages were installed in the emulator and

content of the root file system from firmware analysis was copied to the emulator. After the setup

of the emulator, the usbd program is run using GDB which gives full access to the program stack.

A fuzzer code as discussed below is run from the host computer. The reaction of the program can

be tracked by analyzing the stack data. The following section discusses the fuzzer code, stack data,

and the result.

5.4.1 Port 6666 fuzzer

The listing 5.1 contains the Python code snippet for fuzzing the port 6666. The code creates a

host variable representing the IP address of the guest, and the port variable is declared and initiated

to 6666 describing the port number. The size of the string is handled using length variable which

is used to increase the length of ’C’ from 250 until the stack overflows. The while loop is used to

30

Figure 5.6 Switch case 1 & 6 (a)

Figure 5.7 Switch case 1 & 6 (b)

31

Figure 5.8 Switch case 2

keep injecting the data into a guest port until an interrupt occurs. In the loop, a socket variable

is declared, and the socket is defined. Connect () checks if the host and guest port are connected.

The output variable will contain a string of ’C’ and the number of C’s is set using length variable.

The sendall() function sends the string to the port. Then, the length of the string is printed in the

command line, and the length is increased by 100.

5.4.2 Program stack

The program stack is monitored through GDB debugger which allows us to set breakpoints,

observe the buffer until the breakpoint, etc. The program is run in gdb, and the fuzzer program is

started from the host computer. The data read from the port is stored in a variable called usbsock

with size 256 bytes. Monitor the usbsock in GDB for a possibility of buffer overflow. The command

to find the address of usbsock is:

print &usbsock

The above command prints the address location of the start of the variable. In the usbd

program, the address of usbsock is 0x416c40. Observe the buffer from this point, and locate the

memory locations with 0x43(ASCII value of ’C’). The command to find the memory in general and

usbsock in our case is as specified below.

x/FMT Address

32

Figure 5.9 Switch case 3 & 7 (a)

Figure 5.10 Switch case 3 & 7 (b), cases 0, 4 ,default

33

Figure 5.11 Switch case 5 (a) Figure 5.12 Switch case 5 (b)

where x represents the memory and format can be specified to observer bytes or string

etc. followed by the address to observe

x/300xb 0x416c40

Here the 300 refers to the size of buffer starting from a specified address to display. The ’x’

followed by 300, points the command to display the content in hexadecimal and also the ’b’ points

the command to display byte by byte.

Figure 5.13 Stack content at start of usbsock

34

Figure 5.14 Stack content at end of usbsock

The output at the starting of the buffer is as shown in Figure 5.13. The hypothesis over the

read() function involves the size of input that the stack can take. The read() specifies the size of

the stack as 256 bytes. To test the hypothesis, the content after 256 bytes from 0x416c40 should

be observed to see if it exceeds the 256 bytes. Figure 5.14 shows the content of the stack at the

end of the 256 bytes.

5.4.3 Result

From Figure 5.14, we can see that the system does not overwrite the buffer with 0x43 after 256

bytes from the start of 0x416c40 also does not crash with a segmentation fault which proves that

there is no buffer overflow at the port read() function.

35

Table 5.2 Description of functions in the usbd program.
Function Description
Main () The main() function initializes the variables required, calls the options() that dis-

plays the help manual of the program. It then sets up the multithreading environ-
ment. Next, it calls the USB Usage() function which calculates the free space in
the USB and checks if it is under the threshold range. In Parallel, the other thread
calls the usbd server() function, and the further sections describe its functionality.
The main program reaches an end after both the thread execution terminates.

USB Usage() The USB Usage() function calls the df Linux command, checks the file system and
available memory and returns a flag if there is enough space in the USB.

scp filels() The scp filels() function calls the mv command to move all the files from the source
to the destination.

scp status() The scp status() function checks the status of the file copy. It checks if the file
copy functionality is completed or not and returns the status as an input to the
usbd server().

bind() The bind() function is one of the important socket programming functions. It takes
the socket file descriptor, socket address, and size of the socket address as input.
This function assigns the socket address to the defined socket using the socket file
descriptor. It returns 0 on success.

htons() The htons() function converts the host byte order to network byte order which takes
care of the endianness in the network systems.

listen() The listen() function is also one of the important socket programming functions.
It takes the socket file descriptor and backlog as input. This function enables the
socket file descriptor to have the ability to accept data. The backlog is the maximum
number of pending connections that the port can allow. It returns 0 on success.

