Investigation of wing crack formation with a combined phase-field and experimental approach

Thumbnail Image
Date
2016-08-16
Authors
Lee, Sanghyun
Reber, Jacqueline
Hayman, Nicholas
Wheeler, Mary
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Reber, Jacqueline
Associate Professor
Research Projects
Organizational Units
Organizational Unit
Geological and Atmospheric Sciences

The Department of Geological and Atmospheric Sciences offers majors in three areas: Geology (traditional, environmental, or hydrogeology, for work as a surveyor or in mineral exploration), Meteorology (studies in global atmosphere, weather technology, and modeling for work as a meteorologist), and Earth Sciences (interdisciplinary mixture of geology, meteorology, and other natural sciences, with option of teacher-licensure).

History
The Department of Geology and Mining was founded in 1898. In 1902 its name changed to the Department of Geology. In 1965 its name changed to the Department of Earth Science. In 1977 its name changed to the Department of Earth Sciences. In 1989 its name changed to the Department of Geological and Atmospheric Sciences.

Dates of Existence
1898-present

Historical Names

  • Department of Geology and Mining (1898-1902)
  • Department of Geology (1902-1965)
  • Department of Earth Science (1965-1977)
  • Department of Earth Sciences (1977-1989)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Geological and Atmospheric Sciences
Abstract

Fractures that propagate off of weak slip planes are known as wing cracks and often play important roles in both tectonic deformation and fluid flow across reservoir seals. Previous numerical models have produced the basic kinematics of wing crack openings but generally have not been able to capture fracture geometries seen in nature. Here we present both a phase-field modeling approach and a physical experiment using gelatin for a wing crack formation. By treating the fracture surfaces as diffusive zones instead of as discontinuities, the phase-field model does not require consideration of unpredictable rock properties or stress inhomogeneities around crack tips. It is shown by benchmarking the models with physical experiments that the numerical assumptions in the phase-field approach do not affect the final model predictions of wing crack nucleation and growth. With this study, we demonstrate that it is feasible to implement the formation of wing cracks in large scale phase-field reservoir models.

Comments

This article is published as Lee, Sanghyun, Jacqueline E. Reber, Nicholas W. Hayman, and Mary F. Wheeler. "Investigation of wing crack formation with a combined phase‐field and experimental approach." Geophysical Research Letters 43, no. 15 (2016): 7946-7952. DOI:10.1002/2016GL069979. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Fri Jan 01 00:00:00 UTC 2016
Collections