accept() The accept() function is also one of the important socket programming functions.
It takes the socket file descriptor, socket address, size of the socket address and flags
as input. It accepts the first connection request from listen() and enables the port
to accept data.

close() The close() function is also one of the important socket programming functions. It
takes the socket file descriptor as input. Close() frees the file descriptor from the
port it is assigned to and terminates the connection.

read() The read() function is also one of the important socket programming functions. It
takes the socket file descriptor, buffer variable, and count as input. This function
reads the maximum count of bytes from the file specified by socket file descriptor
and stores it in the buffer.

usbd server() The usbd server() function is the most important function of the usbd program.
This function starts by printing that the program is in the usbd server and defines
the socket as a TCP/IP socket. Port 6666 is declared and htons function is called
to take care of the endianness. Then the bind() and listen() functions are called for
setting up the port. Next, a thread is created to take care of the interrupts from the
program and hardware. The next step is to select the file descriptors to handle. If
there is no file descriptor to work on, the control passes back to the thread creation.
Once a file descriptor is selected, it calls the accept() to enable the port to accept
data. Then, the 264-byte usbsock buffer is declared which is used in the read()
to read data. After that, a variable is read and used in a switch case to perform
different functions in each case, as described in Table 5.3. Once the switch case
terminates, the thread terminates, and the control transfers to main()

36

Table 5.3 Description of switch cases in usbd server() program.
Case Description
Case 0,4, default This case stores the comment Unknown command in the log file.
Case1 This case creates a folder in the USB called ModelDeployment using the mkdir

command. Next, it compares if WLAN capture folder is present and then copies
the WLAN packet files from the hardware to the USB. If any error occurs, the log
file stores the status.

Case 2 This case calls the scp status() function to check the file copy status
Case 3 This case is similar to case 7, but it overwrites the data if the USB is full.
Case 5 This case rechecks the USB size, calls the list() which uses the ls command to list

all the files in the folder. Next, the files specified in the list() are flushed out from
the USB using the rm command to free space.

Case 6 This case creates a folder in the USB called ModelDeployment using the mkdir
command. Next, it compares if the ethernet capture folder is present and then
copies the ethernet packet files from the hardware to the USB. If any error occurs,
the log file stores the status.

Case 7 This case calls the USB Usage() function to check the free space available in the
USB.

37

CHAPTER 6. CONCLUSION AND FUTURE WORK

6.1 Conclusion

Arada locomate is one of the V2V devices in the market. It has a customized Linux version for

the OS. A detailed port analysis of the hardware can reveal any flaws present in the implementation

and give the developers a way to alter the programs before deployment. Penetration testing was

done to gain an in-depth understanding of the hardware. Port analysis and program analysis

combined provided a clear idea of the implementations of software in the device. The hypothesized

buffer overflow vulnerability was also tested showing that the program using port 6666 was resistant

to buffer overflow attacks. The results of the vmsplice experiments also show that the Linux version

is susceptible to vmsplice exploit which gives privilege escalation. Generally, sending largely sized

inputs on the telnet port is a method to cause a denial of service, but the result of this test showed

that the device is safe from this attack. Thus, this study helps to perform required changes in the

future firmware upgrades and a secure platform for V2V communications.

6.2 Future work

Few of the tests remain for future work due to lack of time. The flaw hypothesis in chapter

4 discusses a few tests which need to be modified or studied more and customized for the MIPS

architecture. The following ideas present the future work based on the possibilities:

• vmsplice() attack: The current exploits are for the i86 architecture. The Arada Locomate

OBU is a MIPS architecture based device which uses different registers and commands. The

exploit needs to be developed for MIPS architecture and tested

38

• JTAG: JTAG is a port for hardware debugging. Through JTAG port, firmware can be

modified to obtain root privileges on the system. Although, this exploit requires physical

access to the device.

• User as attacker: A user knowing this access and details of the device can take advantage

over the entire network and can act as an attacker. Future work can study this perspective

in depth.

• WPS: WiFi Protected Setup is a standard for secure wireless home networks. This aids in

securely connecting other devices to the home network. Usage of a PIN is one of the methods

in this protocol. Although this acts as a standard for wireless home networks, there were

major vulnerabilities found within the protocol. Brute-force attacks are possible, and it is

easier to develop for this protocol. Future work can explore these types of attacks.

39

BIBLIOGRAPHY

[1] Nmap: Port scanning tool,

https://nmap.org/book/man.html

[2] Metasploit: Exploit database and tools,

https://metasploit.help.rapid7.com/docs

[3] Binwalk: Firmware analysis tool,

https://tools.kali.org/forensics/binwalk

[4] Radare2 reverse engineering framework ,

https://github.com/radare/radare2

[5] IDA Pro disassembler ,

https://www.hex-rays.com/products/ida/

[6] QEMU Emulator: User documentation,

https://qemu.weilnetz.de/doc/qemu-doc.html

[7] QEMU Emulator: Download link,

https://www.qemu.org/download/

[8] GDB Debugger: Download link,

https://ftp.gnu.org/gnu/gdb/

[9] Common Vulnerabilities and Exposures website

https://cve.mitre.org/

[10] vmsplice(): the making of a local root exploit

https://lwn.net/Articles/268783/

https://nmap.org/book/man.html
https://metasploit.help.rapid7.com/docs
https://tools.kali.org/forensics/binwalk
https://github.com/radare/radare2
https://www.hex-rays.com/products/ida/
https://qemu.weilnetz.de/doc/qemu-doc.html
https://www.qemu.org/download/
https://ftp.gnu.org/gnu/gdb/
https://cve.mitre.org/
https://lwn.net/Articles/268783/

40

[11] History of port 6666

https://www.speedguide.net/port.php?port=6666

[12] Yilin Zhao, Telematics: safe and fun driving, IEEE Intelligent Systems,vol.17, no. 1, pp. 10-14,

Jan. 2002. Available doi: 10.1109/5254.988442

[13] Charlie Miller and Chris Valasek Adventures in Automotive Networks and Control Units,2013

[14] Smith, Craig. The Car Hacker’s Handbook: A Guide for the Penetration Tester.San Francisco,

CA, USA: No Starch Press,2016.

[15] Hoppe, Tobias and Kiltz, Stefan and Dittmann, Jana.(2008).Security Threats to Automotive

CAN Networks - Practical Examples and Selected Short-Term Countermeasures. In Harrison,

Michael D. and Sujan, Mark-Alexander,Computer Safety, Reliability, and Security(pp. 235-

248). Berlin, Heidelberg: Springer Berlin Heidelberg

[16] K. Koscher and A. Czeskis and F. Roesner and S. Patel and T. Kohno and S. Checkoway and D.

McCoy and B. Kantor and D. Anderson and H. Shacham and S. Savage.(2010).Experimental

Security Analysis of a Modern Automobile.2010 IEEE Symposium on Security and Privacy(pp.

447-462).

[17] Golson, Jordan, Car hackers demonstrate wireless attack on Tesla Model S.(2016). The Verge

https://www.theverge.com/2016/9/19/12985120/tesla-model-s-hack-vulnerability-keen-labs

[18] Sahar Mazloom and Mohammad Rezaeirad and Aaron Hunter and Damon McCoy.(2016).A

Security Analysis of an In-Vehicle Infotainment and App Platform.10th USENIX Workshop

on Offensive Technologies (WOOT 16).Austin,TX: USENIX Association.

https://www.usenix.org/conference/woot16/workshop-program/presentation/

mazloom,

[19] Checkoway, Stephen and McCoy, Damon and Kantor, Brian and Anderson, Danny and

Shacham, Hovav and Savage, Stefan and Koscher, Karl and Czeskis, Alexei and Roesner,

https://www.speedguide.net/port.php?port=6666
https://www.theverge.com/2016/9/19/12985120/tesla-model-s-hack-vulnerability-keen-labs
https://www.usenix.org/conference/woot16/workshop-program/presentation/mazloom
https://www.usenix.org/conference/woot16/workshop-program/presentation/mazloom

41

Franziska and Kohno, Tadayoshi.(2011).Comprehensive Experimental Analyses of Automo-

tive Attack Surfaces. Proceedings of the 20th USENIX Conference on Security(pp. 6–6).San

Francisco, CA: USENIX Association

http://dl.acm.org/citation.cfm?id=2028067.2028073

[20] Linux vmsplice exploit for i86 architecture ,

https://www.exploit-db.com/exploits/5093

http://dl.acm.org/citation.cfm?id=2028067.2028073
https://www.exploit-db.com/exploits/5093

